github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/opencv4/include/opencv2/flann/lsh_index.h (about)

     1  /***********************************************************************
     2   * Software License Agreement (BSD License)
     3   *
     4   * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
     5   * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
     6   *
     7   * THE BSD LICENSE
     8   *
     9   * Redistribution and use in source and binary forms, with or without
    10   * modification, are permitted provided that the following conditions
    11   * are met:
    12   *
    13   * 1. Redistributions of source code must retain the above copyright
    14   *    notice, this list of conditions and the following disclaimer.
    15   * 2. Redistributions in binary form must reproduce the above copyright
    16   *    notice, this list of conditions and the following disclaimer in the
    17   *    documentation and/or other materials provided with the distribution.
    18   *
    19   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    20   * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    21   * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    22   * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    23   * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    24   * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    25   * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    26   * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    27   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    28   * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    29   *************************************************************************/
    30  
    31  /***********************************************************************
    32   * Author: Vincent Rabaud
    33   *************************************************************************/
    34  
    35  #ifndef OPENCV_FLANN_LSH_INDEX_H_
    36  #define OPENCV_FLANN_LSH_INDEX_H_
    37  
    38  //! @cond IGNORED
    39  
    40  #include <algorithm>
    41  #include <cstring>
    42  #include <map>
    43  #include <vector>
    44  
    45  #include "nn_index.h"
    46  #include "matrix.h"
    47  #include "result_set.h"
    48  #include "heap.h"
    49  #include "lsh_table.h"
    50  #include "allocator.h"
    51  #include "random.h"
    52  #include "saving.h"
    53  
    54  #ifdef _MSC_VER
    55  #pragma warning(push)
    56  #pragma warning(disable: 4702) //disable unreachable code
    57  #endif
    58  
    59  namespace cvflann
    60  {
    61  
    62  struct LshIndexParams : public IndexParams
    63  {
    64      LshIndexParams(int table_number = 12, int key_size = 20, int multi_probe_level = 2)
    65      {
    66          (*this)["algorithm"] = FLANN_INDEX_LSH;
    67          // The number of hash tables to use
    68          (*this)["table_number"] = table_number;
    69          // The length of the key in the hash tables
    70          (*this)["key_size"] = key_size;
    71          // Number of levels to use in multi-probe (0 for standard LSH)
    72          (*this)["multi_probe_level"] = multi_probe_level;
    73      }
    74  };
    75  
    76  /**
    77   * Locality-sensitive hashing  index
    78   *
    79   * Contains the tables and other information for indexing a set of points
    80   * for nearest-neighbor matching.
    81   */
    82  template<typename Distance>
    83  class LshIndex : public NNIndex<Distance>
    84  {
    85  public:
    86      typedef typename Distance::ElementType ElementType;
    87      typedef typename Distance::ResultType DistanceType;
    88  
    89      /** Constructor
    90       * @param input_data dataset with the input features
    91       * @param params parameters passed to the LSH algorithm
    92       * @param d the distance used
    93       */
    94      LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
    95               Distance d = Distance()) :
    96          dataset_(input_data), index_params_(params), distance_(d)
    97      {
    98          // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
    99          // in place of 'unsigned int'
   100          table_number_ = get_param(index_params_,"table_number",12);
   101          key_size_ = get_param(index_params_,"key_size",20);
   102          multi_probe_level_ = get_param(index_params_,"multi_probe_level",2);
   103  
   104          feature_size_ = (unsigned)dataset_.cols;
   105          fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
   106      }
   107  
   108  
   109      LshIndex(const LshIndex&);
   110      LshIndex& operator=(const LshIndex&);
   111  
   112      /**
   113       * Builds the index
   114       */
   115      void buildIndex() CV_OVERRIDE
   116      {
   117          tables_.resize(table_number_);
   118          for (int i = 0; i < table_number_; ++i) {
   119              lsh::LshTable<ElementType>& table = tables_[i];
   120              table = lsh::LshTable<ElementType>(feature_size_, key_size_);
   121  
   122              // Add the features to the table
   123              table.add(dataset_);
   124          }
   125      }
   126  
   127      flann_algorithm_t getType() const CV_OVERRIDE
   128      {
   129          return FLANN_INDEX_LSH;
   130      }
   131  
   132  
   133      void saveIndex(FILE* stream) CV_OVERRIDE
   134      {
   135          save_value(stream,table_number_);
   136          save_value(stream,key_size_);
   137          save_value(stream,multi_probe_level_);
   138          save_value(stream, dataset_);
   139      }
   140  
   141      void loadIndex(FILE* stream) CV_OVERRIDE
   142      {
   143          load_value(stream, table_number_);
   144          load_value(stream, key_size_);
   145          load_value(stream, multi_probe_level_);
   146          load_value(stream, dataset_);
   147          // Building the index is so fast we can afford not storing it
   148          buildIndex();
   149  
   150          index_params_["algorithm"] = getType();
   151          index_params_["table_number"] = table_number_;
   152          index_params_["key_size"] = key_size_;
   153          index_params_["multi_probe_level"] = multi_probe_level_;
   154      }
   155  
   156      /**
   157       *  Returns size of index.
