github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/pybind11/docs/advanced/classes.rst (about)

     1  Classes
     2  #######
     3  
     4  This section presents advanced binding code for classes and it is assumed
     5  that you are already familiar with the basics from :doc:`/classes`.
     6  
     7  .. _overriding_virtuals:
     8  
     9  Overriding virtual functions in Python
    10  ======================================
    11  
    12  Suppose that a C++ class or interface has a virtual function that we'd like
    13  to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
    14  given as a specific example of how one would do this with traditional C++
    15  code).
    16  
    17  .. code-block:: cpp
    18  
    19      class Animal {
    20      public:
    21          virtual ~Animal() { }
    22          virtual std::string go(int n_times) = 0;
    23      };
    24  
    25      class Dog : public Animal {
    26      public:
    27          std::string go(int n_times) override {
    28              std::string result;
    29              for (int i=0; i<n_times; ++i)
    30                  result += "woof! ";
    31              return result;
    32          }
    33      };
    34  
    35  Let's also suppose that we are given a plain function which calls the
    36  function ``go()`` on an arbitrary ``Animal`` instance.
    37  
    38  .. code-block:: cpp
    39  
    40      std::string call_go(Animal *animal) {
    41          return animal->go(3);
    42      }
    43  
    44  Normally, the binding code for these classes would look as follows:
    45  
    46  .. code-block:: cpp
    47  
    48      PYBIND11_MODULE(example, m) {
    49          py::class_<Animal>(m, "Animal")
    50              .def("go", &Animal::go);
    51  
    52          py::class_<Dog, Animal>(m, "Dog")
    53              .def(py::init<>());
    54  
    55          m.def("call_go", &call_go);
    56      }
    57  
    58  However, these bindings are impossible to extend: ``Animal`` is not
    59  constructible, and we clearly require some kind of "trampoline" that
    60  redirects virtual calls back to Python.
    61  
    62  Defining a new type of ``Animal`` from within Python is possible but requires a
    63  helper class that is defined as follows:
    64  
    65  .. code-block:: cpp
    66  
    67      class PyAnimal : public Animal {
    68      public:
    69          /* Inherit the constructors */
    70          using Animal::Animal;
    71  
    72          /* Trampoline (need one for each virtual function) */
    73          std::string go(int n_times) override {
    74              PYBIND11_OVERRIDE_PURE(
    75                  std::string, /* Return type */
    76                  Animal,      /* Parent class */
    77                  go,          /* Name of function in C++ (must match Python name) */
    78                  n_times      /* Argument(s) */
    79              );
    80          }
    81      };
    82  
    83  The macro :c:macro:`PYBIND11_OVERRIDE_PURE` should be used for pure virtual
    84  functions, and :c:macro:`PYBIND11_OVERRIDE` should be used for functions which have
    85  a default implementation.  There are also two alternate macros
    86  :c:macro:`PYBIND11_OVERRIDE_PURE_NAME` and :c:macro:`PYBIND11_OVERRIDE_NAME` which
    87  take a string-valued name argument between the *Parent class* and *Name of the
    88  function* slots, which defines the name of function in Python. This is required
    89  when the C++ and Python versions of the
    90  function have different names, e.g.  ``operator()`` vs ``__call__``.
    91  
    92  The binding code also needs a few minor adaptations (highlighted):
    93  
    94  .. code-block:: cpp
    95      :emphasize-lines: 2,3
    96  
    97      PYBIND11_MODULE(example, m) {
    98          py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
    99              .def(py::init<>())
   100              .def("go", &Animal::go);
   101  
   102          py::class_<Dog, Animal>(m, "Dog")
   103              .def(py::init<>());
   104  
   105          m.def("call_go", &call_go);
   106      }
   107  
   108  Importantly, pybind11 is made aware of the trampoline helper class by
   109  specifying it as an extra template argument to :class:`class_`. (This can also
   110  be combined with other template arguments such as a custom holder type; the
   111  order of template types does not matter).  Following this, we are able to
   112  define a constructor as usual.
   113  
   114  Bindings should be made against the actual class, not the trampoline helper class.
   115  
   116  .. code-block:: cpp
   117      :emphasize-lines: 3
   118  
   119      py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
   120          .def(py::init<>())
   121          .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
   122  
   123  Note, however, that the above is sufficient for allowing python classes to
   124  extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the
   125  necessary steps required to providing proper overriding support for inherited
   126  classes.
   127  
   128  The Python session below shows how to override ``Animal::go`` and invoke it via
   129  a virtual method call.
   130  
   131  .. code-block:: pycon
   132  
   133      >>> from example import *
   134      >>> d = Dog()
   135      >>> call_go(d)
   136      'woof! woof! woof! '
   137      >>> class Cat(Animal):
   138      ...     def go(self, n_times):
   139      ...         return "meow! " * n_times
   140      ...
   141      >>> c = Cat()
   142      >>> call_go(c)
   143      'meow! meow! meow! '
   144  
   145  If you are defining a custom constructor in a derived Python class, you *must*
   146  ensure that you explicitly call the bound C++ constructor using ``__init__``,
   147  *regardless* of whether it is a default constructor or not. Otherwise, the
   148  memory for the C++ portion of the instance will be left uninitialized, which
   149  will generally leave the C++ instance in an invalid state and cause undefined
   150  behavior if the C++ instance is subsequently used.
   151  
   152  .. versionchanged:: 2.6
   153     The default pybind11 metaclass will throw a ``TypeError`` when it detects
   154     that ``__init__`` was not called by a derived class.
   155  
   156  Here is an example:
   157  
   158  .. code-block:: python
   159  
   160      class Dachshund(Dog):
   161          def __init__(self, name):
   162              Dog.__init__(self)  # Without this, a TypeError is raised.
   163              self.name = name
   164  
   165          def bark(self):
   166              return "yap!"
