github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/opencv4/include/opencv2/flann/kmeans_index.h (about)

     1  /***********************************************************************
     2   * Software License Agreement (BSD License)
     3   *
     4   * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
     5   * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
     6   *
     7   * THE BSD LICENSE
     8   *
     9   * Redistribution and use in source and binary forms, with or without
    10   * modification, are permitted provided that the following conditions
    11   * are met:
    12   *
    13   * 1. Redistributions of source code must retain the above copyright
    14   *    notice, this list of conditions and the following disclaimer.
    15   * 2. Redistributions in binary form must reproduce the above copyright
    16   *    notice, this list of conditions and the following disclaimer in the
    17   *    documentation and/or other materials provided with the distribution.
    18   *
    19   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    20   * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    21   * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    22   * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    23   * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    24   * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    25   * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    26   * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    27   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    28   * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    29   *************************************************************************/
    30  
    31  #ifndef OPENCV_FLANN_KMEANS_INDEX_H_
    32  #define OPENCV_FLANN_KMEANS_INDEX_H_
    33  
    34  //! @cond IGNORED
    35  
    36  #include <algorithm>
    37  #include <map>
    38  #include <limits>
    39  #include <cmath>
    40  
    41  #include "general.h"
    42  #include "nn_index.h"
    43  #include "dist.h"
    44  #include "matrix.h"
    45  #include "result_set.h"
    46  #include "heap.h"
    47  #include "allocator.h"
    48  #include "random.h"
    49  #include "saving.h"
    50  #include "logger.h"
    51  
    52  #define BITS_PER_CHAR 8
    53  #define BITS_PER_BASE 2 // for DNA/RNA sequences
    54  #define BASE_PER_CHAR (BITS_PER_CHAR/BITS_PER_BASE)
    55  #define HISTOS_PER_BASE (1<<BITS_PER_BASE)
    56  
    57  
    58  namespace cvflann
    59  {
    60  
    61  struct KMeansIndexParams : public IndexParams
    62  {
    63      KMeansIndexParams(int branching = 32, int iterations = 11,
    64                        flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
    65                        float cb_index = 0.2, int trees = 1 )
    66      {
    67          (*this)["algorithm"] = FLANN_INDEX_KMEANS;
    68          // branching factor
    69          (*this)["branching"] = branching;
    70          // max iterations to perform in one kmeans clustering (kmeans tree)
    71          (*this)["iterations"] = iterations;
    72          // algorithm used for picking the initial cluster centers for kmeans tree
    73          (*this)["centers_init"] = centers_init;
    74          // cluster boundary index. Used when searching the kmeans tree
    75          (*this)["cb_index"] = cb_index;
    76          // number of kmeans trees to search in
    77          (*this)["trees"] = trees;
    78      }
    79  };
    80  
    81  
    82  /**
    83   * Hierarchical kmeans index
    84   *
    85   * Contains a tree constructed through a hierarchical kmeans clustering
    86   * and other information for indexing a set of points for nearest-neighbour matching.
    87   */
    88  template <typename Distance>
    89  class KMeansIndex : public NNIndex<Distance>
    90  {
    91  public:
    92      typedef typename Distance::ElementType ElementType;
    93      typedef typename Distance::ResultType DistanceType;
    94      typedef typename Distance::CentersType CentersType;
    95  
    96      typedef typename Distance::is_kdtree_distance is_kdtree_distance;
    97      typedef typename Distance::is_vector_space_distance is_vector_space_distance;
    98  
    99  
   100  
   101      typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
   102  
   103      /**
   104       * The function used for choosing the cluster centers.
   105       */
   106      centersAlgFunction chooseCenters;
   107  
   108  
   109  
   110      /**
   111       * Chooses the initial centers in the k-means clustering in a random manner.
   112       *
   113       * Params:
   114       *     k = number of centers
   115       *     vecs = the dataset of points
   116       *     indices = indices in the dataset
   117       *     indices_length = length of indices vector
   118       *
   119       */
   120      void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
   121      {
   122          UniqueRandom r(indices_length);
   123  
   124          int index;
   125          for (index=0; index<k; ++index) {
   126              bool duplicate = true;
   127              int rnd;
   128              while (duplicate) {
   129                  duplicate = false;
   130                  rnd = r.next();
   131                  if (rnd<0) {
   132                      centers_length = index;
   133                      return;
   134                  }
   135  
   136                  centers[index] = indices[rnd];
   137  
   138                  for (int j=0; j<index; ++j) {
   139                      DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
   140                      if (sq<1e-16) {
   141                          duplicate = true;
   142                      }
   143                  }
   144              }
   145          }
   146  
   147          centers_length = index;
   148      }
   149  
   150  
   151      /**
   152       * Chooses the initial centers in the k-means using Gonzales' algorithm
   153       * so that the centers are spaced apart from each other.
   154       *
   155       * Params:
   156       *     k = number of centers
   157       *     vecs = the dataset of points
   158       *     indices = indices in the dataset
   159       * Returns:
   160       */
   161      void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
   162      {
   163          int n = indices_length;
   164  
   165          int rnd = rand_int(n);
   166          CV_DbgAssert(rnd >=0 && rnd < n);
   167  
   168          centers[0] = indices[rnd];
   169  
   170          int index;
   171          for (index=1; index<k; ++index) {
   172  
   173              int best_index = -1;
   174              DistanceType best_val = 0;
   175              for (int j=0; j<n; ++j) {
   176                  DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
   177                  for (int i=1; i<index; ++i) {
   178                      DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
   179                      if (tmp_dist<dist) {
   180                          dist = tmp_dist;
   181                      }
   182                  }
   183                  if (dist>best_val) {
   184                      best_val = dist;
   185                      best_index = j;
   186                  }
   187              }
   188              if (best_index!=-1) {
   189                  centers[index] = indices[best_index];
   190              }
   191              else {
   192                  break;
   193              }
   194          }
   195          centers_length = index;
   196      }
   197  
   198  
   199      /**
   200       * Chooses the initial centers in the k-means using the algorithm
   201       * proposed in the KMeans++ paper:
   202       * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
   203       *
   204       * Implementation of this function was converted from the one provided in Arthur's code.
