github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/opencv4/include/opencv2/objdetect.hpp (about) 1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved. 16 // Third party copyrights are property of their respective owners. 17 // 18 // Redistribution and use in source and binary forms, with or without modification, 19 // are permitted provided that the following conditions are met: 20 // 21 // * Redistribution's of source code must retain the above copyright notice, 22 // this list of conditions and the following disclaimer. 23 // 24 // * Redistribution's in binary form must reproduce the above copyright notice, 25 // this list of conditions and the following disclaimer in the documentation 26 // and/or other materials provided with the distribution. 27 // 28 // * The name of the copyright holders may not be used to endorse or promote products 29 // derived from this software without specific prior written permission. 30 // 31 // This software is provided by the copyright holders and contributors "as is" and 32 // any express or implied warranties, including, but not limited to, the implied 33 // warranties of merchantability and fitness for a particular purpose are disclaimed. 34 // In no event shall the Intel Corporation or contributors be liable for any direct, 35 // indirect, incidental, special, exemplary, or consequential damages 36 // (including, but not limited to, procurement of substitute goods or services; 37 // loss of use, data, or profits; or business interruption) however caused 38 // and on any theory of liability, whether in contract, strict liability, 39 // or tort (including negligence or otherwise) arising in any way out of 40 // the use of this software, even if advised of the possibility of such damage. 41 // 42 //M*/ 43 44 #ifndef OPENCV_OBJDETECT_HPP 45 #define OPENCV_OBJDETECT_HPP 46 47 #include "opencv2/core.hpp" 48 49 /** 50 @defgroup objdetect Object Detection 51 52 Haar Feature-based Cascade Classifier for Object Detection 53 ---------------------------------------------------------- 54 55 The object detector described below has been initially proposed by Paul Viola @cite Viola01 and 56 improved by Rainer Lienhart @cite Lienhart02 . 57 58 First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is 59 trained with a few hundred sample views of a particular object (i.e., a face or a car), called 60 positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary 61 images of the same size. 62 63 After a classifier is trained, it can be applied to a region of interest (of the same size as used 64 during the training) in an input image. The classifier outputs a "1" if the region is likely to show 65 the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can 66 move the search window across the image and check every location using the classifier. The 67 classifier is designed so that it can be easily "resized" in order to be able to find the objects of 68 interest at different sizes, which is more efficient than resizing the image itself. So, to find an 69 object of an unknown size in the image the scan procedure should be done several times at different 70 scales. 71 72 The word "cascade" in the classifier name means that the resultant classifier consists of several 73 simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some 74 stage the candidate is rejected or all the stages are passed. The word "boosted" means that the 75 classifiers at every stage of the cascade are complex themselves and they are built out of basic 76 classifiers using one of four different boosting techniques (weighted voting). Currently Discrete 77 Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are 78 decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic 79 classifiers, and are calculated as described below. The current algorithm uses the following 80 Haar-like features: 81 82  83 84 The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within 85 the region of interest and the scale (this scale is not the same as the scale used at the detection 86 stage, though these two scales are multiplied). For example, in the case of the third line feature 87 (2c) the response is calculated as the difference between the sum of image pixels under the 88 rectangle covering the whole feature (including the two white stripes and the black stripe in the 89 middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to 90 compensate for the differences in the size of areas. The sums of pixel values over a rectangular 91 regions are calculated rapidly using integral images (see below and the integral description). 