github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/opencv4/include/opencv2/video/tracking.hpp (about)

     1  /*M///////////////////////////////////////////////////////////////////////////////////////
     2  //
     3  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
     4  //
     5  //  By downloading, copying, installing or using the software you agree to this license.
     6  //  If you do not agree to this license, do not download, install,
     7  //  copy or use the software.
     8  //
     9  //
    10  //                          License Agreement
    11  //                For Open Source Computer Vision Library
    12  //
    13  // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
    14  // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
    15  // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
    16  // Third party copyrights are property of their respective owners.
    17  //
    18  // Redistribution and use in source and binary forms, with or without modification,
    19  // are permitted provided that the following conditions are met:
    20  //
    21  //   * Redistribution's of source code must retain the above copyright notice,
    22  //     this list of conditions and the following disclaimer.
    23  //
    24  //   * Redistribution's in binary form must reproduce the above copyright notice,
    25  //     this list of conditions and the following disclaimer in the documentation
    26  //     and/or other materials provided with the distribution.
    27  //
    28  //   * The name of the copyright holders may not be used to endorse or promote products
    29  //     derived from this software without specific prior written permission.
    30  //
    31  // This software is provided by the copyright holders and contributors "as is" and
    32  // any express or implied warranties, including, but not limited to, the implied
    33  // warranties of merchantability and fitness for a particular purpose are disclaimed.
    34  // In no event shall the Intel Corporation or contributors be liable for any direct,
    35  // indirect, incidental, special, exemplary, or consequential damages
    36  // (including, but not limited to, procurement of substitute goods or services;
    37  // loss of use, data, or profits; or business interruption) however caused
    38  // and on any theory of liability, whether in contract, strict liability,
    39  // or tort (including negligence or otherwise) arising in any way out of
    40  // the use of this software, even if advised of the possibility of such damage.
    41  //
    42  //M*/
    43  
    44  #ifndef OPENCV_TRACKING_HPP
    45  #define OPENCV_TRACKING_HPP
    46  
    47  #include "opencv2/core.hpp"
    48  #include "opencv2/imgproc.hpp"
    49  
    50  namespace cv
    51  {
    52  
    53  //! @addtogroup video_track
    54  //! @{
    55  
    56  enum { OPTFLOW_USE_INITIAL_FLOW     = 4,
    57         OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
    58         OPTFLOW_FARNEBACK_GAUSSIAN   = 256
    59       };
    60  
    61  /** @brief Finds an object center, size, and orientation.
    62  
    63  @param probImage Back projection of the object histogram. See calcBackProject.
    64  @param window Initial search window.
    65  @param criteria Stop criteria for the underlying meanShift.
    66  returns
    67  (in old interfaces) Number of iterations CAMSHIFT took to converge
    68  The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
    69  object center using meanShift and then adjusts the window size and finds the optimal rotation. The
    70  function returns the rotated rectangle structure that includes the object position, size, and
    71  orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
    72  
    73  See the OpenCV sample camshiftdemo.c that tracks colored objects.
    74  
    75  @note
    76  -   (Python) A sample explaining the camshift tracking algorithm can be found at
    77      opencv_source_code/samples/python/camshift.py
    78   */
    79  CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
    80                                     TermCriteria criteria );
    81  /** @example samples/cpp/camshiftdemo.cpp
    82  An example using the mean-shift tracking algorithm
    83  */
    84  
    85  /** @brief Finds an object on a back projection image.
    86  
    87  @param probImage Back projection of the object histogram. See calcBackProject for details.
    88  @param window Initial search window.
    89  @param criteria Stop criteria for the iterative search algorithm.
    90  returns
    91  :   Number of iterations CAMSHIFT took to converge.