   158       */
   159      size_t size() const CV_OVERRIDE
   160      {
   161          return dataset_.rows;
   162      }
   163  
   164      /**
   165       * Returns the length of an index feature.
   166       */
   167      size_t veclen() const CV_OVERRIDE
   168      {
   169          return feature_size_;
   170      }
   171  
   172      /**
   173       * Computes the index memory usage
   174       * Returns: memory used by the index
   175       */
   176      int usedMemory() const CV_OVERRIDE
   177      {
   178          return (int)(dataset_.rows * sizeof(int));
   179      }
   180  
   181  
   182      IndexParams getParameters() const CV_OVERRIDE
   183      {
   184          return index_params_;
   185      }
   186  
   187      /**
   188       * \brief Perform k-nearest neighbor search
   189       * \param[in] queries The query points for which to find the nearest neighbors
   190       * \param[out] indices The indices of the nearest neighbors found
   191       * \param[out] dists Distances to the nearest neighbors found
   192       * \param[in] knn Number of nearest neighbors to return
   193       * \param[in] params Search parameters
   194       */
   195      virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
   196      {
   197          CV_Assert(queries.cols == veclen());
   198          CV_Assert(indices.rows >= queries.rows);
   199          CV_Assert(dists.rows >= queries.rows);
   200          CV_Assert(int(indices.cols) >= knn);
   201          CV_Assert(int(dists.cols) >= knn);
   202  
   203  
   204          KNNUniqueResultSet<DistanceType> resultSet(knn);
   205          for (size_t i = 0; i < queries.rows; i++) {
   206              resultSet.clear();
   207              std::fill_n(indices[i], knn, -1);
   208              std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max());
   209              findNeighbors(resultSet, queries[i], params);
   210              if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
   211              else resultSet.copy(indices[i], dists[i], knn);
   212          }
   213      }
   214  
   215  
   216      /**
   217       * Find set of nearest neighbors to vec. Their indices are stored inside
   218       * the result object.
   219       *
   220       * Params:
   221       *     result = the result object in which the indices of the nearest-neighbors are stored
   222       *     vec = the vector for which to search the nearest neighbors
   223       *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
   224       */
   225      void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/) CV_OVERRIDE
   226      {
   227          getNeighbors(vec, result);
   228      }
   229  
   230  private:
   231      /** Defines the comparator on score and index
   232       */
   233      typedef std::pair<float, unsigned int> ScoreIndexPair;
   234      struct SortScoreIndexPairOnSecond
   235      {
   236          bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
   237          {
   238              return left.second < right.second;
   239          }
   240      };
   241  
   242      /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
   243       * @param key the key we build neighbors from
   244       * @param lowest_index the lowest index of the bit set
   245       * @param level the multi-probe level we are at
   246       * @param xor_masks all the xor mask
   247       */
   248      void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
   249                         std::vector<lsh::BucketKey>& xor_masks)
   250      {
   251          xor_masks.push_back(key);
   252          if (level == 0) return;
   253          for (int index = lowest_index - 1; index >= 0; --index) {
   254              // Create a new key
   255              lsh::BucketKey new_key = key | (1 << index);
   256              fill_xor_mask(new_key, index, level - 1, xor_masks);
   257          }
   258      }
   259  
   260      /** Performs the approximate nearest-neighbor search.