92 93 To see the object detector at work, have a look at the facedetect demo: 94 <https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp> 95 96 The following reference is for the detection part only. There is a separate application called 97 opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. 98 99 @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in 100 addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection 101 using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at 102 <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf> 103 104 @{ 105 @defgroup objdetect_c C API 106 @} 107 */ 108 109 typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; 110 111 namespace cv 112 { 113 114 //! @addtogroup objdetect 115 //! @{ 116 117 ///////////////////////////// Object Detection //////////////////////////// 118 119 //! class for grouping object candidates, detected by Cascade Classifier, HOG etc. 120 //! instance of the class is to be passed to cv::partition (see cxoperations.hpp) 121 class CV_EXPORTS SimilarRects 122 { 123 public: 124 SimilarRects(double _eps) : eps(_eps) {} 125 inline bool operator()(const Rect& r1, const Rect& r2) const 126 { 127 double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; 128 return std::abs(r1.x - r2.x) <= delta && 129 std::abs(r1.y - r2.y) <= delta && 130 std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && 131 std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; 132 } 133 double eps; 134 }; 135 136 /** @brief Groups the object candidate rectangles. 137 138 @param rectList Input/output vector of rectangles. Output vector includes retained and grouped 139 rectangles. (The Python list is not modified in place.) 140 @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a 141 group of rectangles to retain it. 142 @param eps Relative difference between sides of the rectangles to merge them into a group. 143 144 The function is a wrapper for the generic function partition . It clusters all the input rectangles 145 using the rectangle equivalence criteria that combines rectangles with similar sizes and similar 146 locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If 147 \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small 148 clusters containing less than or equal to groupThreshold rectangles are rejected. In each other 149 cluster, the average rectangle is computed and put into the output rectangle list. 150 */ 151 CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); 152 /** @overload */ 153 CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, 154 int groupThreshold, double eps = 0.2); 155 /** @overload */ 156 CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, 157 double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); 158 /** @overload */ 159 CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, 160 std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); 161 /** @overload */ 162 CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, 163 std::vector<double>& foundScales, 164 double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); 165 166 template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; }; 167 168 enum { CASCADE_DO_CANNY_PRUNING = 1, 169 CASCADE_SCALE_IMAGE = 2, 170 CASCADE_FIND_BIGGEST_OBJECT = 4, 171 CASCADE_DO_ROUGH_SEARCH = 8 172 }; 173 174 class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm 175 { 176 public: 177 virtual ~BaseCascadeClassifier(); 178 virtual bool empty() const CV_OVERRIDE = 0; 179 virtual bool load( const String& filename ) = 0; 180 virtual void detectMultiScale( InputArray image, 181 CV_OUT std::vector<Rect>& objects, 182 double scaleFactor, 183 int minNeighbors, int flags, 184 Size minSize, Size maxSize ) = 0; 185 186 virtual void detectMultiScale( InputArray image, 187 CV_OUT std::vector<Rect>& objects, 188 CV_OUT std::vector<int>& numDetections, 189 double scaleFactor, 190 int minNeighbors, int flags, 191 Size minSize, Size maxSize ) = 0; 192 193 virtual void detectMultiScale( InputArray image, 194 CV_OUT std::vector<Rect>& objects, 195 CV_OUT std::vector<int>& rejectLevels, 196 CV_OUT std::vector<double>& levelWeights, 197 double scaleFactor, 198 int minNeighbors, int flags, 199 Size minSize, Size maxSize, 200 bool outputRejectLevels ) = 0; 201 202 virtual bool isOldFormatCascade() const = 0; 203 virtual Size getOriginalWindowSize() const = 0; 204 virtual int getFeatureType() const = 0; 205 virtual void* getOldCascade() = 0; 206 207 class CV_EXPORTS MaskGenerator 208 { 209 public: 210 virtual ~MaskGenerator() {} 211 virtual Mat generateMask(const Mat& src)=0; 212 virtual void initializeMask(const Mat& /*src*/) { } 213 }; 214 virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; 215 virtual Ptr<MaskGenerator> getMaskGenerator() = 0; 216 }; 217 218 /** @example samples/cpp/facedetect.cpp 219 This program demonstrates usage of the Cascade classifier class 220 \image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254 221 */ 222 /** @brief Cascade classifier class for object detection. 