   205       *
   206       * Params:
   207       *     k = number of centers
   208       *     vecs = the dataset of points
   209       *     indices = indices in the dataset
   210       * Returns:
   211       */
   212      void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
   213      {
   214          int n = indices_length;
   215  
   216          double currentPot = 0;
   217          DistanceType* closestDistSq = new DistanceType[n];
   218  
   219          // Choose one random center and set the closestDistSq values
   220          int index = rand_int(n);
   221          CV_DbgAssert(index >=0 && index < n);
   222          centers[0] = indices[index];
   223  
   224          for (int i = 0; i < n; i++) {
   225              closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
   226              closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
   227              currentPot += closestDistSq[i];
   228          }
   229  
   230  
   231          const int numLocalTries = 1;
   232  
   233          // Choose each center
   234          int centerCount;
   235          for (centerCount = 1; centerCount < k; centerCount++) {
   236  
   237              // Repeat several trials
   238              double bestNewPot = -1;
   239              int bestNewIndex = -1;
   240              for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
   241  
   242                  // Choose our center - have to be slightly careful to return a valid answer even accounting
   243                  // for possible rounding errors
   244                  double randVal = rand_double(currentPot);
   245                  for (index = 0; index < n-1; index++) {
   246                      if (randVal <= closestDistSq[index]) break;
   247                      else randVal -= closestDistSq[index];
   248                  }
   249  
   250                  // Compute the new potential
   251                  double newPot = 0;
   252                  for (int i = 0; i < n; i++) {
   253                      DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
   254                      newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
   255                  }
   256  
   257                  // Store the best result
   258                  if ((bestNewPot < 0)||(newPot < bestNewPot)) {
   259                      bestNewPot = newPot;
   260                      bestNewIndex = index;
   261                  }
   262              }
   263  
   264              // Add the appropriate center
   265              centers[centerCount] = indices[bestNewIndex];
   266              currentPot = bestNewPot;
   267              for (int i = 0; i < n; i++) {
   268                  DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
   269                  closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
   270              }
   271          }
   272  
   273          centers_length = centerCount;
   274  
   275          delete[] closestDistSq;
   276      }
   277  
   278  
   279  
   280  public:
   281  
   282      flann_algorithm_t getType() const CV_OVERRIDE
   283      {
   284          return FLANN_INDEX_KMEANS;
   285      }
   286  
   287      template<class CentersContainerType>
   288      class KMeansDistanceComputer : public cv::ParallelLoopBody
   289      {
   290      public:
   291          KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
   292              const int _branching, const int* _indices, const CentersContainerType& _dcenters,
   293              const size_t _veclen, std::vector<int> &_new_centroids,
   294              std::vector<DistanceType> &_sq_dists)
   295              : distance(_distance)
   296              , dataset(_dataset)
   297              , branching(_branching)
   298              , indices(_indices)
   299              , dcenters(_dcenters)
   300              , veclen(_veclen)
   301              , new_centroids(_new_centroids)
   302              , sq_dists(_sq_dists)
   303          {
   304          }
   305  
   306          void operator()(const cv::Range& range) const CV_OVERRIDE
   307          {
   308              const int begin = range.start;
   309              const int end = range.end;
   310  
   311              for( int i = begin; i<end; ++i)
   312              {
   313                  DistanceType sq_dist(distance(dataset[indices[i]], dcenters[0], veclen));
   314                  int new_centroid(0);
   315                  for (int j=1; j<branching; ++j) {
   316                      DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
   317                      if (sq_dist>new_sq_dist) {
   318                          new_centroid = j;
   319                          sq_dist = new_sq_dist;
   320                      }
   321                  }
   322                  sq_dists[i] = sq_dist;
   323                  new_centroids[i] = new_centroid;
   324              }
   325          }
   326  
   327      private:
   328          Distance distance;
   329          const Matrix<ElementType>& dataset;
   330          const int branching;
   331          const int* indices;
   332          const CentersContainerType& dcenters;
   333          const size_t veclen;
   334          std::vector<int> &new_centroids;
   335          std::vector<DistanceType> &sq_dists;
   336          KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
   337      };
   338  
   339      /**
   340       * Index constructor
   341       *
   342       * Params:
   343       *          inputData = dataset with the input features
   344       *          params = parameters passed to the hierarchical k-means algorithm
   345       */
   346      KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
   347                  Distance d = Distance())
   348          : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
   349      {
   350          memoryCounter_ = 0;
   351  
   352          size_ = dataset_.rows;
   353          veclen_ = dataset_.cols;
   354  
   355          branching_ = get_param(params,"branching",32);
   356          trees_ = get_param(params,"trees",1);
   357          iterations_ = get_param(params,"iterations",11);
   358          if (iterations_<0) {
   359              iterations_ = (std::numeric_limits<int>::max)();
   360          }
   361          centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
   362  
   363          if (centers_init_==FLANN_CENTERS_RANDOM) {
   364              chooseCenters = &KMeansIndex::chooseCentersRandom;
   365          }
   366          else if (centers_init_==FLANN_CENTERS_GONZALES) {
   367              chooseCenters = &KMeansIndex::chooseCentersGonzales;
   368          }
   369          else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
   370              chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
   371          }
   372          else {
   373              FLANN_THROW(cv::Error::StsBadArg, "Unknown algorithm for choosing initial centers.");
   374          }
   375          cb_index_ = 0.4f;
   376  
   377          root_ = new KMeansNodePtr[trees_];
   378          indices_ = new int*[trees_];
   379  
   380          for (int i=0; i<trees_; ++i) {
   381              root_[i] = NULL;
   382              indices_[i] = NULL;
   383          }
   384      }
   385  
   386  
   387      KMeansIndex(const KMeansIndex&);
   388      KMeansIndex& operator=(const KMeansIndex&);
   389  
   390  
   391      /**
   392       * Index destructor.
   393       *
   394       * Release the memory used by the index.
   395       */
   396      virtual ~KMeansIndex()
   397      {
   398          if (root_ != NULL) {
   399              free_centers();
   400              delete[] root_;
   401          }
   402          if (indices_!=NULL) {
   403              free_indices();
   404              delete[] indices_;
   405          }
   406      }
   407  
   408      /**
   409       *  Returns size of index.
   410       */
   411      size_t size() const CV_OVERRIDE
   412      {
   413          return size_;
   414      }
   415  
   416      /**
   417       * Returns the length of an index feature.
   418       */
   419      size_t veclen() const CV_OVERRIDE
   420      {
   421          return veclen_;
   422      }
   423  
   424  
   425      void set_cb_index( float index)
   426      {
   427          cb_index_ = index;
   428      }
   429  
   430      /**
   431       * Computes the inde memory usage
   432       * Returns: memory used by the index
   433       */
   434      int usedMemory() const CV_OVERRIDE
   435      {
   436          return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
   437      }
   438  
   439      /**
   440       * Builds the index
   441       */
   442      void buildIndex() CV_OVERRIDE
   443      {
   444          if (branching_<2) {
   445              FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
   446          }
   447  
   448          free_indices();
   449  
   450          for (int i=0; i<trees_; ++i) {
   451              indices_[i] = new int[size_];
   452              for (size_t j=0; j<size_; ++j) {
   453                  indices_[i][j] = int(j);
   454              }
   455              root_[i] = pool_.allocate<KMeansNode>();
   456              std::memset(root_[i], 0, sizeof(KMeansNode));
   457  
   458              Distance* dummy = NULL;
   459              computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_, dummy);
   460  
   461              computeClustering(root_[i], indices_[i], (int)size_, branching_,0);
   462          }
   463      }
   464  
   465  
   466      void saveIndex(FILE* stream) CV_OVERRIDE
   467      {
   468          save_value(stream, branching_);
   469          save_value(stream, iterations_);
   470          save_value(stream, memoryCounter_);
   471          save_value(stream, cb_index_);
   472          save_value(stream, trees_);
   473          for (int i=0; i<trees_; ++i) {
   474              save_value(stream, *indices_[i], (int)size_);
   475              save_tree(stream, root_[i], i);
   476          }
   477      }
   478  
   479  
   480      void loadIndex(FILE* stream) CV_OVERRIDE
   481      {
   482          if (indices_!=NULL) {
   483              free_indices();
   484              delete[] indices_;
   485          }
   486          if (root_!=NULL) {
   487              free_centers();
   488          }
   489  
   490          load_value(stream, branching_);
   491          load_value(stream, iterations_);
   492          load_value(stream, memoryCounter_);
   493          load_value(stream, cb_index_);
   494          load_value(stream, trees_);
   495  
   496          indices_ = new int*[trees_];
   497          for (int i=0; i<trees_; ++i) {
   498              indices_[i] = new int[size_];
   499              load_value(stream, *indices_[i], size_);
   500              load_tree(stream, root_[i], i);
   501          }
   502  
   503          index_params_["algorithm"] = getType();
   504          index_params_["branching"] = branching_;
   505          index_params_["trees"] = trees_;
   506          index_params_["iterations"] = iterations_;
   507          index_params_["centers_init"] = centers_init_;
   508          index_params_["cb_index"] = cb_index_;
   509      }
   510  
   511  
   512      /**
   513       * Find set of nearest neighbors to vec. Their indices are stored inside
   514       * the result object.
   515       *
   516       * Params:
   517       *     result = the result object in which the indices of the nearest-neighbors are stored
   518       *     vec = the vector for which to search the nearest neighbors
   519       *     searchParams = parameters that influence the search algorithm (checks, cb_index)
   520       */
   521      void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
   522      {
   523  
   524          const int maxChecks = get_param(searchParams,"checks",32);
   525  
   526          if (maxChecks==FLANN_CHECKS_UNLIMITED) {
   527              findExactNN(root_[0], result, vec);
   528          }
   529          else {
   530              // Priority queue storing intermediate branches in the best-bin-first search
   531              Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
   532  
   533              int checks = 0;
   534              for (int i=0; i<trees_; ++i) {
   535                  findNN(root_[i], result, vec, checks, maxChecks, heap);
   536                  if ((checks >= maxChecks) && result.full())
   537                      break;
   538              }
   539  
   540              BranchSt branch;
   541              while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
   542                  KMeansNodePtr node = branch.node;
   543                  findNN(node, result, vec, checks, maxChecks, heap);
   544              }
   545              delete heap;
   546  
   547              CV_Assert(result.full());
   548          }
   549      }
   550  
   551      /**
   552       * Clustering function that takes a cut in the hierarchical k-means
   553       * tree and return the clusters centers of that clustering.
