github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/opencv4/include/opencv2/video/tracking.hpp (about) 1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved. 16 // Third party copyrights are property of their respective owners. 17 // 18 // Redistribution and use in source and binary forms, with or without modification, 19 // are permitted provided that the following conditions are met: 20 // 21 // * Redistribution's of source code must retain the above copyright notice, 22 // this list of conditions and the following disclaimer. 23 // 24 // * Redistribution's in binary form must reproduce the above copyright notice, 25 // this list of conditions and the following disclaimer in the documentation 26 // and/or other materials provided with the distribution. 27 // 28 // * The name of the copyright holders may not be used to endorse or promote products 29 // derived from this software without specific prior written permission. 30 // 31 // This software is provided by the copyright holders and contributors "as is" and 32 // any express or implied warranties, including, but not limited to, the implied 33 // warranties of merchantability and fitness for a particular purpose are disclaimed. 34 // In no event shall the Intel Corporation or contributors be liable for any direct, 35 // indirect, incidental, special, exemplary, or consequential damages 36 // (including, but not limited to, procurement of substitute goods or services; 37 // loss of use, data, or profits; or business interruption) however caused 38 // and on any theory of liability, whether in contract, strict liability, 39 // or tort (including negligence or otherwise) arising in any way out of 40 // the use of this software, even if advised of the possibility of such damage. 41 // 42 //M*/ 43 44 #ifndef OPENCV_TRACKING_HPP 45 #define OPENCV_TRACKING_HPP 46 47 #include "opencv2/core.hpp" 48 #include "opencv2/imgproc.hpp" 49 50 namespace cv 51 { 52 53 //! @addtogroup video_track 54 //! @{ 55 56 enum { OPTFLOW_USE_INITIAL_FLOW = 4, 57 OPTFLOW_LK_GET_MIN_EIGENVALS = 8, 58 OPTFLOW_FARNEBACK_GAUSSIAN = 256 59 }; 60 61 /** @brief Finds an object center, size, and orientation. 62 63 @param probImage Back projection of the object histogram. See calcBackProject. 64 @param window Initial search window. 65 @param criteria Stop criteria for the underlying meanShift. 66 returns 67 (in old interfaces) Number of iterations CAMSHIFT took to converge 68 The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an 69 object center using meanShift and then adjusts the window size and finds the optimal rotation. The 70 function returns the rotated rectangle structure that includes the object position, size, and 71 orientation. The next position of the search window can be obtained with RotatedRect::boundingRect() 72 73 See the OpenCV sample camshiftdemo.c that tracks colored objects. 74 75 @note 76 - (Python) A sample explaining the camshift tracking algorithm can be found at 77 opencv_source_code/samples/python/camshift.py 78 */ 79 CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window, 80 TermCriteria criteria ); 81 /** @example samples/cpp/camshiftdemo.cpp 82 An example using the mean-shift tracking algorithm 83 */ 84 85 /** @brief Finds an object on a back projection image. 86 87 @param probImage Back projection of the object histogram. See calcBackProject for details. 88 @param window Initial search window. 89 @param criteria Stop criteria for the iterative search algorithm. 90 returns 91 : Number of iterations CAMSHIFT took to converge. 92 The function implements the iterative object search algorithm. It takes the input back projection of 93 an object and the initial position. The mass center in window of the back projection image is 94 computed and the search window center shifts to the mass center. The procedure is repeated until the 95 specified number of iterations criteria.maxCount is done or until the window center shifts by less 96 than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search 97 window size or orientation do not change during the search. You can simply pass the output of 98 calcBackProject to this function. But better results can be obtained if you pre-filter the back 99 projection and remove the noise. For example, you can do this by retrieving connected components 100 with findContours , throwing away contours with small area ( contourArea ), and rendering the 101 remaining contours with drawContours. 102 103 */ 104 CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria ); 105 106 /** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. 107 108 @param img 8-bit input image. 109 @param pyramid output pyramid. 110 @param winSize window size of optical flow algorithm. Must be not less than winSize argument of 111 calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. 112 @param maxLevel 0-based maximal pyramid level number. 113 @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is 114 constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. 115 @param pyrBorder the border mode for pyramid layers. 116 @param derivBorder the border mode for gradients. 