223 */ 224 class CV_EXPORTS_W CascadeClassifier 225 { 226 public: 227 CV_WRAP CascadeClassifier(); 228 /** @brief Loads a classifier from a file. 229 230 @param filename Name of the file from which the classifier is loaded. 231 */ 232 CV_WRAP CascadeClassifier(const String& filename); 233 ~CascadeClassifier(); 234 /** @brief Checks whether the classifier has been loaded. 235 */ 236 CV_WRAP bool empty() const; 237 /** @brief Loads a classifier from a file. 238 239 @param filename Name of the file from which the classifier is loaded. The file may contain an old 240 HAAR classifier trained by the haartraining application or a new cascade classifier trained by the 241 traincascade application. 242 */ 243 CV_WRAP bool load( const String& filename ); 244 /** @brief Reads a classifier from a FileStorage node. 245 246 @note The file may contain a new cascade classifier (trained traincascade application) only. 247 */ 248 CV_WRAP bool read( const FileNode& node ); 249 250 /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list 251 of rectangles. 252 253 @param image Matrix of the type CV_8U containing an image where objects are detected. 254 @param objects Vector of rectangles where each rectangle contains the detected object, the 255 rectangles may be partially outside the original image. 256 @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. 257 @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have 258 to retain it. 259 @param flags Parameter with the same meaning for an old cascade as in the function 260 cvHaarDetectObjects. It is not used for a new cascade. 261 @param minSize Minimum possible object size. Objects smaller than that are ignored. 262 @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. 263 264 The function is parallelized with the TBB library. 265 266 @note 267 - (Python) A face detection example using cascade classifiers can be found at 268 opencv_source_code/samples/python/facedetect.py 269 */ 270 CV_WRAP void detectMultiScale( InputArray image, 271 CV_OUT std::vector<Rect>& objects, 272 double scaleFactor = 1.1, 273 int minNeighbors = 3, int flags = 0, 274 Size minSize = Size(), 275 Size maxSize = Size() ); 276 277 /** @overload 278 @param image Matrix of the type CV_8U containing an image where objects are detected. 279 @param objects Vector of rectangles where each rectangle contains the detected object, the 280 rectangles may be partially outside the original image. 281 @param numDetections Vector of detection numbers for the corresponding objects. An object's number 282 of detections is the number of neighboring positively classified rectangles that were joined 283 together to form the object. 284 @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. 285 @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have 286 to retain it. 287 @param flags Parameter with the same meaning for an old cascade as in the function 288 cvHaarDetectObjects. It is not used for a new cascade. 289 @param minSize Minimum possible object size. Objects smaller than that are ignored. 290 @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. 291 */ 292 CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, 293 CV_OUT std::vector<Rect>& objects, 294 CV_OUT std::vector<int>& numDetections, 295 double scaleFactor=1.1, 296 int minNeighbors=3, int flags=0, 297 Size minSize=Size(), 298 Size maxSize=Size() ); 299 300 /** @overload 301 This function allows you to retrieve the final stage decision certainty of classification. 302 For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter. 303 For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage. 304 This value can then be used to separate strong from weaker classifications. 305 306 A code sample on how to use it efficiently can be found below: 307 @code 308 Mat img; 309 vector<double> weights; 310 vector<int> levels; 311 vector<Rect> detections; 312 CascadeClassifier model("/path/to/your/model.xml"); 313 model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true); 314 cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl; 315 @endcode 316 */ 317 CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, 318 CV_OUT std::vector<Rect>& objects, 319 CV_OUT std::vector<int>& rejectLevels, 320 CV_OUT std::vector<double>& levelWeights, 321 double scaleFactor = 1.1, 322 int minNeighbors = 3, int flags = 0, 323 Size minSize = Size(), 324 Size maxSize = Size(), 325 bool outputRejectLevels = false ); 326 327 CV_WRAP bool isOldFormatCascade() const; 328 CV_WRAP Size getOriginalWindowSize() const; 329 