   554       * Params:
   555       *     numClusters = number of clusters to have in the clustering computed
   556       * Returns: number of cluster centers
   557       */
   558      int getClusterCenters(Matrix<CentersType>& centers)
   559      {
   560          int numClusters = centers.rows;
   561          if (numClusters<1) {
   562              FLANN_THROW(cv::Error::StsBadArg, "Number of clusters must be at least 1");
   563          }
   564  
   565          DistanceType variance;
   566          KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
   567  
   568          int clusterCount = getMinVarianceClusters(root_[0], clusters, numClusters, variance);
   569  
   570          Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
   571  
   572          for (int i=0; i<clusterCount; ++i) {
   573              CentersType* center = clusters[i]->pivot;
   574              for (size_t j=0; j<veclen_; ++j) {
   575                  centers[i][j] = center[j];
   576              }
   577          }
   578          delete[] clusters;
   579  
   580          return clusterCount;
   581      }
   582  
   583      IndexParams getParameters() const CV_OVERRIDE
   584      {
   585          return index_params_;
   586      }
   587  
   588  
   589  private:
   590      /**
   591       * Structure representing a node in the hierarchical k-means tree.
   592       */
   593      struct KMeansNode
   594      {
   595          /**
   596           * The cluster center.
   597           */
   598          CentersType* pivot;
   599          /**
   600           * The cluster radius.
   601           */
   602          DistanceType radius;
   603          /**
   604           * The cluster mean radius.
   605           */
   606          DistanceType mean_radius;
   607          /**
   608           * The cluster variance.
   609           */
   610          DistanceType variance;
   611          /**
   612           * The cluster size (number of points in the cluster)
   613           */
   614          int size;
   615          /**
   616           * Child nodes (only for non-terminal nodes)
   617           */
   618          KMeansNode** childs;
   619          /**
   620           * Node points (only for terminal nodes)
   621           */
   622          int* indices;
   623          /**
   624           * Level
   625           */
   626          int level;
   627      };
   628      typedef KMeansNode* KMeansNodePtr;
   629  
   630      /**
   631       * Alias definition for a nicer syntax.
   632       */
   633      typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
   634  
   635  
   636  
   637  
   638      void save_tree(FILE* stream, KMeansNodePtr node, int num)
   639      {
   640          save_value(stream, *node);
   641          save_value(stream, *(node->pivot), (int)veclen_);
   642          if (node->childs==NULL) {
   643              int indices_offset = (int)(node->indices - indices_[num]);
   644              save_value(stream, indices_offset);
   645          }
   646          else {
   647              for(int i=0; i<branching_; ++i) {
   648                  save_tree(stream, node->childs[i], num);
   649              }
   650          }
   651      }
   652  
   653  
   654      void load_tree(FILE* stream, KMeansNodePtr& node, int num)
   655      {
   656          node = pool_.allocate<KMeansNode>();
   657          load_value(stream, *node);
   658          node->pivot = new CentersType[veclen_];
   659          load_value(stream, *(node->pivot), (int)veclen_);
   660          if (node->childs==NULL) {
   661              int indices_offset;
   662              load_value(stream, indices_offset);
   663              node->indices = indices_[num] + indices_offset;
   664          }
   665          else {
   666              node->childs = pool_.allocate<KMeansNodePtr>(branching_);
   667              for(int i=0; i<branching_; ++i) {
   668                  load_tree(stream, node->childs[i], num);
   669              }
   670          }
   671      }
   672  
   673  
   674      /**
   675       * Helper function
   676       */
   677      void free_centers(KMeansNodePtr node)
   678      {
   679          delete[] node->pivot;
   680          if (node->childs!=NULL) {
   681              for (int k=0; k<branching_; ++k) {
   682                  free_centers(node->childs[k]);
   683              }
   684          }
   685      }
   686  
   687      void free_centers()
   688      {
   689         if (root_ != NULL) {
   690             for(int i=0; i<trees_; ++i) {
   691                 if (root_[i] != NULL) {
   692                     free_centers(root_[i]);
   693                 }
   694             }
   695         }
   696      }
   697  
   698      /**
   699       * Release the inner elements of indices[]
   700       */
   701      void free_indices()
   702      {
   703          if (indices_!=NULL) {
   704              for(int i=0; i<trees_; ++i) {
   705                  if (indices_[i]!=NULL) {
   706                      delete[] indices_[i];
   707                      indices_[i] = NULL;
   708                  }
   709              }
   710          }
   711      }
   712  
   713      /**
   714       * Computes the statistics of a node (mean, radius, variance).
   715       *
   716       * Params:
   717       *     node = the node to use
   718       *     indices = array of indices of the points belonging to the node
   719       *     indices_length = number of indices in the array
   720       */
   721      void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length)
   722      {
   723          DistanceType variance = 0;
   724          CentersType* mean = new CentersType[veclen_];
   725          memoryCounter_ += int(veclen_*sizeof(CentersType));
   726  
   727          memset(mean,0,veclen_*sizeof(CentersType));
   728  
   729          for (unsigned int i=0; i<indices_length; ++i) {
   730              ElementType* vec = dataset_[indices[i]];
   731              for (size_t j=0; j<veclen_; ++j) {
   732                  mean[j] += vec[j];
   733              }
   734              variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
   735          }
   736          float length = static_cast<float>(indices_length);
   737          for (size_t j=0; j<veclen_; ++j) {
   738              mean[j] = cvflann::round<CentersType>( mean[j] / static_cast<double>(indices_length) );
   739          }
   740          variance /= static_cast<DistanceType>( length );
   741          variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
   742  
   743          DistanceType radius = 0;
   744          for (unsigned int i=0; i<indices_length; ++i) {
   745              DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
   746              if (tmp>radius) {
   747                  radius = tmp;
   748              }
   749          }
   750  
   751          node->variance = variance;
   752          node->radius = radius;
   753          node->pivot = mean;
   754      }
   755  
   756  
   757      void computeBitfieldNodeStatistics(KMeansNodePtr node, int* indices,
   758                                         unsigned int indices_length)
   759      {
   760          const unsigned int accumulator_veclen = static_cast<unsigned int>(
   761                                                  veclen_*sizeof(CentersType)*BITS_PER_CHAR);
   762  
   763          unsigned long long variance = 0ull;
   764          CentersType* mean = new CentersType[veclen_];
   765          memoryCounter_ += int(veclen_*sizeof(CentersType));
   766          unsigned int* mean_accumulator = new unsigned int[accumulator_veclen];
   767  
   768          memset(mean_accumulator, 0, sizeof(unsigned int)*accumulator_veclen);
   769  
   770          for (unsigned int i=0; i<indices_length; ++i) {
   771              variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
   772                          distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
   773              unsigned char* vec = (unsigned char*)dataset_[indices[i]];
   774              for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
   775                  mean_accumulator[k]   += (vec[l])    & 0x01;
   776                  mean_accumulator[k+1] += (vec[l]>>1) & 0x01;
   777                  mean_accumulator[k+2] += (vec[l]>>2) & 0x01;
   778                  mean_accumulator[k+3] += (vec[l]>>3) & 0x01;
   779                  mean_accumulator[k+4] += (vec[l]>>4) & 0x01;
   780                  mean_accumulator[k+5] += (vec[l]>>5) & 0x01;
   781                  mean_accumulator[k+6] += (vec[l]>>6) & 0x01;
   782                  mean_accumulator[k+7] += (vec[l]>>7) & 0x01;
   783              }
   784          }
   785          double cnt = static_cast<double>(indices_length);
   786          unsigned char* char_mean = (unsigned char*)mean;
   787          for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
   788              char_mean[l] = static_cast<unsigned char>(
   789                                (((int)(0.5 + (double)(mean_accumulator[k])   / cnt)))
   790                              | (((int)(0.5 + (double)(mean_accumulator[k+1]) / cnt))<<1)
   791                              | (((int)(0.5 + (double)(mean_accumulator[k+2]) / cnt))<<2)
   792                              | (((int)(0.5 + (double)(mean_accumulator[k+3]) / cnt))<<3)
   793                              | (((int)(0.5 + (double)(mean_accumulator[k+4]) / cnt))<<4)
   794                              | (((int)(0.5 + (double)(mean_accumulator[k+5]) / cnt))<<5)
   795                              | (((int)(0.5 + (double)(mean_accumulator[k+6]) / cnt))<<6)
   796                              | (((int)(0.5 + (double)(mean_accumulator[k+7]) / cnt))<<7));
   797          }
   798          variance = static_cast<unsigned long long>(