    92  The function implements the iterative object search algorithm. It takes the input back projection of
    93  an object and the initial position. The mass center in window of the back projection image is
    94  computed and the search window center shifts to the mass center. The procedure is repeated until the
    95  specified number of iterations criteria.maxCount is done or until the window center shifts by less
    96  than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
    97  window size or orientation do not change during the search. You can simply pass the output of
    98  calcBackProject to this function. But better results can be obtained if you pre-filter the back
    99  projection and remove the noise. For example, you can do this by retrieving connected components
   100  with findContours , throwing away contours with small area ( contourArea ), and rendering the
   101  remaining contours with drawContours.
   102  
   103   */
   104  CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
   105  
   106  /** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
   107  
   108  @param img 8-bit input image.
   109  @param pyramid output pyramid.
   110  @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
   111  calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
   112  @param maxLevel 0-based maximal pyramid level number.
   113  @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
   114  constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
   115  @param pyrBorder the border mode for pyramid layers.
   116  @param derivBorder the border mode for gradients.
   117  @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
   118  to force data copying.
   119  @return number of levels in constructed pyramid. Can be less than maxLevel.
   120   */
   121  CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
   122                                            Size winSize, int maxLevel, bool withDerivatives = true,
   123                                            int pyrBorder = BORDER_REFLECT_101,
   124                                            int derivBorder = BORDER_CONSTANT,
   125                                            bool tryReuseInputImage = true );
   126  
   127  /** @example samples/cpp/lkdemo.cpp
   128  An example using the Lucas-Kanade optical flow algorithm
   129  */
   130  
   131  /** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
   132  pyramids.
   133  
   134  @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
   135  @param nextImg second input image or pyramid of the same size and the same type as prevImg.
   136  @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
   137  single-precision floating-point numbers.
   138  @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
   139  containing the calculated new positions of input features in the second image; when
   140  OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
   141  @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
   142  the flow for the corresponding features has been found, otherwise, it is set to 0.
   143  @param err output vector of errors; each element of the vector is set to an error for the
   144  corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
   145  found then the error is not defined (use the status parameter to find such cases).
   146  @param winSize size of the search window at each pyramid level.
   147  @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
   148  level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
   149  algorithm will use as many levels as pyramids have but no more than maxLevel.
   150  @param criteria parameter, specifying the termination criteria of the iterative search algorithm
   151  (after the specified maximum number of iterations criteria.maxCount or when the search window
   152  moves by less than criteria.epsilon.
   153  @param flags operation flags:
   154   -   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
   155       not set, then prevPts is copied to nextPts and is considered the initial estimate.
   156   -   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
   157       minEigThreshold description); if the flag is not set, then L1 distance between patches
   158       around the original and a moved point, divided by number of pixels in a window, is used as a
   159       error measure.
   160  @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
   161  optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
   162  by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
   163  feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
   164  performance boost.
   165  
   166  The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
   167  @cite Bouguet00 . The function is parallelized with the TBB library.
   168  
   169  @note
   170  
   171  -   An example using the Lucas-Kanade optical flow algorithm can be found at
   172      opencv_source_code/samples/cpp/lkdemo.cpp
   173  -   (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
   174      opencv_source_code/samples/python/lk_track.py
   175  -   (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
   176      opencv_source_code/samples/python/lk_homography.py
   177   */
   178  CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
   179                                          InputArray prevPts, InputOutputArray nextPts,
   180                                          OutputArray status, OutputArray err,
   181                                          Size winSize = Size(21,21), int maxLevel = 3,
   182                                          TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
   183                                          int flags = 0, double minEigThreshold = 1e-4 );
   184  
   185  /** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
   186  
   187  @param prev first 8-bit single-channel input image.
   188  @param next second input image of the same size and the same type as prev.
   189  @param flow computed flow image that has the same size as prev and type CV_32FC2.
   190  @param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
   191  pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
   192  one.
   193  @param levels number of pyramid layers including the initial image; levels=1 means that no extra
   194  layers are created and only the original images are used.
   195  @param winsize averaging window size; larger values increase the algorithm robustness to image
   196  noise and give more chances for fast motion detection, but yield more blurred motion field.
   197  @param iterations number of iterations the algorithm does at each pyramid level.