CV_WRAP int getFeatureType() const; 330 void* getOldCascade(); 331 332 CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); 333 334 void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); 335 Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); 336 337 Ptr<BaseCascadeClassifier> cc; 338 }; 339 340 CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); 341 342 //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// 343 344 //! struct for detection region of interest (ROI) 345 struct DetectionROI 346 { 347 //! scale(size) of the bounding box 348 double scale; 349 //! set of requested locations to be evaluated 350 std::vector<cv::Point> locations; 351 //! vector that will contain confidence values for each location 352 std::vector<double> confidences; 353 }; 354 355 /**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector. 356 357 the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 . 358 359 useful links: 360 361 https://hal.inria.fr/inria-00548512/document/ 362 363 https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients 364 365 https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor 366 367 http://www.learnopencv.com/histogram-of-oriented-gradients 368 369 http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial 370 371 */ 372 struct CV_EXPORTS_W HOGDescriptor 373 { 374 public: 375 enum HistogramNormType { L2Hys = 0 //!< Default histogramNormType 376 }; 377 enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value. 378 }; 379 enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW }; 380 381 /**@brief Creates the HOG descriptor and detector with default params. 382 383 aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 ) 384 */ 385 CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), 386 cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), 387 histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), 388 free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) 389 {} 390 391 /** @overload 392 @param _winSize sets winSize with given value. 393 @param _blockSize sets blockSize with given value. 394 @param _blockStride sets blockStride with given value. 395 @param _cellSize sets cellSize with given value. 396 @param _nbins sets nbins with given value. 397 @param _derivAperture sets derivAperture with given value. 398 @param _winSigma sets winSigma with given value. 399 @param _histogramNormType sets histogramNormType with given value. 400 @param _L2HysThreshold sets L2HysThreshold with given value. 401 @param _gammaCorrection sets gammaCorrection with given value. 402 @param _nlevels sets nlevels with given value. 403 @param _signedGradient sets signedGradient with given value. 404 */ 405 CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, 406 Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, 407 HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys, 408 double _L2HysThreshold=0.2, bool _gammaCorrection=false, 409 int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) 410 : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), 411 nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), 412 histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), 413 gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) 414 {} 415 416 /** @overload 417 @param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier. 418 */ 419 CV_WRAP HOGDescriptor(const String& filename) 420 { 421 load(filename); 422 } 423 424 /** @overload 425 @param d the HOGDescriptor which cloned to create a new one. 426 */ 427 HOGDescriptor(const HOGDescriptor& d) 428 { 429 d.copyTo(*this); 430 } 431 432 /**@brief Default destructor. 433 */ 434 virtual ~HOGDescriptor() {} 435 436 /**@brief Returns the number of coefficients required for the classification. 437 */ 438 CV_WRAP size_t getDescriptorSize() const; 439 440 /** @brief Checks if detector size equal to descriptor size. 441 */ 442 CV_WRAP bool checkDetectorSize() const; 443 444 /** @brief Returns winSigma value 445 */ 446 CV_WRAP double getWinSigma() const; 447 448 /**@example samples/cpp/peopledetect.cpp 449 */ 450 /**@brief Sets coefficients for the linear SVM classifier. 451 @param svmdetector coefficients for the linear SVM classifier. 452 */ 453 CV_WRAP virtual void setSVMDetector(InputArray svmdetector); 454 455 /** @brief Reads HOGDescriptor parameters from a cv::FileNode. 456 @param fn File node 457 */ 458 virtual bool read(FileNode& fn); 459 460 /** @brief Stores HOGDescriptor parameters in a cv::FileStorage. 461 @param fs File storage 462 @param objname Object name 463 */ 464 virtual void write(FileStorage& fs, const String& objname) const; 465 466 /** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file. 467 @param filename Path of the file to read. 468 @param objname The optional name of the node to read (if empty, the first top-level node will be used). 