   799                      0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
   800          variance -= static_cast<unsigned long long>(
   801                      ensureSquareDistance<Distance>(
   802                          distance_(mean, ZeroIterator<ElementType>(), veclen_)));
   803  
   804          DistanceType radius = 0;
   805          for (unsigned int i=0; i<indices_length; ++i) {
   806              DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
   807              if (tmp>radius) {
   808                  radius = tmp;
   809              }
   810          }
   811  
   812          node->variance = static_cast<DistanceType>(variance);
   813          node->radius = radius;
   814          node->pivot = mean;
   815  
   816          delete[] mean_accumulator;
   817      }
   818  
   819  
   820      void computeDnaNodeStatistics(KMeansNodePtr node, int* indices,
   821                                         unsigned int indices_length)
   822      {
   823          const unsigned int histos_veclen = static_cast<unsigned int>(
   824                      veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
   825  
   826          unsigned long long variance = 0ull;
   827          unsigned int* histograms = new unsigned int[histos_veclen];
   828          memset(histograms, 0, sizeof(unsigned int)*histos_veclen);
   829  
   830          for (unsigned int i=0; i<indices_length; ++i) {
   831              variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
   832                          distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
   833  
   834              unsigned char* vec = (unsigned char*)dataset_[indices[i]];
   835              for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
   836                  histograms[k +     ((vec[l])    & 0x03)]++;
   837                  histograms[k + 4 + ((vec[l]>>2) & 0x03)]++;
   838                  histograms[k + 8 + ((vec[l]>>4) & 0x03)]++;
   839                  histograms[k +12 + ((vec[l]>>6) & 0x03)]++;
   840              }
   841          }
   842  
   843          CentersType* mean = new CentersType[veclen_];
   844          memoryCounter_ += int(veclen_*sizeof(CentersType));
   845          unsigned char* char_mean = (unsigned char*)mean;
   846          unsigned int* h = histograms;
   847          for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
   848              char_mean[l] = (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k]   > h[k+2] ? 0x00 : 0x10
   849                                                              : h[k]   > h[k+3] ? 0x00 : 0x11
   850                                            : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
   851                                                              : h[k+1] > h[k+3] ? 0x01 : 0x11)
   852                           | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00   : 0x1000
   853                                                              : h[k+4] > h[k+7] ? 0x00   : 0x1100
   854                                            : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
   855                                                              : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
   856                           | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00   : 0x100000
   857                                                              : h[k+8] >h[k+11] ? 0x00   : 0x110000
   858                                            : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
   859                                                              : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
   860                           | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00   : 0x10000000
   861                                                                : h[k+12] >h[k+15] ? 0x00   : 0x11000000
   862                                              : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
   863                                                                : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
   864          }
   865          variance = static_cast<unsigned long long>(
   866                      0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
   867          variance -= static_cast<unsigned long long>(
   868                      ensureSquareDistance<Distance>(
   869                          distance_(mean, ZeroIterator<ElementType>(), veclen_)));
   870  
   871          DistanceType radius = 0;
   872          for (unsigned int i=0; i<indices_length; ++i) {
   873              DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
   874              if (tmp>radius) {
   875                  radius = tmp;
   876              }
   877          }
   878  
   879          node->variance = static_cast<DistanceType>(variance);
   880          node->radius = radius;
   881          node->pivot = mean;
   882  
   883          delete[] histograms;
   884      }
   885  
   886  
   887      template<typename DistType>
   888      void computeNodeStatistics(KMeansNodePtr node, int* indices,
   889                                 unsigned int indices_length,
   890                                 const DistType* identifier)
   891      {
   892          (void)identifier;
   893          computeNodeStatistics(node, indices, indices_length);
   894      }
   895  
   896      void computeNodeStatistics(KMeansNodePtr node, int* indices,
   897                                 unsigned int indices_length,
   898                                 const cvflann::HammingLUT* identifier)
   899      {
   900          (void)identifier;
   901          computeBitfieldNodeStatistics(node, indices, indices_length);
   902      }
   903  
   904      void computeNodeStatistics(KMeansNodePtr node, int* indices,
   905                                 unsigned int indices_length,
   906                                 const cvflann::Hamming<unsigned char>* identifier)
   907      {
   908          (void)identifier;
   909          computeBitfieldNodeStatistics(node, indices, indices_length);
   910      }
   911  
   912      void computeNodeStatistics(KMeansNodePtr node, int* indices,
   913                                 unsigned int indices_length,
   914                                 const cvflann::Hamming2<unsigned char>* identifier)
   915      {
   916          (void)identifier;
   917          computeBitfieldNodeStatistics(node, indices, indices_length);
   918      }
   919  
   920      void computeNodeStatistics(KMeansNodePtr node, int* indices,
   921                                 unsigned int indices_length,
   922                                 const cvflann::DNAmmingLUT* identifier)
   923      {
   924          (void)identifier;
   925          computeDnaNodeStatistics(node, indices, indices_length);
   926      }
   927  
   928      void computeNodeStatistics(KMeansNodePtr node, int* indices,
   929                                 unsigned int indices_length,
   930                                 const cvflann::DNAmming2<unsigned char>* identifier)
   931      {
   932          (void)identifier;
   933          computeDnaNodeStatistics(node, indices, indices_length);
   934      }
   935  
   936  
   937      void refineClustering(int* indices, int indices_length, int branching, CentersType** centers,
   938                            std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
   939      {
   940          cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
   941          Matrix<double> dcenters(dcenters_buf.data(), branching, veclen_);
   942  
   943          bool converged = false;
   944          int iteration = 0;
   945          while (!converged && iteration<iterations_) {
   946              converged = true;
   947              iteration++;
   948  
   949              // compute the new cluster centers
   950              for (int i=0; i<branching; ++i) {
   951                  memset(dcenters[i],0,sizeof(double)*veclen_);
   952                  radiuses[i] = 0;
   953              }
   954              for (int i=0; i<indices_length; ++i) {
   955                  ElementType* vec = dataset_[indices[i]];
   956                  double* center = dcenters[belongs_to[i]];
   957                  for (size_t k=0; k<veclen_; ++k) {
   958                      center[k] += vec[k];
   959                  }
   960              }
   961              for (int i=0; i<branching; ++i) {
   962                  int cnt = count[i];
   963                  for (size_t k=0; k<veclen_; ++k) {
   964                      dcenters[i][k] /= cnt;
   965                  }
   966              }
   967  
   968              std::vector<int> new_centroids(indices_length);
   969              std::vector<DistanceType> sq_dists(indices_length);
   970  
   971              // reassign points to clusters
   972              KMeansDistanceComputer<Matrix<double> > invoker(
   973                          distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists);
   974              parallel_for_(cv::Range(0, (int)indices_length), invoker);
   975  
   976              for (int i=0; i < (int)indices_length; ++i) {
   977                  DistanceType sq_dist(sq_dists[i]);
   978                  int new_centroid(new_centroids[i]);
   979                  if (sq_dist > radiuses[new_centroid]) {
   980                      radiuses[new_centroid] = sq_dist;
   981                  }
   982                  if (new_centroid != belongs_to[i]) {
   983                      count[belongs_to[i]]--;
   984                      count[new_centroid]++;
   985                      belongs_to[i] = new_centroid;
   986                      converged = false;
   987                  }
   988              }
   989  