   198  @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
   199  larger values mean that the image will be approximated with smoother surfaces, yielding more
   200  robust algorithm and more blurred motion field, typically poly_n =5 or 7.
   201  @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
   202  basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
   203  good value would be poly_sigma=1.5.
   204  @param flags operation flags that can be a combination of the following:
   205   -   **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
   206   -   **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
   207       filter instead of a box filter of the same size for optical flow estimation; usually, this
   208       option gives z more accurate flow than with a box filter, at the cost of lower speed;
   209       normally, winsize for a Gaussian window should be set to a larger value to achieve the same
   210       level of robustness.
   211  
   212  The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
   213  
   214  \f[\texttt{prev} (y,x)  \sim \texttt{next} ( y + \texttt{flow} (y,x)[1],  x + \texttt{flow} (y,x)[0])\f]
   215  
   216  @note
   217  
   218  -   An example using the optical flow algorithm described by Gunnar Farneback can be found at
   219      opencv_source_code/samples/cpp/fback.cpp
   220  -   (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
   221      found at opencv_source_code/samples/python/opt_flow.py
   222   */
   223  CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
   224                                              double pyr_scale, int levels, int winsize,
   225                                              int iterations, int poly_n, double poly_sigma,
   226                                              int flags );
   227  
   228  /** @brief Computes an optimal affine transformation between two 2D point sets.
   229  
   230  @param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
   231  @param dst Second input 2D point set of the same size and the same type as A, or another image.
   232  @param fullAffine If true, the function finds an optimal affine transformation with no additional
   233  restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
   234  limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
   235  
   236  The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
   237  approximates best the affine transformation between:
   238  
   239  *   Two point sets
   240  *   Two raster images. In this case, the function first finds some features in the src image and
   241      finds the corresponding features in dst image. After that, the problem is reduced to the first
   242      case.
   243  In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
   244  2x1 vector *b* so that:
   245  
   246  \f[[A^*|b^*] = arg  \min _{[A|b]}  \sum _i  \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b  \| ^2\f]
   247  where src[i] and dst[i] are the i-th points in src and dst, respectively
   248  \f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
   249  \f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ -a_{12} & a_{11} & b_2  \end{bmatrix}\f]
   250  when fullAffine=false.
   251  
   252  @deprecated Use cv::estimateAffine2D, cv::estimateAffinePartial2D instead. If you are using this function
   253  with images, extract points using cv::calcOpticalFlowPyrLK and then use the estimation functions.
   254  
   255  @sa
   256  estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
   257   */
   258  CV_DEPRECATED CV_EXPORTS Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
   259  
   260  enum
   261  {
   262      MOTION_TRANSLATION = 0,
   263      MOTION_EUCLIDEAN   = 1,
   264      MOTION_AFFINE      = 2,
   265      MOTION_HOMOGRAPHY  = 3
   266  };
   267  
   268  /** @brief Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .
   269  
   270  @param templateImage single-channel template image; CV_8U or CV_32F array.
   271  @param inputImage single-channel input image to be warped to provide an image similar to
   272   templateImage, same type as templateImage.
   273  @param inputMask An optional mask to indicate valid values of inputImage.
   274  
   275  @sa
   276  findTransformECC
   277   */
   278  
   279  CV_EXPORTS_W double computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask = noArray());
   280  
   281  /** @example samples/cpp/image_alignment.cpp
   282  An example using the image alignment ECC algorithm
   283  */
   284  
   285  /** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
   286  
   287  @param templateImage single-channel template image; CV_8U or CV_32F array.
   288  @param inputImage single-channel input image which should be warped with the final warpMatrix in
   289  order to provide an image similar to templateImage, same type as templateImage.
   290  @param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
   291  @param motionType parameter, specifying the type of motion:
   292   -   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
   293       the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
   294       estimated.
   295   -   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
   296       parameters are estimated; warpMatrix is \f$2\times 3\f$.
   297   -   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
   298       warpMatrix is \f$2\times 3\f$.