   261       * @param vec the feature to analyze
   262       * @param do_radius flag indicating if we check the radius too
   263       * @param radius the radius if it is a radius search
   264       * @param do_k flag indicating if we limit the number of nn
   265       * @param k_nn the number of nearest neighbors
   266       * @param checked_average used for debugging
   267       */
   268      void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn,
   269                        float& /*checked_average*/)
   270      {
   271          static std::vector<ScoreIndexPair> score_index_heap;
   272  
   273          if (do_k) {
   274              unsigned int worst_score = std::numeric_limits<unsigned int>::max();
   275              typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
   276              typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
   277              for (; table != table_end; ++table) {
   278                  size_t key = table->getKey(vec);
   279                  std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
   280                  std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
   281                  for (; xor_mask != xor_mask_end; ++xor_mask) {
   282                      size_t sub_key = key ^ (*xor_mask);
   283                      const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
   284                      if (bucket == 0) continue;
   285  
   286                      // Go over each descriptor index
   287                      std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
   288                      std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
   289                      DistanceType hamming_distance;
   290  
   291                      // Process the rest of the candidates
   292                      for (; training_index < last_training_index; ++training_index) {
   293                          hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
   294  
   295                          if (hamming_distance < worst_score) {
   296                              // Insert the new element
   297                              score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
   298                              std::push_heap(score_index_heap.begin(), score_index_heap.end());
   299  
   300                              if (score_index_heap.size() > (unsigned int)k_nn) {
   301                                  // Remove the highest distance value as we have too many elements
   302                                  std::pop_heap(score_index_heap.begin(), score_index_heap.end());
   303                                  score_index_heap.pop_back();
   304                                  // Keep track of the worst score
   305                                  worst_score = score_index_heap.front().first;
   306                              }
   307                          }
   308                      }
   309                  }
   310              }
   311          }
   312          else {
   313              typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
   314              typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
   315              for (; table != table_end; ++table) {
   316                  size_t key = table->getKey(vec);
   317                  std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
   318                  std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
   319                  for (; xor_mask != xor_mask_end; ++xor_mask) {
   320                      size_t sub_key = key ^ (*xor_mask);
   321                      const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
   322                      if (bucket == 0) continue;
   323  
   324                      // Go over each descriptor index
   325                      std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
   326                      std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
   327                      DistanceType hamming_distance;
   328  
   329                      // Process the rest of the candidates
   330                      for (; training_index < last_training_index; ++training_index) {
   331                          // Compute the Hamming distance
   332                          hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
   333                          if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
   334                      }
   335                  }
   336              }
   337          }
   338      }
   339  
   340      /** Performs the approximate nearest-neighbor search.
   341       * This is a slower version than the above as it uses the ResultSet
   342       * @param vec the feature to analyze
   343       */
   344      void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
   345      {
   346          typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
   347          typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
   348          for (; table != table_end; ++table) {
   349              size_t key = table->getKey(vec);
   350              std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
   351              std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
   352              for (; xor_mask != xor_mask_end; ++xor_mask) {
   353                  size_t sub_key = key ^ (*xor_mask);
   354                  const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key);
   355                  if (bucket == 0) continue;
   356  
   357                  // Go over each descriptor index
   358                  std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
   359                  std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
   360                  DistanceType hamming_distance;
   361  
   362                  // Process the rest of the candidates
   363                  for (; training_index < last_training_index; ++training_index) {
   364                      // Compute the Hamming distance
   365                      hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols);
   366                      result.addPoint(hamming_distance, *training_index);
   367                  }
   368              }
   369          }
   370      }
   371  
   372      /** The different hash tables */
   373      std::vector<lsh::LshTable<ElementType> > tables_;
   374  
   375      /** The data the LSH tables where built from */
   376      Matrix<ElementType> dataset_;
   377  
   378      /** The size of the features (as ElementType[]) */
   379      unsigned int feature_size_;
   380  
   381      IndexParams index_params_;
   382  
   383      /** table number */
   384      int table_number_;
   385      /** key size */
   386      int key_size_;
   387      /** How far should we look for neighbors in multi-probe LSH */
   388      int multi_probe_level_;
   389  
   390      /** The XOR masks to apply to a key to get the neighboring buckets */
   391      std::vector<lsh::BucketKey> xor_masks_;
   392  
   393      Distance distance_;
   394  };
   395  }
   396  
   397  #ifdef _MSC_VER
   398  #pragma warning(pop)
   399  #endif
   400  
   401  //! @endcond
   402  
   403  #endif //OPENCV_FLANN_LSH_INDEX_H_