   990              for (int i=0; i<branching; ++i) {
   991                  // if one cluster converges to an empty cluster,
   992                  // move an element into that cluster
   993                  if (count[i]==0) {
   994                      int j = (i+1)%branching;
   995                      while (count[j]<=1) {
   996                          j = (j+1)%branching;
   997                      }
   998  
   999                      for (int k=0; k<indices_length; ++k) {
  1000                          if (belongs_to[k]==j) {
  1001                              // for cluster j, we move the furthest element from the center to the empty cluster i
  1002                              if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
  1003                                  belongs_to[k] = i;
  1004                                  count[j]--;
  1005                                  count[i]++;
  1006                                  break;
  1007                              }
  1008                          }
  1009                      }
  1010                      converged = false;
  1011                  }
  1012              }
  1013          }
  1014  
  1015         for (int i=0; i<branching; ++i) {
  1016             centers[i] = new CentersType[veclen_];
  1017             memoryCounter_ += (int)(veclen_*sizeof(CentersType));
  1018             for (size_t k=0; k<veclen_; ++k) {
  1019                 centers[i][k] = (CentersType)dcenters[i][k];
  1020             }
  1021         }
  1022      }
  1023  
  1024  
  1025      void refineBitfieldClustering(int* indices, int indices_length, int branching, CentersType** centers,
  1026                                    std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
  1027      {
  1028          for (int i=0; i<branching; ++i) {
  1029              centers[i] = new CentersType[veclen_];
  1030              memoryCounter_ += (int)(veclen_*sizeof(CentersType));
  1031          }
  1032  
  1033          const unsigned int accumulator_veclen = static_cast<unsigned int>(
  1034                                                  veclen_*sizeof(ElementType)*BITS_PER_CHAR);
  1035          cv::AutoBuffer<unsigned int> dcenters_buf(branching*accumulator_veclen);
  1036          Matrix<unsigned int> dcenters(dcenters_buf.data(), branching, accumulator_veclen);
  1037  
  1038          bool converged = false;
  1039          int iteration = 0;
  1040          while (!converged && iteration<iterations_) {
  1041              converged = true;
  1042              iteration++;
  1043  
  1044              // compute the new cluster centers
  1045              for (int i=0; i<branching; ++i) {
  1046                  memset(dcenters[i],0,sizeof(unsigned int)*accumulator_veclen);
  1047                  radiuses[i] = 0;
  1048              }
  1049              for (int i=0; i<indices_length; ++i) {
  1050                  unsigned char* vec = (unsigned char*)dataset_[indices[i]];
  1051                  unsigned int* dcenter = dcenters[belongs_to[i]];
  1052                  for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
  1053                      dcenter[k]   += (vec[l])    & 0x01;
  1054                      dcenter[k+1] += (vec[l]>>1) & 0x01;
  1055                      dcenter[k+2] += (vec[l]>>2) & 0x01;
  1056                      dcenter[k+3] += (vec[l]>>3) & 0x01;
  1057                      dcenter[k+4] += (vec[l]>>4) & 0x01;
  1058                      dcenter[k+5] += (vec[l]>>5) & 0x01;
  1059                      dcenter[k+6] += (vec[l]>>6) & 0x01;
  1060                      dcenter[k+7] += (vec[l]>>7) & 0x01;
  1061                  }
  1062              }
  1063              for (int i=0; i<branching; ++i) {
  1064                  double cnt = static_cast<double>(count[i]);
  1065                  unsigned int* dcenter = dcenters[i];
  1066                  unsigned char* charCenter = (unsigned char*)centers[i];
  1067                  for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
  1068                      charCenter[l] = static_cast<unsigned char>(
  1069                                        (((int)(0.5 + (double)(dcenter[k])   / cnt)))
  1070                                      | (((int)(0.5 + (double)(dcenter[k+1]) / cnt))<<1)
  1071                                      | (((int)(0.5 + (double)(dcenter[k+2]) / cnt))<<2)
  1072                                      | (((int)(0.5 + (double)(dcenter[k+3]) / cnt))<<3)
  1073                                      | (((int)(0.5 + (double)(dcenter[k+4]) / cnt))<<4)
  1074                                      | (((int)(0.5 + (double)(dcenter[k+5]) / cnt))<<5)
  1075                                      | (((int)(0.5 + (double)(dcenter[k+6]) / cnt))<<6)
  1076                                      | (((int)(0.5 + (double)(dcenter[k+7]) / cnt))<<7));
  1077                  }
  1078              }
  1079  
  1080              std::vector<int> new_centroids(indices_length);
  1081              std::vector<DistanceType> dists(indices_length);
  1082  
  1083              // reassign points to clusters
  1084              KMeansDistanceComputer<ElementType**> invoker(
  1085                          distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
  1086              parallel_for_(cv::Range(0, (int)indices_length), invoker);
  1087  
  1088              for (int i=0; i < indices_length; ++i) {
  1089                  DistanceType dist(dists[i]);
  1090                  int new_centroid(new_centroids[i]);
  1091                  if (dist > radiuses[new_centroid]) {
  1092                      radiuses[new_centroid] = dist;
  1093                  }
  1094                  if (new_centroid != belongs_to[i]) {
  1095                      count[belongs_to[i]]--;
  1096                      count[new_centroid]++;
  1097                      belongs_to[i] = new_centroid;
  1098                      converged = false;
  1099                  }
  1100              }
  1101  
  1102              for (int i=0; i<branching; ++i) {
  1103                  // if one cluster converges to an empty cluster,
  1104                  // move an element into that cluster
  1105                  if (count[i]==0) {
  1106                      int j = (i+1)%branching;
  1107                      while (count[j]<=1) {
  1108                          j = (j+1)%branching;
  1109                      }
  1110  
  1111                      for (int k=0; k<indices_length; ++k) {
  1112                          if (belongs_to[k]==j) {
  1113                              // for cluster j, we move the furthest element from the center to the empty cluster i
  1114                              if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
  1115                                  belongs_to[k] = i;
  1116                                  count[j]--;
  1117                                  count[i]++;
  1118                                  break;
  1119                              }
  1120                          }
  1121                      }
  1122                      converged = false;
  1123                  }
  1124              }
  1125          }
  1126      }
  1127  
  1128  
  1129      void refineDnaClustering(int* indices, int indices_length, int branching, CentersType** centers,
  1130                                    std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
  1131      {
  1132          for (int i=0; i<branching; ++i) {
  1133              centers[i] = new CentersType[veclen_];
  1134              memoryCounter_ += (int)(veclen_*sizeof(CentersType));
  1135          }
  1136  
  1137          const unsigned int histos_veclen = static_cast<unsigned int>(
  1138                      veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
  1139          cv::AutoBuffer<unsigned int> histos_buf(branching*histos_veclen);
  1140          Matrix<unsigned int> histos(histos_buf.data(), branching, histos_veclen);
  1141  
  1142          bool converged = false;
  1143          int iteration = 0;
  1144          while (!converged && iteration<iterations_) {
  1145              converged = true;
  1146              iteration++;
  1147  
  1148              // compute the new cluster centers
  1149              for (int i=0; i<branching; ++i) {
  1150                  memset(histos[i],0,sizeof(unsigned int)*histos_veclen);
  1151                  radiuses[i] = 0;
  1152              }
  1153              for (int i=0; i<indices_length; ++i) {
  1154                  unsigned char* vec = (unsigned char*)dataset_[indices[i]];
  1155                  unsigned int* h = histos[belongs_to[i]];
  1156                  for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
  1157                      h[k +     ((vec[l])    & 0x03)]++;
  1158                      h[k + 4 + ((vec[l]>>2) & 0x03)]++;
  1159                      h[k + 8 + ((vec[l]>>4) & 0x03)]++;
  1160                      h[k +12 + ((vec[l]>>6) & 0x03)]++;
  1161                  }
  1162              }
  1163              for (int i=0; i<branching; ++i) {
  1164                  unsigned int* h = histos[i];
  1165                  unsigned char* charCenter = (unsigned char*)centers[i];
  1166                  for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
  1167                      charCenter[l]= (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k]   > h[k+2] ? 0x00 : 0x10
  1168                                                                      : h[k]   > h[k+3] ? 0x00 : 0x11
  1169                                                    : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
  1170                                                                      : h[k+1] > h[k+3] ? 0x01 : 0x11)
  1171                                   | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00   : 0x1000