   299   -   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
   300       estimated;\`warpMatrix\` is \f$3\times 3\f$.
   301  @param criteria parameter, specifying the termination criteria of the ECC algorithm;
   302  criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
   303  iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
   304  Default values are shown in the declaration above.
   305  @param inputMask An optional mask to indicate valid values of inputImage.
   306  @param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
   307  
   308  The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
   309  (@cite EP08), that is
   310  
   311  \f[\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
   312  
   313  where
   314  
   315  \f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
   316  
   317  (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
   318  correlation coefficient, that is the correlation coefficient between the template image and the
   319  final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
   320  row is ignored.
   321  
   322  Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
   323  area-based alignment that builds on intensity similarities. In essence, the function updates the
   324  initial transformation that roughly aligns the images. If this information is missing, the identity
   325  warp (unity matrix) is used as an initialization. Note that if images undergo strong
   326  displacements/rotations, an initial transformation that roughly aligns the images is necessary
   327  (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
   328  content approximately). Use inverse warping in the second image to take an image close to the first
   329  one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
   330  sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
   331  an exception if algorithm does not converges.
   332  
   333  @sa
   334  computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
   335   */
   336  CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
   337                                        InputOutputArray warpMatrix, int motionType,
   338                                        TermCriteria criteria,
   339                                        InputArray inputMask, int gaussFiltSize);
   340  
   341  /** @overload */
   342  CV_EXPORTS_W
   343  double findTransformECC(InputArray templateImage, InputArray inputImage,
   344      InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
   345      TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
   346      InputArray inputMask = noArray());
   347  
   348  /** @example samples/cpp/kalman.cpp
   349  An example using the standard Kalman filter
   350  */
   351  
   352  /** @brief Kalman filter class.
   353  
   354  The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
   355  @cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
   356  an extended Kalman filter functionality.
   357  @note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
   358  with cvReleaseKalman(&kalmanFilter)
   359   */
   360  class CV_EXPORTS_W KalmanFilter
   361  {
   362  public:
   363      CV_WRAP KalmanFilter();
   364      /** @overload
   365      @param dynamParams Dimensionality of the state.
   366      @param measureParams Dimensionality of the measurement.
   367      @param controlParams Dimensionality of the control vector.
   368      @param type Type of the created matrices that should be CV_32F or CV_64F.
   369      */
   370      CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
   371  
   372      /** @brief Re-initializes Kalman filter. The previous content is destroyed.
   373  
   374      @param dynamParams Dimensionality of the state.
   375      @param measureParams Dimensionality of the measurement.
   376      @param controlParams Dimensionality of the control vector.
   377      @param type Type of the created matrices that should be CV_32F or CV_64F.
   378       */
   379      void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
   380  
   381      /** @brief Computes a predicted state.
   382  
   383      @param control The optional input control
   384       */
   385      CV_WRAP const Mat& predict( const Mat& control = Mat() );
   386  
   387      /** @brief Updates the predicted state from the measurement.
   388  
   389      @param measurement The measured system parameters
   390       */
   391      CV_WRAP const Mat& correct( const Mat& measurement );
   392  
   393      CV_PROP_RW Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
   394      CV_PROP_RW Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
   395      CV_PROP_RW Mat transitionMatrix;   //!< state transition matrix (A)
   396      CV_PROP_RW Mat controlMatrix;      //!< control matrix (B) (not used if there is no control)
   397      CV_PROP_RW Mat measurementMatrix;  //!< measurement matrix (H)
   398      CV_PROP_RW Mat processNoiseCov;    //!< process noise covariance matrix (Q)
   399      CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
   400      CV_PROP_RW Mat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
   401      CV_PROP_RW Mat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
   402      CV_PROP_RW Mat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
   403  
   404      // temporary matrices
   405      Mat temp1;
   406      Mat temp2;
   407      Mat temp3;
   408      Mat temp4;
   409      Mat temp5;
   410  };
   411  
   412  
   413  /** @brief Read a .flo file
   414  
   415   @param path Path to the file to be loaded
   416  
   417   The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
   418   Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
   419   flow in the horizontal direction (u), second - vertical (v).