117 @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false 118 to force data copying. 119 @return number of levels in constructed pyramid. Can be less than maxLevel. 120 */ 121 CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid, 122 Size winSize, int maxLevel, bool withDerivatives = true, 123 int pyrBorder = BORDER_REFLECT_101, 124 int derivBorder = BORDER_CONSTANT, 125 bool tryReuseInputImage = true ); 126 127 /** @example samples/cpp/lkdemo.cpp 128 An example using the Lucas-Kanade optical flow algorithm 129 */ 130 131 /** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with 132 pyramids. 133 134 @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. 135 @param nextImg second input image or pyramid of the same size and the same type as prevImg. 136 @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be 137 single-precision floating-point numbers. 138 @param nextPts output vector of 2D points (with single-precision floating-point coordinates) 139 containing the calculated new positions of input features in the second image; when 140 OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. 141 @param status output status vector (of unsigned chars); each element of the vector is set to 1 if 142 the flow for the corresponding features has been found, otherwise, it is set to 0. 143 @param err output vector of errors; each element of the vector is set to an error for the 144 corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't 145 found then the error is not defined (use the status parameter to find such cases). 146 @param winSize size of the search window at each pyramid level. 147 @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single 148 level), if set to 1, two levels are used, and so on; if pyramids are passed to input then 149 algorithm will use as many levels as pyramids have but no more than maxLevel. 150 @param criteria parameter, specifying the termination criteria of the iterative search algorithm 151 (after the specified maximum number of iterations criteria.maxCount or when the search window 152 moves by less than criteria.epsilon. 153 @param flags operation flags: 154 - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is 155 not set, then prevPts is copied to nextPts and is considered the initial estimate. 156 - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see 157 minEigThreshold description); if the flag is not set, then L1 distance between patches 158 around the original and a moved point, divided by number of pixels in a window, is used as a 159 error measure. 160 @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of 161 optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided 162 by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding 163 feature is filtered out and its flow is not processed, so it allows to remove bad points and get a 164 performance boost. 165 166 The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See 167 @cite Bouguet00 . The function is parallelized with the TBB library. 168 169 @note 170 171 - An example using the Lucas-Kanade optical flow algorithm can be found at 172 opencv_source_code/samples/cpp/lkdemo.cpp 173 - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at 174 opencv_source_code/samples/python/lk_track.py 175 - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at 176 opencv_source_code/samples/python/lk_homography.py 177 */ 178 CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg, 179 InputArray prevPts, InputOutputArray nextPts, 180 OutputArray status, OutputArray err, 181 Size winSize = Size(21,21), int maxLevel = 3, 182 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), 183 int flags = 0, double minEigThreshold = 1e-4 ); 184 185 /** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm. 186 187 @param prev first 8-bit single-channel input image. 188 @param next second input image of the same size and the same type as prev. 189 @param flow computed flow image that has the same size as prev and type CV_32FC2. 190 @param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image; 191 pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous 192 one. 193 @param levels number of pyramid layers including the initial image; levels=1 means that no extra 194 layers are created and only the original images are used. 195 @param winsize averaging window size; larger values increase the algorithm robustness to image 196 noise and give more chances for fast motion detection, but yield more blurred motion field. 197 @param iterations number of iterations the algorithm does at each pyramid level. 198 @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel; 199 larger values mean that the image will be approximated with smoother surfaces, yielding more 200 robust algorithm and more blurred motion field, typically poly_n =5 or 7. 201 @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a 202 basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a 203 good value would be poly_sigma=1.5. 204 @param flags operation flags that can be a combination of the following: 205 - **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation. 