469 */ 470 CV_WRAP virtual bool load(const String& filename, const String& objname = String()); 471 472 /** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file 473 @param filename File name 474 @param objname Object name 475 */ 476 CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; 477 478 /** @brief clones the HOGDescriptor 479 @param c cloned HOGDescriptor 480 */ 481 virtual void copyTo(HOGDescriptor& c) const; 482 483 /**@example samples/cpp/train_HOG.cpp 484 */ 485 /** @brief Computes HOG descriptors of given image. 486 @param img Matrix of the type CV_8U containing an image where HOG features will be calculated. 487 @param descriptors Matrix of the type CV_32F 488 @param winStride Window stride. It must be a multiple of block stride. 489 @param padding Padding 490 @param locations Vector of Point 491 */ 492 CV_WRAP virtual void compute(InputArray img, 493 CV_OUT std::vector<float>& descriptors, 494 Size winStride = Size(), Size padding = Size(), 495 const std::vector<Point>& locations = std::vector<Point>()) const; 496 497 /** @brief Performs object detection without a multi-scale window. 498 @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. 499 @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. 500 @param weights Vector that will contain confidence values for each detected object. 501 @param hitThreshold Threshold for the distance between features and SVM classifying plane. 502 Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). 503 But if the free coefficient is omitted (which is allowed), you can specify it manually here. 504 @param winStride Window stride. It must be a multiple of block stride. 505 @param padding Padding 506 @param searchLocations Vector of Point includes set of requested locations to be evaluated. 507 */ 508 CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, 509 CV_OUT std::vector<double>& weights, 510 double hitThreshold = 0, Size winStride = Size(), 511 Size padding = Size(), 512 const std::vector<Point>& searchLocations = std::vector<Point>()) const; 513 514 /** @brief Performs object detection without a multi-scale window. 515 @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. 516 @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. 517 @param hitThreshold Threshold for the distance between features and SVM classifying plane. 518 Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). 519 But if the free coefficient is omitted (which is allowed), you can specify it manually here. 520 @param winStride Window stride. It must be a multiple of block stride. 521 @param padding Padding 522 @param searchLocations Vector of Point includes locations to search. 523 */ 524 virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, 525 double hitThreshold = 0, Size winStride = Size(), 526 Size padding = Size(), 527 const std::vector<Point>& searchLocations=std::vector<Point>()) const; 528 529 /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list 530 of rectangles. 531 @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. 532 @param foundLocations Vector of rectangles where each rectangle contains the detected object. 533 @param foundWeights Vector that will contain confidence values for each detected object. 534 @param hitThreshold Threshold for the distance between features and SVM classifying plane. 535 Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). 536 But if the free coefficient is omitted (which is allowed), you can specify it manually here. 537 @param winStride Window stride. It must be a multiple of block stride. 538 @param padding Padding 539 @param scale Coefficient of the detection window increase. 540 @param finalThreshold Final threshold 541 @param useMeanshiftGrouping indicates grouping algorithm 542 */ 543 CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, 544 CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, 545 Size winStride = Size(), Size padding = Size(), double scale = 1.05, 546 double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; 547 548 /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list 549 of rectangles. 550 @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. 551 @param foundLocations Vector of rectangles where each rectangle contains the detected object. 552 @param hitThreshold Threshold for the distance between features and SVM classifying plane. 553 Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). 554 But if the free coefficient is omitted (which is allowed), you can specify it manually here. 555 @param winStride Window stride. It must be a multiple of block stride. 