   420   */
   421  CV_EXPORTS_W Mat readOpticalFlow( const String& path );
   422  /** @brief Write a .flo to disk
   423  
   424   @param path Path to the file to be written
   425   @param flow Flow field to be stored
   426  
   427   The function stores a flow field in a file, returns true on success, false otherwise.
   428   The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
   429   to the flow in the horizontal direction (u), second - vertical (v).
   430   */
   431  CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow );
   432  
   433  /**
   434     Base class for dense optical flow algorithms
   435  */
   436  class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
   437  {
   438  public:
   439      /** @brief Calculates an optical flow.
   440  
   441      @param I0 first 8-bit single-channel input image.
   442      @param I1 second input image of the same size and the same type as prev.
   443      @param flow computed flow image that has the same size as prev and type CV_32FC2.
   444       */
   445      CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
   446      /** @brief Releases all inner buffers.
   447      */
   448      CV_WRAP virtual void collectGarbage() = 0;
   449  };
   450  
   451  /** @brief Base interface for sparse optical flow algorithms.
   452   */
   453  class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
   454  {
   455  public:
   456      /** @brief Calculates a sparse optical flow.
   457  
   458      @param prevImg First input image.
   459      @param nextImg Second input image of the same size and the same type as prevImg.
   460      @param prevPts Vector of 2D points for which the flow needs to be found.
   461      @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
   462      @param status Output status vector. Each element of the vector is set to 1 if the
   463                    flow for the corresponding features has been found. Otherwise, it is set to 0.
   464      @param err Optional output vector that contains error response for each point (inverse confidence).
   465       */
   466      CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
   467                        InputArray prevPts, InputOutputArray nextPts,
   468                        OutputArray status,
   469                        OutputArray err = cv::noArray()) = 0;
   470  };
   471  
   472  
   473  /** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
   474   */
   475  class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
   476  {
   477  public:
   478      CV_WRAP virtual int getNumLevels() const = 0;
   479      CV_WRAP virtual void setNumLevels(int numLevels) = 0;
   480  
   481      CV_WRAP virtual double getPyrScale() const = 0;
   482      CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
   483  
   484      CV_WRAP virtual bool getFastPyramids() const = 0;
   485      CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
   486  
   487      CV_WRAP virtual int getWinSize() const = 0;
   488      CV_WRAP virtual void setWinSize(int winSize) = 0;
   489  
   490      CV_WRAP virtual int getNumIters() const = 0;
   491      CV_WRAP virtual void setNumIters(int numIters) = 0;
   492  
   493      CV_WRAP virtual int getPolyN() const = 0;
   494      CV_WRAP virtual void setPolyN(int polyN) = 0;
   495  
   496      CV_WRAP virtual double getPolySigma() const = 0;
   497      CV_WRAP virtual void setPolySigma(double polySigma) = 0;
   498  
   499      CV_WRAP virtual int getFlags() const = 0;
   500      CV_WRAP virtual void setFlags(int flags) = 0;
   501  
   502      CV_WRAP static Ptr<FarnebackOpticalFlow> create(
   503              int numLevels = 5,
   504              double pyrScale = 0.5,
   505              bool fastPyramids = false,
   506              int winSize = 13,
   507              int numIters = 10,
   508              int polyN = 5,
   509              double polySigma = 1.1,
   510              int flags = 0);
   511  };
   512  
   513  /** @brief Variational optical flow refinement
   514  
   515  This class implements variational refinement of the input flow field, i.e.
   516  it uses input flow to initialize the minimization of the following functional:
   517  \f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$,
   518  where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms
   519  respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the
   520  influence of outliers. A complete formulation and a description of the minimization
   521  procedure can be found in @cite Brox2004
   522  */
   523  class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow
   524  {
   525  public:
   526      /** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
   527      (to avoid extra splits/merges) */
   528      CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0;
   529  
   530      /** @brief Number of outer (fixed-point) iterations in the minimization procedure.