206 - **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$ 207 filter instead of a box filter of the same size for optical flow estimation; usually, this 208 option gives z more accurate flow than with a box filter, at the cost of lower speed; 209 normally, winsize for a Gaussian window should be set to a larger value to achieve the same 210 level of robustness. 211 212 The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that 213 214 \f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f] 215 216 @note 217 218 - An example using the optical flow algorithm described by Gunnar Farneback can be found at 219 opencv_source_code/samples/cpp/fback.cpp 220 - (Python) An example using the optical flow algorithm described by Gunnar Farneback can be 221 found at opencv_source_code/samples/python/opt_flow.py 222 */ 223 CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow, 224 double pyr_scale, int levels, int winsize, 225 int iterations, int poly_n, double poly_sigma, 226 int flags ); 227 228 /** @brief Computes an optimal affine transformation between two 2D point sets. 229 230 @param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat. 231 @param dst Second input 2D point set of the same size and the same type as A, or another image. 232 @param fullAffine If true, the function finds an optimal affine transformation with no additional 233 restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is 234 limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom). 235 236 The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that 237 approximates best the affine transformation between: 238 239 * Two point sets 240 * Two raster images. In this case, the function first finds some features in the src image and 241 finds the corresponding features in dst image. After that, the problem is reduced to the first 242 case. 243 In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and 244 2x1 vector *b* so that: 245 246 \f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f] 247 where src[i] and dst[i] are the i-th points in src and dst, respectively 248 \f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of 249 \f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f] 250 when fullAffine=false. 251 252 @deprecated Use cv::estimateAffine2D, cv::estimateAffinePartial2D instead. If you are using this function 253 with images, extract points using cv::calcOpticalFlowPyrLK and then use the estimation functions. 254 255 @sa 256 estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography 257 */ 258 CV_DEPRECATED CV_EXPORTS Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine ); 259 260 enum 261 { 262 MOTION_TRANSLATION = 0, 263 MOTION_EUCLIDEAN = 1, 264 MOTION_AFFINE = 2, 265 MOTION_HOMOGRAPHY = 3 266 }; 267 268 /** @brief Computes the Enhanced Correlation Coefficient value between two images @cite EP08 . 269 270 @param templateImage single-channel template image; CV_8U or CV_32F array. 271 @param inputImage single-channel input image to be warped to provide an image similar to 272 templateImage, same type as templateImage. 273 @param inputMask An optional mask to indicate valid values of inputImage. 274 275 @sa 276 findTransformECC 277 */ 278 279 CV_EXPORTS_W double computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask = noArray()); 280 281 /** @example samples/cpp/image_alignment.cpp 282 An example using the image alignment ECC algorithm 283 */ 284 285 /** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 . 286 287 @param templateImage single-channel template image; CV_8U or CV_32F array. 288 @param inputImage single-channel input image which should be warped with the final warpMatrix in 289 order to provide an image similar to templateImage, same type as templateImage. 290 @param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp). 291 @param motionType parameter, specifying the type of motion: 292 - **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with 293 the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being 294 estimated. 295 - **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three 296 parameters are estimated; warpMatrix is \f$2\times 3\f$. 297 - **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated; 298 warpMatrix is \f$2\times 3\f$. 299 - **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are 300 estimated;\`warpMatrix\` is \f$3\times 3\f$. 301 @param criteria parameter, specifying the termination criteria of the ECC algorithm; 302 criteria.epsilon defines the threshold of the increment in the correlation coefficient between two 303 iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion). 304 Default values are shown in the declaration above. 305 @param inputMask An optional mask to indicate valid values of inputImage. 306 @param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5) 307 308 The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion 309 (@cite EP08), that is 310 311 \f[\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f] 312 313 where 314 315 \f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f] 316 317 (the equation holds with homogeneous coordinates for homography). It returns the final enhanced 318 correlation coefficient, that is the correlation coefficient between the template image and the 319 final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third 320 row is ignored. 