  1172                                                                      : h[k+4] > h[k+7] ? 0x00   : 0x1100
  1173                                                    : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
  1174                                                                      : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
  1175                                   | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00   : 0x100000
  1176                                                                      : h[k+8] >h[k+11] ? 0x00   : 0x110000
  1177                                                    : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
  1178                                                                      : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
  1179                                   | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00   : 0x10000000
  1180                                                                        : h[k+12] >h[k+15] ? 0x00   : 0x11000000
  1181                                                      : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
  1182                                                                        : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
  1183                  }
  1184              }
  1185  
  1186              std::vector<int> new_centroids(indices_length);
  1187              std::vector<DistanceType> dists(indices_length);
  1188  
  1189              // reassign points to clusters
  1190              KMeansDistanceComputer<ElementType**> invoker(
  1191                          distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
  1192              parallel_for_(cv::Range(0, (int)indices_length), invoker);
  1193  
  1194              for (int i=0; i < indices_length; ++i) {
  1195                  DistanceType dist(dists[i]);
  1196                  int new_centroid(new_centroids[i]);
  1197                  if (dist > radiuses[new_centroid]) {
  1198                      radiuses[new_centroid] = dist;
  1199                  }
  1200                  if (new_centroid != belongs_to[i]) {
  1201                      count[belongs_to[i]]--;
  1202                      count[new_centroid]++;
  1203                      belongs_to[i] = new_centroid;
  1204                      converged = false;
  1205                  }
  1206              }
  1207  
  1208              for (int i=0; i<branching; ++i) {
  1209                  // if one cluster converges to an empty cluster,
  1210                  // move an element into that cluster
  1211                  if (count[i]==0) {
  1212                      int j = (i+1)%branching;
  1213                      while (count[j]<=1) {
  1214                          j = (j+1)%branching;
  1215                      }
  1216  
  1217                      for (int k=0; k<indices_length; ++k) {
  1218                          if (belongs_to[k]==j) {
  1219                              // for cluster j, we move the furthest element from the center to the empty cluster i
  1220                              if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
  1221                                  belongs_to[k] = i;
  1222                                  count[j]--;
  1223                                  count[i]++;
  1224                                  break;
  1225                              }
  1226                          }
  1227                      }
  1228                      converged = false;
  1229                  }
  1230              }
  1231          }
  1232      }
  1233  
  1234  
  1235      void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length,
  1236                                int branching, int level, CentersType** centers,
  1237                                std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
  1238      {
  1239          // compute kmeans clustering for each of the resulting clusters
  1240          node->childs = pool_.allocate<KMeansNodePtr>(branching);
  1241          int start = 0;
  1242          int end = start;
  1243          for (int c=0; c<branching; ++c) {
  1244              int s = count[c];
  1245  
  1246              DistanceType variance = 0;
  1247              DistanceType mean_radius =0;
  1248              for (int i=0; i<indices_length; ++i) {
  1249                  if (belongs_to[i]==c) {
  1250                      DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
  1251                      variance += d;
  1252                      mean_radius += static_cast<DistanceType>( sqrt(d) );
  1253                      std::swap(indices[i],indices[end]);
  1254                      std::swap(belongs_to[i],belongs_to[end]);
  1255                      end++;
  1256                  }
  1257              }
  1258              variance /= s;
  1259              mean_radius /= s;
  1260              variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
  1261  
  1262              node->childs[c] = pool_.allocate<KMeansNode>();
  1263              std::memset(node->childs[c], 0, sizeof(KMeansNode));
  1264              node->childs[c]->radius = radiuses[c];
  1265              node->childs[c]->pivot = centers[c];
  1266              node->childs[c]->variance = variance;
  1267              node->childs[c]->mean_radius = mean_radius;
  1268              computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
  1269              start=end;
  1270          }
  1271      }
  1272  
  1273  
  1274      void computeAnyBitfieldSubClustering(KMeansNodePtr node, int* indices, int indices_length,
  1275                                int branching, int level, CentersType** centers,
  1276                                std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
  1277      {
  1278          // compute kmeans clustering for each of the resulting clusters
  1279          node->childs = pool_.allocate<KMeansNodePtr>(branching);
  1280          int start = 0;
  1281          int end = start;
  1282          for (int c=0; c<branching; ++c) {
  1283              int s = count[c];
  1284  
  1285              unsigned long long variance = 0ull;
  1286              DistanceType mean_radius =0;
  1287              for (int i=0; i<indices_length; ++i) {
  1288                  if (belongs_to[i]==c) {
  1289                      DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
  1290                      variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(d) );
  1291                      mean_radius += ensureSimpleDistance<Distance>(d);
  1292                      std::swap(indices[i],indices[end]);
  1293                      std::swap(belongs_to[i],belongs_to[end]);
  1294                      end++;
  1295                  }
  1296              }
  1297              mean_radius = static_cast<DistanceType>(
  1298                          0.5f + static_cast<float>(mean_radius) / static_cast<float>(s));
  1299              variance = static_cast<unsigned long long>(
  1300                          0.5 + static_cast<double>(variance) / static_cast<double>(s));
  1301              variance -= static_cast<unsigned long long>(
  1302                          ensureSquareDistance<Distance>(
  1303                              distance_(centers[c], ZeroIterator<ElementType>(), veclen_)));
  1304  
  1305              node->childs[c] = pool_.allocate<KMeansNode>();
  1306              std::memset(node->childs[c], 0, sizeof(KMeansNode));
  1307              node->childs[c]->radius = radiuses[c];
  1308              node->childs[c]->pivot = centers[c];
  1309              node->childs[c]->variance = static_cast<DistanceType>(variance);
  1310              node->childs[c]->mean_radius = mean_radius;
  1311              computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
  1312              start=end;
  1313          }
  1314      }
  1315  
  1316  
  1317      template<typename DistType>
  1318      void refineAndSplitClustering(
  1319              KMeansNodePtr node, int* indices, int indices_length, int branching,
  1320              int level, CentersType** centers, std::vector<DistanceType>& radiuses,
  1321              int* belongs_to, int* count, const DistType* identifier)
  1322      {
  1323          (void)identifier;
  1324          refineClustering(indices, indices_length, branching, centers, radiuses, belongs_to, count);
  1325  
  1326          computeSubClustering(node, indices, indices_length, branching,
  1327                               level, centers, radiuses, belongs_to, count);
  1328      }
  1329  
  1330  
  1331      /**
  1332       * The methods responsible with doing the recursive hierarchical clustering on
  1333       * binary vectors.
  1334       * As some might have heard that KMeans on binary data doesn't make sense,
  1335       * it's worth a little explanation why it actually fairly works. As
  1336       * with the Hierarchical Clustering algortihm, we seed several centers for the
  1337       * current node by picking some of its points. Then in a first pass each point
  1338       * of the node is then related to its closest center. Now let's have a look at
  1339       * the 5 central dimensions of the 9 following points:
  1340       *
  1341       * xxxxxx11100xxxxx (1)
  1342       * xxxxxx11010xxxxx (2)
  1343       * xxxxxx11001xxxxx (3)
  1344       * xxxxxx10110xxxxx (4)
  1345       * xxxxxx10101xxxxx (5)
  1346       * xxxxxx10011xxxxx (6)
  1347       * xxxxxx01110xxxxx (7)
  1348       * xxxxxx01101xxxxx (8)
  1349       * xxxxxx01011xxxxx (9)
  1350       * sum   _____
  1351       * of 1: 66555
  1352       *
  1353       * Even if the barycenter notion doesn't apply, we can set a center
  1354       * xxxxxx11111xxxxx that will better fit the five dimensions we are focusing
  1355       * on for these points.