   531      @see setFixedPointIterations */
   532      CV_WRAP virtual int getFixedPointIterations() const = 0;
   533      /** @copybrief getFixedPointIterations @see getFixedPointIterations */
   534      CV_WRAP virtual void setFixedPointIterations(int val) = 0;
   535  
   536      /** @brief Number of inner successive over-relaxation (SOR) iterations
   537          in the minimization procedure to solve the respective linear system.
   538      @see setSorIterations */
   539      CV_WRAP virtual int getSorIterations() const = 0;
   540      /** @copybrief getSorIterations @see getSorIterations */
   541      CV_WRAP virtual void setSorIterations(int val) = 0;
   542  
   543      /** @brief Relaxation factor in SOR
   544      @see setOmega */
   545      CV_WRAP virtual float getOmega() const = 0;
   546      /** @copybrief getOmega @see getOmega */
   547      CV_WRAP virtual void setOmega(float val) = 0;
   548  
   549      /** @brief Weight of the smoothness term
   550      @see setAlpha */
   551      CV_WRAP virtual float getAlpha() const = 0;
   552      /** @copybrief getAlpha @see getAlpha */
   553      CV_WRAP virtual void setAlpha(float val) = 0;
   554  
   555      /** @brief Weight of the color constancy term
   556      @see setDelta */
   557      CV_WRAP virtual float getDelta() const = 0;
   558      /** @copybrief getDelta @see getDelta */
   559      CV_WRAP virtual void setDelta(float val) = 0;
   560  
   561      /** @brief Weight of the gradient constancy term
   562      @see setGamma */
   563      CV_WRAP virtual float getGamma() const = 0;
   564      /** @copybrief getGamma @see getGamma */
   565      CV_WRAP virtual void setGamma(float val) = 0;
   566  
   567      /** @brief Creates an instance of VariationalRefinement
   568      */
   569      CV_WRAP static Ptr<VariationalRefinement> create();
   570  };
   571  
   572  /** @brief DIS optical flow algorithm.
   573  
   574  This class implements the Dense Inverse Search (DIS) optical flow algorithm. More
   575  details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected
   576  parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is
   577  still relatively fast, use DeepFlow if you need better quality and don't care about speed.
   578  
   579  This implementation includes several additional features compared to the algorithm described in the paper,
   580  including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to
   581  utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation,
   582  if the previous frame's flow field is passed).
   583  */
   584  class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow
   585  {
   586  public:
   587      enum
   588      {
   589          PRESET_ULTRAFAST = 0,
   590          PRESET_FAST = 1,
   591          PRESET_MEDIUM = 2
   592      };
   593  
   594      /** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level
   595          corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.
   596          @see setFinestScale */
   597      CV_WRAP virtual int getFinestScale() const = 0;
   598      /** @copybrief getFinestScale @see getFinestScale */
   599      CV_WRAP virtual void setFinestScale(int val) = 0;
   600  
   601      /** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
   602          enough in most cases.
   603          @see setPatchSize */
   604      CV_WRAP virtual int getPatchSize() const = 0;
   605      /** @copybrief getPatchSize @see getPatchSize */
   606      CV_WRAP virtual void setPatchSize(int val) = 0;
   607  
   608      /** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond
   609          to higher flow quality.
   610          @see setPatchStride */
   611      CV_WRAP virtual int getPatchStride() const = 0;
   612      /** @copybrief getPatchStride @see getPatchStride */
   613      CV_WRAP virtual void setPatchStride(int val) = 0;
   614  
   615      /** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
   616          may improve quality in some cases.
   617          @see setGradientDescentIterations */
   618      CV_WRAP virtual int getGradientDescentIterations() const = 0;
   619      /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
   620      CV_WRAP virtual void setGradientDescentIterations(int val) = 0;
   621  
   622      /** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to
   623          disable variational refinement completely. Higher values will typically result in more smooth and
   624          high-quality flow.