321 322 Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an 323 area-based alignment that builds on intensity similarities. In essence, the function updates the 324 initial transformation that roughly aligns the images. If this information is missing, the identity 325 warp (unity matrix) is used as an initialization. Note that if images undergo strong 326 displacements/rotations, an initial transformation that roughly aligns the images is necessary 327 (e.g., a simple euclidean/similarity transform that allows for the images showing the same image 328 content approximately). Use inverse warping in the second image to take an image close to the first 329 one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV 330 sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws 331 an exception if algorithm does not converges. 332 333 @sa 334 computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography 335 */ 336 CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage, 337 InputOutputArray warpMatrix, int motionType, 338 TermCriteria criteria, 339 InputArray inputMask, int gaussFiltSize); 340 341 /** @overload */ 342 CV_EXPORTS_W 343 double findTransformECC(InputArray templateImage, InputArray inputImage, 344 InputOutputArray warpMatrix, int motionType = MOTION_AFFINE, 345 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), 346 InputArray inputMask = noArray()); 347 348 /** @example samples/cpp/kalman.cpp 349 An example using the standard Kalman filter 350 */ 351 352 /** @brief Kalman filter class. 353 354 The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>, 355 @cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get 356 an extended Kalman filter functionality. 357 @note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released 358 with cvReleaseKalman(&kalmanFilter) 359 */ 360 class CV_EXPORTS_W KalmanFilter 361 { 362 public: 363 CV_WRAP KalmanFilter(); 364 /** @overload 365 @param dynamParams Dimensionality of the state. 366 @param measureParams Dimensionality of the measurement. 367 @param controlParams Dimensionality of the control vector. 368 @param type Type of the created matrices that should be CV_32F or CV_64F. 369 */ 370 CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F ); 371 372 /** @brief Re-initializes Kalman filter. The previous content is destroyed. 373 374 @param dynamParams Dimensionality of the state. 375 @param measureParams Dimensionality of the measurement. 376 @param controlParams Dimensionality of the control vector. 377 @param type Type of the created matrices that should be CV_32F or CV_64F. 378 */ 379 void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F ); 380 381 /** @brief Computes a predicted state. 382 383 @param control The optional input control 384 */ 385 CV_WRAP const Mat& predict( const Mat& control = Mat() ); 386 387 /** @brief Updates the predicted state from the measurement. 388 389 @param measurement The measured system parameters 390 */ 391 CV_WRAP const Mat& correct( const Mat& measurement ); 392 393 CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k) 394 CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) 395 CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A) 396 CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control) 397 CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H) 398 CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q) 399 CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R) 400 CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/ 401 CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R) 402 CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k) 403 404 // temporary matrices 405 Mat temp1; 406 Mat temp2; 407 Mat temp3; 408 Mat temp4; 409 Mat temp5; 410 }; 411 412 413 /** @brief Read a .flo file 414 415 @param path Path to the file to be loaded 416 417 The function readOpticalFlow loads a flow field from a file and returns it as a single matrix. 418 Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the 419 flow in the horizontal direction (u), second - vertical (v). 420 */ 421 CV_EXPORTS_W Mat readOpticalFlow( const String& path ); 422 /** @brief Write a .flo to disk 423 424 @param path Path to the file to be written 425 @param flow Flow field to be stored 426 427 The function stores a flow field in a file, returns true on success, false otherwise. 428 The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds 429 to the flow in the horizontal direction (u), second - vertical (v). 430 */ 431 CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow ); 432 433 /** 434 Base class for dense optical flow algorithms 435 */ 436 class CV_EXPORTS_W DenseOpticalFlow : public Algorithm 437 { 438 public: 439 /** @brief Calculates an optical flow. 440 441 @param I0 first 8-bit single-channel input image. 442 @param I1 second input image of the same size and the same type as prev. 443 @param flow computed flow image that has the same size as prev and type CV_32FC2. 444 */ 445 CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0; 446 /** @brief Releases all inner buffers. 