  1356       *
  1357       * Note that convergence isn't ensured anymore. In practice, using Gonzales
  1358       * as seeding algorithm should be fine for getting convergence ("iterations"
  1359       * value can be set to -1). But with KMeans++ seeding you should definitely
  1360       * set a maximum number of iterations (but make it higher than the "iterations"
  1361       * default value of 11).
  1362       *
  1363       * Params:
  1364       *     node = the node to cluster
  1365       *     indices = indices of the points belonging to the current node
  1366       *     indices_length = number of points in the current node
  1367       *     branching = the branching factor to use in the clustering
  1368       *     level = 0 for the root node, it increases with the subdivision levels
  1369       *     centers = clusters centers to compute
  1370       *     radiuses = radiuses of clusters
  1371       *     belongs_to = LookUp Table returning, for a given indice id, the center id it belongs to
  1372       *     count = array storing the number of indices for a given center id
  1373       *     identifier = dummy pointer on an instance of Distance (use to branch correctly among templates)
  1374       */
  1375      void refineAndSplitClustering(
  1376              KMeansNodePtr node, int* indices, int indices_length, int branching,
  1377              int level, CentersType** centers, std::vector<DistanceType>& radiuses,
  1378              int* belongs_to, int* count, const cvflann::HammingLUT* identifier)
  1379      {
  1380          (void)identifier;
  1381          refineBitfieldClustering(
  1382                      indices, indices_length, branching, centers, radiuses, belongs_to, count);
  1383  
  1384          computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
  1385                                          level, centers, radiuses, belongs_to, count);
  1386      }
  1387  
  1388  
  1389      void refineAndSplitClustering(
  1390              KMeansNodePtr node, int* indices, int indices_length, int branching,
  1391              int level, CentersType** centers, std::vector<DistanceType>& radiuses,
  1392              int* belongs_to, int* count, const cvflann::Hamming<unsigned char>* identifier)
  1393      {
  1394          (void)identifier;
  1395          refineBitfieldClustering(
  1396                      indices, indices_length, branching, centers, radiuses, belongs_to, count);
  1397  
  1398          computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
  1399                                          level, centers, radiuses, belongs_to, count);
  1400      }
  1401  
  1402  
  1403      void refineAndSplitClustering(
  1404              KMeansNodePtr node, int* indices, int indices_length, int branching,
  1405              int level, CentersType** centers, std::vector<DistanceType>& radiuses,
  1406              int* belongs_to, int* count, const cvflann::Hamming2<unsigned char>* identifier)
  1407      {
  1408          (void)identifier;
  1409          refineBitfieldClustering(
  1410                      indices, indices_length, branching, centers, radiuses, belongs_to, count);
  1411  
  1412          computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
  1413                                          level, centers, radiuses, belongs_to, count);
  1414      }
  1415  
  1416  
  1417      void refineAndSplitClustering(
  1418              KMeansNodePtr node, int* indices, int indices_length, int branching,
  1419              int level, CentersType** centers, std::vector<DistanceType>& radiuses,
  1420              int* belongs_to, int* count, const cvflann::DNAmmingLUT* identifier)
  1421      {
  1422          (void)identifier;
  1423          refineDnaClustering(
  1424                      indices, indices_length, branching, centers, radiuses, belongs_to, count);
  1425  
  1426          computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
  1427                                          level, centers, radiuses, belongs_to, count);
  1428      }
  1429  
  1430  
  1431      void refineAndSplitClustering(
  1432              KMeansNodePtr node, int* indices, int indices_length, int branching,
  1433              int level, CentersType** centers, std::vector<DistanceType>& radiuses,
  1434              int* belongs_to, int* count, const cvflann::DNAmming2<unsigned char>* identifier)
  1435      {
  1436          (void)identifier;
  1437          refineDnaClustering(
  1438                      indices, indices_length, branching, centers, radiuses, belongs_to, count);
  1439  
  1440          computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
  1441                                          level, centers, radiuses, belongs_to, count);
  1442      }
  1443  
  1444  
  1445      /**
  1446       * The method responsible with actually doing the recursive hierarchical
  1447       * clustering
  1448       *
  1449       * Params:
  1450       *     node = the node to cluster
  1451       *     indices = indices of the points belonging to the current node
  1452       *     branching = the branching factor to use in the clustering
  1453       *
  1454       * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
  1455       */
  1456      void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
  1457      {
  1458          node->size = indices_length;
  1459          node->level = level;
  1460  
  1461          if (indices_length < branching) {
  1462              node->indices = indices;
  1463              std::sort(node->indices,node->indices+indices_length);
  1464              node->childs = NULL;
  1465              return;
  1466          }
  1467  
  1468          cv::AutoBuffer<int> centers_idx_buf(branching);
  1469          int* centers_idx = centers_idx_buf.data();
  1470          int centers_length;
  1471          (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
  1472  
  1473          if (centers_length<branching) {
  1474              node->indices = indices;
  1475              std::sort(node->indices,node->indices+indices_length);
  1476              node->childs = NULL;
  1477              return;
  1478          }
  1479  
  1480  
  1481          std::vector<DistanceType> radiuses(branching);
  1482          cv::AutoBuffer<int> count_buf(branching);
  1483          int* count = count_buf.data();
  1484          for (int i=0; i<branching; ++i) {
  1485              radiuses[i] = 0;
  1486              count[i] = 0;
  1487          }
  1488  
  1489          //	assign points to clusters
  1490          cv::AutoBuffer<int> belongs_to_buf(indices_length);
  1491          int* belongs_to = belongs_to_buf.data();
  1492          for (int i=0; i<indices_length; ++i) {
  1493              DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_);
  1494              belongs_to[i] = 0;
  1495              for (int j=1; j<branching; ++j) {
  1496                  DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_);
  1497                  if (sq_dist>new_sq_dist) {
  1498                      belongs_to[i] = j;
  1499                      sq_dist = new_sq_dist;
  1500                  }
  1501              }
  1502              if (sq_dist>radiuses[belongs_to[i]]) {
  1503                  radiuses[belongs_to[i]] = sq_dist;
  1504              }
  1505              count[belongs_to[i]]++;
  1506          }
  1507  
  1508          CentersType** centers = new CentersType*[branching];
  1509  
  1510          Distance* dummy = NULL;
  1511          refineAndSplitClustering(node, indices, indices_length, branching, level,
  1512                                   centers, radiuses, belongs_to, count, dummy);
  1513  
  1514          delete[] centers;
  1515      }
  1516  
  1517  
  1518      /**
  1519       * Performs one descent in the hierarchical k-means tree. The branches not
  1520       * visited are stored in a priority queue.
  1521       *
  1522       * Params:
  1523       *      node = node to explore
  1524       *      result = container for the k-nearest neighbors found
  1525       *      vec = query points
  1526       *      checks = how many points in the dataset have been checked so far
  1527       *      maxChecks = maximum dataset points to checks
  1528       */
  1529  
  1530  
  1531      void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
  1532                  Heap<BranchSt>* heap)
  1533      {
  1534          // Ignore those clusters that are too far away
  1535          {
  1536              DistanceType bsq = distance_(vec, node->pivot, veclen_);
  1537              DistanceType rsq = node->radius;
  1538              DistanceType wsq = result.worstDist();
  1539  
  1540              if (isSquareDistance<Distance>())
  1541              {
  1542                  DistanceType val = bsq-rsq-wsq;
  1543                  if ((val>0) && (val*val > 4*rsq*wsq))
  1544                      return;
  1545              }
  1546              else
  1547              {
  1548                  if (bsq-rsq > wsq)
  1549                      return;
  1550              }
  1551          }
  1552  
  1553          if (node->childs==NULL) {
  1554              if ((checks>=maxChecks) && result.full()) {
  1555                  return;
  1556              }
  1557              checks += node->size;
  1558              for (int i=0; i<node->size; ++i) {
  1559                  int index = node->indices[i];
  1560                  DistanceType dist = distance_(dataset_[index], vec, veclen_);
  1561                  result.addPoint(dist, index);
  1562              }
  1563          }
  1564          else {
  1565              DistanceType* domain_distances = new DistanceType[branching_];
  1566              int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
  1567              delete[] domain_distances;
  1568              findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
  1569          }
  1570      }
  1571  
  1572      /**
  1573       * Helper function that computes the nearest childs of a node to a given query point.