556 @param padding Padding 557 @param scale Coefficient of the detection window increase. 558 @param finalThreshold Final threshold 559 @param useMeanshiftGrouping indicates grouping algorithm 560 */ 561 virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, 562 double hitThreshold = 0, Size winStride = Size(), 563 Size padding = Size(), double scale = 1.05, 564 double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; 565 566 /** @brief Computes gradients and quantized gradient orientations. 567 @param img Matrix contains the image to be computed 568 @param grad Matrix of type CV_32FC2 contains computed gradients 569 @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations 570 @param paddingTL Padding from top-left 571 @param paddingBR Padding from bottom-right 572 */ 573 CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs, 574 Size paddingTL = Size(), Size paddingBR = Size()) const; 575 576 /** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows). 577 */ 578 CV_WRAP static std::vector<float> getDefaultPeopleDetector(); 579 580 /**@example samples/tapi/hog.cpp 581 */ 582 /** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows). 583 */ 584 CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); 585 586 //! Detection window size. Align to block size and block stride. Default value is Size(64,128). 587 CV_PROP Size winSize; 588 589 //! Block size in pixels. Align to cell size. Default value is Size(16,16). 590 CV_PROP Size blockSize; 591 592 //! Block stride. It must be a multiple of cell size. Default value is Size(8,8). 593 CV_PROP Size blockStride; 594 595 //! Cell size. Default value is Size(8,8). 596 CV_PROP Size cellSize; 597 598 //! Number of bins used in the calculation of histogram of gradients. Default value is 9. 599 CV_PROP int nbins; 600 601 //! not documented 602 CV_PROP int derivAperture; 603 604 //! Gaussian smoothing window parameter. 605 CV_PROP double winSigma; 606 607 //! histogramNormType 608 CV_PROP HOGDescriptor::HistogramNormType histogramNormType; 609 610 //! L2-Hys normalization method shrinkage. 611 CV_PROP double L2HysThreshold; 612 613 //! Flag to specify whether the gamma correction preprocessing is required or not. 614 CV_PROP bool gammaCorrection; 615 616 //! coefficients for the linear SVM classifier. 617 CV_PROP std::vector<float> svmDetector; 618 619 //! coefficients for the linear SVM classifier used when OpenCL is enabled 620 UMat oclSvmDetector; 621 622 //! not documented 623 float free_coef; 624 625 //! Maximum number of detection window increases. Default value is 64 626 CV_PROP int nlevels; 627 628 //! Indicates signed gradient will be used or not 629 CV_PROP bool signedGradient; 630 631 /** @brief evaluate specified ROI and return confidence value for each location 632 @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. 633 @param locations Vector of Point 634 @param foundLocations Vector of Point where each Point is detected object's top-left point. 635 @param confidences confidences 636 @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually 637 it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if 638 the free coefficient is omitted (which is allowed), you can specify it manually here 639 @param winStride winStride 640 @param padding padding 641 */ 642 virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations, 643 CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, 644 double hitThreshold = 0, cv::Size winStride = Size(), 645 cv::Size padding = Size()) const; 646 647 /** @brief evaluate specified ROI and return confidence value for each location in multiple scales 648 @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. 649 @param foundLocations Vector of rectangles where each rectangle contains the detected object. 650 @param locations Vector of DetectionROI 651 @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified 652 in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. 653 @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. 654 */ 655 virtual void detectMultiScaleROI(InputArray img, 656 CV_OUT std::vector<cv::Rect>& foundLocations, 657 std::vector<DetectionROI>& locations, 658 double hitThreshold = 0, 659 int groupThreshold = 0) const; 660 661 /** @brief Groups the object candidate rectangles. 662 @param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.) 663 @param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.) 664 @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. 665 @param eps Relative difference between sides of the rectangles to merge them into a group. 666 */ 667 void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; 668 }; 669 670 class CV_EXPORTS_W QRCodeDetector 671 { 672 public: 673 CV_WRAP QRCodeDetector(); 674 ~QRCodeDetector(); 675 676 /** @brief sets the epsilon used during the horizontal scan of QR code stop marker detection. 