447 */ 448 CV_WRAP virtual void collectGarbage() = 0; 449 }; 450 451 /** @brief Base interface for sparse optical flow algorithms. 452 */ 453 class CV_EXPORTS_W SparseOpticalFlow : public Algorithm 454 { 455 public: 456 /** @brief Calculates a sparse optical flow. 457 458 @param prevImg First input image. 459 @param nextImg Second input image of the same size and the same type as prevImg. 460 @param prevPts Vector of 2D points for which the flow needs to be found. 461 @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image. 462 @param status Output status vector. Each element of the vector is set to 1 if the 463 flow for the corresponding features has been found. Otherwise, it is set to 0. 464 @param err Optional output vector that contains error response for each point (inverse confidence). 465 */ 466 CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg, 467 InputArray prevPts, InputOutputArray nextPts, 468 OutputArray status, 469 OutputArray err = cv::noArray()) = 0; 470 }; 471 472 473 /** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm. 474 */ 475 class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow 476 { 477 public: 478 CV_WRAP virtual int getNumLevels() const = 0; 479 CV_WRAP virtual void setNumLevels(int numLevels) = 0; 480 481 CV_WRAP virtual double getPyrScale() const = 0; 482 CV_WRAP virtual void setPyrScale(double pyrScale) = 0; 483 484 CV_WRAP virtual bool getFastPyramids() const = 0; 485 CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0; 486 487 CV_WRAP virtual int getWinSize() const = 0; 488 CV_WRAP virtual void setWinSize(int winSize) = 0; 489 490 CV_WRAP virtual int getNumIters() const = 0; 491 CV_WRAP virtual void setNumIters(int numIters) = 0; 492 493 CV_WRAP virtual int getPolyN() const = 0; 494 CV_WRAP virtual void setPolyN(int polyN) = 0; 495 496 CV_WRAP virtual double getPolySigma() const = 0; 497 CV_WRAP virtual void setPolySigma(double polySigma) = 0; 498 499 CV_WRAP virtual int getFlags() const = 0; 500 CV_WRAP virtual void setFlags(int flags) = 0; 501 502 CV_WRAP static Ptr<FarnebackOpticalFlow> create( 503 int numLevels = 5, 504 double pyrScale = 0.5, 505 bool fastPyramids = false, 506 int winSize = 13, 507 int numIters = 10, 508 int polyN = 5, 509 double polySigma = 1.1, 510 int flags = 0); 511 }; 512 513 /** @brief Variational optical flow refinement 514 515 This class implements variational refinement of the input flow field, i.e. 516 it uses input flow to initialize the minimization of the following functional: 517 \f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$, 518 where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms 519 respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the 520 influence of outliers. A complete formulation and a description of the minimization 521 procedure can be found in @cite Brox2004 522 */ 523 class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow 524 { 525 public: 526 /** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components 527 (to avoid extra splits/merges) */ 528 CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0; 529 530 /** @brief Number of outer (fixed-point) iterations in the minimization procedure. 531 @see setFixedPointIterations */ 532 CV_WRAP virtual int getFixedPointIterations() const = 0; 533 /** @copybrief getFixedPointIterations @see getFixedPointIterations */ 534 CV_WRAP virtual void setFixedPointIterations(int val) = 0; 535 536 /** @brief Number of inner successive over-relaxation (SOR) iterations 537 in the minimization procedure to solve the respective linear system. 538 @see setSorIterations */ 539 CV_WRAP virtual int getSorIterations() const = 0; 540 /** @copybrief getSorIterations @see getSorIterations */ 541 CV_WRAP virtual void setSorIterations(int val) = 0; 542 543 /** @brief Relaxation factor in SOR 544 @see setOmega */ 545 CV_WRAP virtual float getOmega() const = 0; 546 /** @copybrief getOmega @see getOmega */ 547 CV_WRAP virtual void setOmega(float val) = 0; 548 549 /** @brief Weight of the smoothness term 550 @see setAlpha */ 551 CV_WRAP virtual float getAlpha() const = 0; 552 /** @copybrief getAlpha @see getAlpha */ 553 CV_WRAP virtual void setAlpha(float val) = 0; 554 555 /** @brief Weight of the color constancy term 556 @see setDelta */ 557 CV_WRAP virtual float getDelta() const = 0; 558 /** @copybrief getDelta @see getDelta */ 559 CV_WRAP virtual void setDelta(float val) = 0; 560 561 /** @brief Weight of the gradient constancy term 562 @see setGamma */ 563 CV_WRAP virtual float getGamma() const = 0; 564 /** @copybrief getGamma @see getGamma */ 565 CV_WRAP virtual void setGamma(float val) = 0; 566 567 /** @brief Creates an instance of VariationalRefinement 568 */ 569 CV_WRAP static Ptr<VariationalRefinement> create(); 570 }; 571 572 /** @brief DIS optical flow algorithm. 573 574 This class implements the Dense Inverse Search (DIS) optical flow algorithm. More 575 details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected 576 parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is 577 still relatively fast, use DeepFlow if you need better quality and don't care about speed. 