   625      @see setGradientDescentIterations */
   626      CV_WRAP virtual int getVariationalRefinementIterations() const = 0;
   627      /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
   628      CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0;
   629  
   630      /** @brief Weight of the smoothness term
   631      @see setVariationalRefinementAlpha */
   632      CV_WRAP virtual float getVariationalRefinementAlpha() const = 0;
   633      /** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */
   634      CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0;
   635  
   636      /** @brief Weight of the color constancy term
   637      @see setVariationalRefinementDelta */
   638      CV_WRAP virtual float getVariationalRefinementDelta() const = 0;
   639      /** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */
   640      CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0;
   641  
   642      /** @brief Weight of the gradient constancy term
   643      @see setVariationalRefinementGamma */
   644      CV_WRAP virtual float getVariationalRefinementGamma() const = 0;
   645      /** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */
   646      CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0;
   647  
   648  
   649      /** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on
   650          by default as it typically provides a noticeable quality boost because of increased robustness to
   651          illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
   652          in illumination.
   653      @see setUseMeanNormalization */
   654      CV_WRAP virtual bool getUseMeanNormalization() const = 0;
   655      /** @copybrief getUseMeanNormalization @see getUseMeanNormalization */
   656      CV_WRAP virtual void setUseMeanNormalization(bool val) = 0;
   657  
   658      /** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by
   659          default, as it tends to work better on average and can sometimes help recover from major errors
   660          introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
   661          option off can make the output flow field a bit smoother, however.
   662      @see setUseSpatialPropagation */
   663      CV_WRAP virtual bool getUseSpatialPropagation() const = 0;
   664      /** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */
   665      CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0;
   666  
   667      /** @brief Creates an instance of DISOpticalFlow
   668  
   669      @param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM
   670      */
   671      CV_WRAP static Ptr<DISOpticalFlow> create(int preset = DISOpticalFlow::PRESET_FAST);
   672  };
   673  
   674  /** @brief Class used for calculating a sparse optical flow.
   675  
   676  The class can calculate an optical flow for a sparse feature set using the
   677  iterative Lucas-Kanade method with pyramids.
   678  
   679  @sa calcOpticalFlowPyrLK
   680  
   681  */
   682  class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
   683  {
   684  public:
   685      CV_WRAP virtual Size getWinSize() const = 0;
   686      CV_WRAP virtual void setWinSize(Size winSize) = 0;
   687  
   688      CV_WRAP virtual int getMaxLevel() const = 0;
   689      CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
   690  
   691      CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
   692      CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
   693  
   694      CV_WRAP virtual int getFlags() const = 0;
   695      CV_WRAP virtual void setFlags(int flags) = 0;
   696  
   697      CV_WRAP virtual double getMinEigThreshold() const = 0;
   698      CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
   699  
   700      CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
   701              Size winSize = Size(21, 21),
   702              int maxLevel = 3, TermCriteria crit =
   703              TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
   704              int flags = 0,
   705              double minEigThreshold = 1e-4);
   706  };
   707  
   708  
   709  
   710  
   711  /** @brief Base abstract class for the long-term tracker
   712   */
   713  class CV_EXPORTS_W Tracker
   714  {
   715  protected:
   716      Tracker();
   717  public:
   718      virtual ~Tracker();
   719  
   720      /** @brief Initialize the tracker with a known bounding box that surrounded the target
   721      @param image The initial frame
   722      @param boundingBox The initial bounding box
   723      */
   724      CV_WRAP virtual
   725      void init(InputArray image, const Rect& boundingBox) = 0;
   726  
   727      /** @brief Update the tracker, find the new most likely bounding box for the target
   728      @param image The current frame
   729      @param boundingBox The bounding box that represent the new target location, if true was returned, not
   730      modified otherwise
   731  
   732      @return True means that target was located and false means that tracker cannot locate target in
   733      current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
   734      missing from the frame (say, out of sight)
   735      */
   736      CV_WRAP virtual
   737      bool update(InputArray image, CV_OUT Rect& boundingBox) = 0;
   738  };
   739  
   740  
   741  
   742  /** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
   743  background.