  1574       * Params:
  1575       *     node = the node
  1576       *     q = the query point
  1577       *     distances = array with the distances to each child node.
  1578       * Returns:
  1579       */
  1580      int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
  1581      {
  1582  
  1583          int best_index = 0;
  1584          domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
  1585          for (int i=1; i<branching_; ++i) {
  1586              domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
  1587              if (domain_distances[i]<domain_distances[best_index]) {
  1588                  best_index = i;
  1589              }
  1590          }
  1591  
  1592          //		float* best_center = node->childs[best_index]->pivot;
  1593          for (int i=0; i<branching_; ++i) {
  1594              if (i != best_index) {
  1595                  domain_distances[i] -= cvflann::round<DistanceType>(
  1596                                          cb_index_*node->childs[i]->variance );
  1597  
  1598                  //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
  1599                  //				if (domain_distances[i]<dist_to_border) {
  1600                  //					domain_distances[i] = dist_to_border;
  1601                  //				}
  1602                  heap->insert(BranchSt(node->childs[i],domain_distances[i]));
  1603              }
  1604          }
  1605  
  1606          return best_index;
  1607      }
  1608  
  1609  
  1610      /**
  1611       * Function the performs exact nearest neighbor search by traversing the entire tree.
  1612       */
  1613      void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
  1614      {
  1615          // Ignore those clusters that are too far away
  1616          {
  1617              DistanceType bsq = distance_(vec, node->pivot, veclen_);
  1618              DistanceType rsq = node->radius;
  1619              DistanceType wsq = result.worstDist();
  1620  
  1621              if (isSquareDistance<Distance>())
  1622              {
  1623                  DistanceType val = bsq-rsq-wsq;
  1624                  if ((val>0) && (val*val > 4*rsq*wsq))
  1625                      return;
  1626              }
  1627              else
  1628              {
  1629                  if (bsq-rsq > wsq)
  1630                      return;
  1631              }
  1632          }
  1633  
  1634  
  1635          if (node->childs==NULL) {
  1636              for (int i=0; i<node->size; ++i) {
  1637                  int index = node->indices[i];
  1638                  DistanceType dist = distance_(dataset_[index], vec, veclen_);
  1639                  result.addPoint(dist, index);
  1640              }
  1641          }
  1642          else {
  1643              int* sort_indices = new int[branching_];
  1644  
  1645              getCenterOrdering(node, vec, sort_indices);
  1646  
  1647              for (int i=0; i<branching_; ++i) {
  1648                  findExactNN(node->childs[sort_indices[i]],result,vec);
  1649              }
  1650  
  1651              delete[] sort_indices;
  1652          }
  1653      }
  1654  
  1655  
  1656      /**
  1657       * Helper function.
  1658       *
  1659       * I computes the order in which to traverse the child nodes of a particular node.
  1660       */
  1661      void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
  1662      {
  1663          DistanceType* domain_distances = new DistanceType[branching_];
  1664          for (int i=0; i<branching_; ++i) {
  1665              DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
  1666  
  1667              int j=0;
  1668              while (domain_distances[j]<dist && j<i)
  1669                  j++;
  1670              for (int k=i; k>j; --k) {
  1671                  domain_distances[k] = domain_distances[k-1];
  1672                  sort_indices[k] = sort_indices[k-1];
  1673              }
  1674              domain_distances[j] = dist;
  1675              sort_indices[j] = i;
  1676          }
  1677          delete[] domain_distances;
  1678      }
  1679  
  1680      /**
  1681       * Method that computes the squared distance from the query point q
  1682       * from inside region with center c to the border between this
  1683       * region and the region with center p
  1684       */
  1685      DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
  1686      {
  1687          DistanceType sum = 0;
  1688          DistanceType sum2 = 0;
  1689  
  1690          for (int i=0; i<veclen_; ++i) {
  1691              DistanceType t = c[i]-p[i];
  1692              sum += t*(q[i]-(c[i]+p[i])/2);
  1693              sum2 += t*t;
  1694          }
  1695  
  1696          return sum*sum/sum2;
  1697      }
  1698  
  1699  
  1700      /**
  1701       * Helper function the descends in the hierarchical k-means tree by splitting those clusters that minimize
  1702       * the overall variance of the clustering.
  1703       * Params:
  1704       *     root = root node
  1705       *     clusters = array with clusters centers (return value)
  1706       *     varianceValue = variance of the clustering (return value)
  1707       * Returns:
  1708       */
  1709      int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
  1710      {
  1711          int clusterCount = 1;
  1712          clusters[0] = root;
  1713  
  1714          DistanceType meanVariance = root->variance*root->size;
  1715  
  1716          while (clusterCount<clusters_length) {
  1717              DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
  1718              int splitIndex = -1;
  1719  
  1720              for (int i=0; i<clusterCount; ++i) {
  1721                  if (clusters[i]->childs != NULL) {
  1722  
  1723                      DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
  1724  
  1725                      for (int j=0; j<branching_; ++j) {
  1726                          variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
  1727                      }
  1728                      if (variance<minVariance) {
  1729                          minVariance = variance;
  1730                          splitIndex = i;
  1731                      }
  1732                  }
  1733              }
  1734  
  1735              if (splitIndex==-1) break;
  1736              if ( (branching_+clusterCount-1) > clusters_length) break;
  1737  
  1738              meanVariance = minVariance;
  1739  
  1740              // split node
  1741              KMeansNodePtr toSplit = clusters[splitIndex];
  1742              clusters[splitIndex] = toSplit->childs[0];
  1743              for (int i=1; i<branching_; ++i) {
  1744                  clusters[clusterCount++] = toSplit->childs[i];
  1745              }
  1746          }
  1747  
  1748          varianceValue = meanVariance/root->size;
  1749          return clusterCount;
  1750      }
  1751  
  1752  private:
  1753      /** The branching factor used in the hierarchical k-means clustering */
  1754      int branching_;
  1755  
  1756      /** Number of kmeans trees (default is one) */
  1757      int trees_;
  1758  
  1759      /** Maximum number of iterations to use when performing k-means clustering */
  1760      int iterations_;
  1761  
  1762      /** Algorithm for choosing the cluster centers */
  1763      flann_centers_init_t centers_init_;
  1764  
  1765      /**
  1766       * Cluster border index. This is used in the tree search phase when determining
  1767       * the closest cluster to explore next. A zero value takes into account only
  1768       * the cluster centres, a value greater then zero also take into account the size
  1769       * of the cluster.
  1770       */
  1771      float cb_index_;
  1772  
  1773      /**
  1774       * The dataset used by this index
  1775       */
  1776      const Matrix<ElementType> dataset_;
  1777  
  1778      /** Index parameters */
  1779      IndexParams index_params_;
  1780  
  1781      /**
  1782       * Number of features in the dataset.
  1783       */
  1784      size_t size_;
  1785  
  1786      /**
  1787       * Length of each feature.
  1788       */
  1789      size_t veclen_;
  1790  
  1791      /**
  1792       * The root node in the tree.
  1793       */
  1794      KMeansNodePtr* root_;
  1795  
  1796      /**
  1797       *  Array of indices to vectors in the dataset.
  1798       */
  1799      int** indices_;
  1800  
  1801      /**
  1802       * The distance
  1803       */
  1804      Distance distance_;
  1805  
  1806      /**
  1807       * Pooled memory allocator.
  1808       */
  1809      PooledAllocator pool_;
  1810  
  1811      /**
  1812       * Memory occupied by the index.
  1813       */
  1814      int memoryCounter_;
  1815  };
  1816  
  1817  }
  1818  
  1819  //! @endcond
  1820  
  1821  #endif //OPENCV_FLANN_KMEANS_INDEX_H_