677 @param epsX Epsilon neighborhood, which allows you to determine the horizontal pattern 678 of the scheme 1:1:3:1:1 according to QR code standard. 679 */ 680 CV_WRAP void setEpsX(double epsX); 681 /** @brief sets the epsilon used during the vertical scan of QR code stop marker detection. 682 @param epsY Epsilon neighborhood, which allows you to determine the vertical pattern 683 of the scheme 1:1:3:1:1 according to QR code standard. 684 */ 685 CV_WRAP void setEpsY(double epsY); 686 687 /** @brief Detects QR code in image and returns the quadrangle containing the code. 688 @param img grayscale or color (BGR) image containing (or not) QR code. 689 @param points Output vector of vertices of the minimum-area quadrangle containing the code. 690 */ 691 CV_WRAP bool detect(InputArray img, OutputArray points) const; 692 693 /** @brief Decodes QR code in image once it's found by the detect() method. 694 695 Returns UTF8-encoded output string or empty string if the code cannot be decoded. 696 @param img grayscale or color (BGR) image containing QR code. 697 @param points Quadrangle vertices found by detect() method (or some other algorithm). 698 @param straight_qrcode The optional output image containing rectified and binarized QR code 699 */ 700 CV_WRAP std::string decode(InputArray img, InputArray points, OutputArray straight_qrcode = noArray()); 701 702 /** @brief Decodes QR code on a curved surface in image once it's found by the detect() method. 703 704 Returns UTF8-encoded output string or empty string if the code cannot be decoded. 705 @param img grayscale or color (BGR) image containing QR code. 706 @param points Quadrangle vertices found by detect() method (or some other algorithm). 707 @param straight_qrcode The optional output image containing rectified and binarized QR code 708 */ 709 CV_WRAP cv::String decodeCurved(InputArray img, InputArray points, OutputArray straight_qrcode = noArray()); 710 711 /** @brief Both detects and decodes QR code 712 713 @param img grayscale or color (BGR) image containing QR code. 714 @param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found. 715 @param straight_qrcode The optional output image containing rectified and binarized QR code 716 */ 717 CV_WRAP std::string detectAndDecode(InputArray img, OutputArray points=noArray(), 718 OutputArray straight_qrcode = noArray()); 719 720 /** @brief Both detects and decodes QR code on a curved surface 721 722 @param img grayscale or color (BGR) image containing QR code. 723 @param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found. 724 @param straight_qrcode The optional output image containing rectified and binarized QR code 725 */ 726 CV_WRAP std::string detectAndDecodeCurved(InputArray img, OutputArray points=noArray(), 727 OutputArray straight_qrcode = noArray()); 728 729 /** @brief Detects QR codes in image and returns the vector of the quadrangles containing the codes. 730 @param img grayscale or color (BGR) image containing (or not) QR codes. 731 @param points Output vector of vector of vertices of the minimum-area quadrangle containing the codes. 732 */ 733 CV_WRAP 734 bool detectMulti(InputArray img, OutputArray points) const; 735 736 /** @brief Decodes QR codes in image once it's found by the detect() method. 737 @param img grayscale or color (BGR) image containing QR codes. 738 @param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded. 739 @param points vector of Quadrangle vertices found by detect() method (or some other algorithm). 740 @param straight_qrcode The optional output vector of images containing rectified and binarized QR codes 741 */ 742 CV_WRAP 743 bool decodeMulti( 744 InputArray img, InputArray points, 745 CV_OUT std::vector<std::string>& decoded_info, 746 OutputArrayOfArrays straight_qrcode = noArray() 747 ) const; 748 749 /** @brief Both detects and decodes QR codes 750 @param img grayscale or color (BGR) image containing QR codes. 751 @param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded. 752 @param points optional output vector of vertices of the found QR code quadrangles. Will be empty if not found. 753 @param straight_qrcode The optional output vector of images containing rectified and binarized QR codes 754 */ 755 CV_WRAP 756 bool detectAndDecodeMulti( 757 InputArray img, CV_OUT std::vector<std::string>& decoded_info, 758 OutputArray points = noArray(), 759 OutputArrayOfArrays straight_qrcode = noArray() 760 ) const; 761 762 protected: 763 struct Impl; 764 Ptr<Impl> p; 765 }; 766 767 //! @} objdetect 768 } 769 770 #include "opencv2/objdetect/detection_based_tracker.hpp" 771 772 #endif