   744  
   745  Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
   746  based on @cite MIL .
   747  
   748  Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
   749   */
   750  class CV_EXPORTS_W TrackerMIL : public Tracker
   751  {
   752  protected:
   753      TrackerMIL();  // use ::create()
   754  public:
   755      virtual ~TrackerMIL() CV_OVERRIDE;
   756  
   757      struct CV_EXPORTS_W_SIMPLE Params
   758      {
   759          CV_WRAP Params();
   760          //parameters for sampler
   761          CV_PROP_RW float samplerInitInRadius;  //!< radius for gathering positive instances during init
   762          CV_PROP_RW int samplerInitMaxNegNum;  //!< # negative samples to use during init
   763          CV_PROP_RW float samplerSearchWinSize;  //!< size of search window
   764          CV_PROP_RW float samplerTrackInRadius;  //!< radius for gathering positive instances during tracking
   765          CV_PROP_RW int samplerTrackMaxPosNum;  //!< # positive samples to use during tracking
   766          CV_PROP_RW int samplerTrackMaxNegNum;  //!< # negative samples to use during tracking
   767          CV_PROP_RW int featureSetNumFeatures;  //!< # features
   768      };
   769  
   770      /** @brief Create MIL tracker instance
   771       *  @param parameters MIL parameters TrackerMIL::Params
   772       */
   773      static CV_WRAP
   774      Ptr<TrackerMIL> create(const TrackerMIL::Params &parameters = TrackerMIL::Params());
   775  
   776      //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
   777      //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
   778  };
   779  
   780  
   781  
   782  /** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
   783   *
   784   *  GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
   785   *  GOTURN is much faster due to offline training without online fine-tuning nature.
   786   *  GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
   787   *  we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
   788   *  robust to viewpoint changes, lighting changes, and deformations.
   789   *  Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
   790   *  Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
   791   *  Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
   792   *  As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
   793   *  Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
   794   *  <https://github.com/Auron-X/GOTURN_Training_Toolkit>
   795   *  GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
   796   */
   797  class CV_EXPORTS_W TrackerGOTURN : public Tracker
   798  {
   799  protected:
   800      TrackerGOTURN();  // use ::create()
   801  public:
   802      virtual ~TrackerGOTURN() CV_OVERRIDE;
   803  
   804      struct CV_EXPORTS_W_SIMPLE Params
   805      {
   806          CV_WRAP Params();
   807          CV_PROP_RW std::string modelTxt;
   808          CV_PROP_RW std::string modelBin;
   809      };
   810  
   811      /** @brief Constructor
   812      @param parameters GOTURN parameters TrackerGOTURN::Params
   813      */
   814      static CV_WRAP
   815      Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
   816  
   817      //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
   818      //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
   819  };
   820  
   821  class CV_EXPORTS_W TrackerDaSiamRPN : public Tracker
   822  {
   823  protected:
   824      TrackerDaSiamRPN();  // use ::create()
   825  public:
   826      virtual ~TrackerDaSiamRPN() CV_OVERRIDE;
   827  
   828      struct CV_EXPORTS_W_SIMPLE Params
   829      {
   830          CV_WRAP Params();
   831          CV_PROP_RW std::string model;
   832          CV_PROP_RW std::string kernel_cls1;
   833          CV_PROP_RW std::string kernel_r1;
   834          CV_PROP_RW int backend;
   835          CV_PROP_RW int target;
   836      };
   837  
   838      /** @brief Constructor
   839      @param parameters DaSiamRPN parameters TrackerDaSiamRPN::Params
   840      */
   841      static CV_WRAP
   842      Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params());
   843  
   844      /** @brief Return tracking score
   845      */
   846      CV_WRAP virtual float getTrackingScore() = 0;
   847  
   848      //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
   849      //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
   850  };
   851  
   852  
   853  //! @} video_track
   854  
   855  } // cv
   856  
   857  #endif