578 579 This implementation includes several additional features compared to the algorithm described in the paper, 580 including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to 581 utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation, 582 if the previous frame's flow field is passed). 583 */ 584 class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow 585 { 586 public: 587 enum 588 { 589 PRESET_ULTRAFAST = 0, 590 PRESET_FAST = 1, 591 PRESET_MEDIUM = 2 592 }; 593 594 /** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level 595 corresponds to the original image resolution). The final flow is obtained by bilinear upscaling. 596 @see setFinestScale */ 597 CV_WRAP virtual int getFinestScale() const = 0; 598 /** @copybrief getFinestScale @see getFinestScale */ 599 CV_WRAP virtual void setFinestScale(int val) = 0; 600 601 /** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well 602 enough in most cases. 603 @see setPatchSize */ 604 CV_WRAP virtual int getPatchSize() const = 0; 605 /** @copybrief getPatchSize @see getPatchSize */ 606 CV_WRAP virtual void setPatchSize(int val) = 0; 607 608 /** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond 609 to higher flow quality. 610 @see setPatchStride */ 611 CV_WRAP virtual int getPatchStride() const = 0; 612 /** @copybrief getPatchStride @see getPatchStride */ 613 CV_WRAP virtual void setPatchStride(int val) = 0; 614 615 /** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values 616 may improve quality in some cases. 617 @see setGradientDescentIterations */ 618 CV_WRAP virtual int getGradientDescentIterations() const = 0; 619 /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */ 620 CV_WRAP virtual void setGradientDescentIterations(int val) = 0; 621 622 /** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to 623 disable variational refinement completely. Higher values will typically result in more smooth and 624 high-quality flow. 625 @see setGradientDescentIterations */ 626 CV_WRAP virtual int getVariationalRefinementIterations() const = 0; 627 /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */ 628 CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0; 629 630 /** @brief Weight of the smoothness term 631 @see setVariationalRefinementAlpha */ 632 CV_WRAP virtual float getVariationalRefinementAlpha() const = 0; 633 /** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */ 634 CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0; 635 636 /** @brief Weight of the color constancy term 637 @see setVariationalRefinementDelta */ 638 CV_WRAP virtual float getVariationalRefinementDelta() const = 0; 639 /** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */ 640 CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0; 641 642 /** @brief Weight of the gradient constancy term 643 @see setVariationalRefinementGamma */ 644 CV_WRAP virtual float getVariationalRefinementGamma() const = 0; 645 /** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */ 646 CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0; 647 648 649 /** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on 650 by default as it typically provides a noticeable quality boost because of increased robustness to 651 illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes 652 in illumination. 653 @see setUseMeanNormalization */ 654 CV_WRAP virtual bool getUseMeanNormalization() const = 0; 655 /** @copybrief getUseMeanNormalization @see getUseMeanNormalization */ 656 CV_WRAP virtual void setUseMeanNormalization(bool val) = 0; 657 658 /** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by 659 default, as it tends to work better on average and can sometimes help recover from major errors 660 introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this 661 option off can make the output flow field a bit smoother, however. 662 @see setUseSpatialPropagation */ 663 CV_WRAP virtual bool getUseSpatialPropagation() const = 0; 664 /** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */ 665 CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0; 666 667 /** @brief Creates an instance of DISOpticalFlow 668 669 @param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM 670 */ 671 CV_WRAP static Ptr<DISOpticalFlow> create(int preset = DISOpticalFlow::PRESET_FAST); 672 }; 673 674 /** @brief Class used for calculating a sparse optical flow. 675 676 The class can calculate an optical flow for a sparse feature set using the 677 iterative Lucas-Kanade method with pyramids. 678 679 @sa calcOpticalFlowPyrLK 680 681 */ 682 class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow 683 { 684 public: 685 CV_WRAP virtual Size getWinSize() const = 0; 686 CV_WRAP virtual void setWinSize(Size winSize) = 0; 687 688 CV_WRAP virtual int getMaxLevel() const = 0; 689 CV_WRAP virtual void setMaxLevel(int maxLevel) = 0; 690 691 CV_WRAP virtual TermCriteria getTermCriteria() const = 0; 692 CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0; 693 694 CV_WRAP virtual int getFlags() const = 0; 695 CV_WRAP virtual void setFlags(int flags) = 0; 696 697 CV_WRAP virtual double getMinEigThreshold() const = 0; 698 CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0; 699 700 CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create( 701 Size winSize = Size(21, 21), 702 int maxLevel = 3, TermCriteria crit = 703 TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), 704 int flags = 0, 705 double minEigThreshold = 1e-4); 706 }; 707 708 709 710 711 /** @brief Base abstract class for the long-term tracker 712 */ 713 class CV_EXPORTS_W Tracker 714 { 715 protected: 716 Tracker(); 717 public: 718 virtual ~Tracker(); 719 720 /** @brief Initialize the tracker with a known bounding box that surrounded the target 721 @param image The initial frame 722 @param boundingBox The initial bounding box 723 */ 724 CV_WRAP virtual 725 void init(InputArray image, const Rect& boundingBox) = 0; 726 727 /** @brief Update the tracker, find the new most likely bounding box for the target 728 @param image The current frame 729 @param boundingBox The bounding box that represent the new target location, if true was returned, not 730 modified otherwise 731 732 @return True means that target was located and false means that tracker cannot locate target in 733 current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed 734 missing from the frame (say, out of sight) 735 */ 736 CV_WRAP virtual 737 bool update(InputArray image, CV_OUT Rect& boundingBox) = 0; 738 }; 739 740 741 742 /** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the 743 background. 744 745 Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is 746 based on @cite MIL . 747 748 Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml> 749 */ 750 class CV_EXPORTS_W TrackerMIL : public Tracker 751 { 752 protected: 753 TrackerMIL(); // use ::create() 754 public: 755 virtual ~TrackerMIL() CV_OVERRIDE; 756 757 struct CV_EXPORTS_W_SIMPLE Params 758 { 759 CV_WRAP Params(); 760 //parameters for sampler 761 CV_PROP_RW float samplerInitInRadius; //!< radius for gathering positive instances during init 762 CV_PROP_RW int samplerInitMaxNegNum; //!< # negative samples to use during init 763 CV_PROP_RW float samplerSearchWinSize; //!< size of search window 764 CV_PROP_RW float samplerTrackInRadius; //!< radius for gathering positive instances during tracking 765 CV_PROP_RW int samplerTrackMaxPosNum; //!< # positive samples to use during tracking 766 CV_PROP_RW int samplerTrackMaxNegNum; //!< # negative samples to use during tracking 767 CV_PROP_RW int featureSetNumFeatures; //!< # features 768 }; 769 770 /** @brief Create MIL tracker instance 771 * @param parameters MIL parameters TrackerMIL::Params 772 */ 773 static CV_WRAP 774 Ptr<TrackerMIL> create(const TrackerMIL::Params ¶meters = TrackerMIL::Params()); 775 776 //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE; 777 //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE; 778 }; 779 780 781 782 /** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker 783 * 784 * GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers, 785 * GOTURN is much faster due to offline training without online fine-tuning nature. 786 * GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video, 787 * we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly 788 * robust to viewpoint changes, lighting changes, and deformations. 789 * Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227. 790 * Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2. 791 * Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf> 792 * As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker> 793 * Implementation of training algorithm is placed in separately here due to 3d-party dependencies: 794 * <https://github.com/Auron-X/GOTURN_Training_Toolkit> 795 * GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository. 796 */ 797 class CV_EXPORTS_W TrackerGOTURN : public Tracker 798 { 799 protected: 800 TrackerGOTURN(); // use ::create() 801 public: 802 virtual ~TrackerGOTURN() CV_OVERRIDE; 803 804 struct CV_EXPORTS_W_SIMPLE Params 805 { 806 CV_WRAP Params(); 807 CV_PROP_RW std::string modelTxt; 808 CV_PROP_RW std::string modelBin; 809 }; 810 811 /** @brief Constructor 812 @param parameters GOTURN parameters TrackerGOTURN::Params 813 */ 814 static CV_WRAP 815 Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params()); 816 817 //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE; 818 //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE; 819 }; 820 821 class CV_EXPORTS_W TrackerDaSiamRPN : public Tracker 822 { 823 protected: 824 TrackerDaSiamRPN(); // use ::create() 825 public: 826 virtual ~TrackerDaSiamRPN() CV_OVERRIDE; 827 828 struct CV_EXPORTS_W_SIMPLE Params 829 { 830 CV_WRAP Params(); 831 CV_PROP_RW std::string model; 832 CV_PROP_RW std::string kernel_cls1; 833 CV_PROP_RW std::string kernel_r1; 834 CV_PROP_RW int backend; 835 CV_PROP_RW int target; 836 }; 837 838 /** @brief Constructor 839 @param parameters DaSiamRPN parameters TrackerDaSiamRPN::Params 840 */ 841 static CV_WRAP 842 Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params()); 843 844 /** @brief Return tracking score 845 */ 846 CV_WRAP virtual float getTrackingScore() = 0; 847 848 //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE; 849 //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE; 850 }; 851 852 853 //! @} video_track 854 855 } // cv 856 857 #endif