   167  
   168  Note that a direct ``__init__`` constructor *should be called*, and ``super()``
   169  should not be used. For simple cases of linear inheritance, ``super()``
   170  may work, but once you begin mixing Python and C++ multiple inheritance,
   171  things will fall apart due to differences between Python's MRO and C++'s
   172  mechanisms.
   173  
   174  Please take a look at the :ref:`macro_notes` before using this feature.
   175  
   176  .. note::
   177  
   178      When the overridden type returns a reference or pointer to a type that
   179      pybind11 converts from Python (for example, numeric values, std::string,
   180      and other built-in value-converting types), there are some limitations to
   181      be aware of:
   182  
   183      - because in these cases there is no C++ variable to reference (the value
   184        is stored in the referenced Python variable), pybind11 provides one in
   185        the PYBIND11_OVERRIDE macros (when needed) with static storage duration.
   186        Note that this means that invoking the overridden method on *any*
   187        instance will change the referenced value stored in *all* instances of
   188        that type.
   189  
   190      - Attempts to modify a non-const reference will not have the desired
   191        effect: it will change only the static cache variable, but this change
   192        will not propagate to underlying Python instance, and the change will be
   193        replaced the next time the override is invoked.
   194  
   195  .. warning::
   196  
   197      The :c:macro:`PYBIND11_OVERRIDE` and accompanying macros used to be called
   198      ``PYBIND11_OVERLOAD`` up until pybind11 v2.5.0, and :func:`get_override`
   199      used to be called ``get_overload``. This naming was corrected and the older
   200      macro and function names may soon be deprecated, in order to reduce
   201      confusion with overloaded functions and methods and ``py::overload_cast``
   202      (see :ref:`classes`).
   203  
   204  .. seealso::
   205  
   206      The file :file:`tests/test_virtual_functions.cpp` contains a complete
   207      example that demonstrates how to override virtual functions using pybind11
   208      in more detail.
   209  
   210  .. _virtual_and_inheritance:
   211  
   212  Combining virtual functions and inheritance
   213  ===========================================
   214  
   215  When combining virtual methods with inheritance, you need to be sure to provide
   216  an override for each method for which you want to allow overrides from derived
   217  python classes.  For example, suppose we extend the above ``Animal``/``Dog``
   218  example as follows:
   219  
   220  .. code-block:: cpp
   221  
   222      class Animal {
   223      public:
   224          virtual std::string go(int n_times) = 0;
   225          virtual std::string name() { return "unknown"; }
   226      };
   227      class Dog : public Animal {
   228      public:
   229          std::string go(int n_times) override {
   230              std::string result;
   231              for (int i=0; i<n_times; ++i)
   232                  result += bark() + " ";
   233              return result;
   234          }
   235          virtual std::string bark() { return "woof!"; }
   236      };
   237  
   238  then the trampoline class for ``Animal`` must, as described in the previous
   239  section, override ``go()`` and ``name()``, but in order to allow python code to
   240  inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
   241  overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
   242  methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
   243  override the ``name()`` method):
   244  
   245  .. code-block:: cpp
   246  
   247      class PyAnimal : public Animal {
   248      public:
   249          using Animal::Animal; // Inherit constructors
   250          std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go, n_times); }
   251          std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); }
   252      };
   253      class PyDog : public Dog {
   254      public:
   255          using Dog::Dog; // Inherit constructors
   256          std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go, n_times); }
   257          std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); }
   258          std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); }
   259      };
   260  
   261  .. note::
   262  
   263      Note the trailing commas in the ``PYBIND11_OVERRIDE`` calls to ``name()``
   264      and ``bark()``. These are needed to portably implement a trampoline for a
   265      function that does not take any arguments. For functions that take
   266      a nonzero number of arguments, the trailing comma must be omitted.
   267  
   268  A registered class derived from a pybind11-registered class with virtual
   269  methods requires a similar trampoline class, *even if* it doesn't explicitly
   270  declare or override any virtual methods itself:
   271  
   272  .. code-block:: cpp
   273  
   274      class Husky : public Dog {};
   275      class PyHusky : public Husky {
   276      public:
   277          using Husky::Husky; // Inherit constructors
   278          std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go, n_times); }
   279          std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name, ); }
   280          std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark, ); }
   281      };
   282  
   283  There is, however, a technique that can be used to avoid this duplication
   284  (which can be especially helpful for a base class with several virtual
   285  methods).  The technique involves using template trampoline classes, as
   286  follows:
   287  
   288  .. code-block:: cpp
   289  
   290      template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
   291      public:
   292          using AnimalBase::AnimalBase; // Inherit constructors
   293          std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase, go, n_times); }
   294          std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name, ); }
   295      };
   296      template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
   297      public:
   298          using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
   299          // Override PyAnimal's pure virtual go() with a non-pure one:
   300          std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go, n_times); }
   301          std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark, ); }
   302      };
   303  
   304  This technique has the advantage of requiring just one trampoline method to be
   305  declared per virtual method and pure virtual method override.  It does,
   306  however, require the compiler to generate at least as many methods (and
   307  possibly more, if both pure virtual and overridden pure virtual methods are
   308  exposed, as above).
   309  
   310  The classes are then registered with pybind11 using:
   311  
   312  .. code-block:: cpp
   313  
   314      py::class_<Animal, PyAnimal<>> animal(m, "Animal");
   315      py::class_<Dog, Animal, PyDog<>> dog(m, "Dog");
   316      py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
   317      // ... add animal, dog, husky definitions
   318  
   319  Note that ``Husky`` did not require a dedicated trampoline template class at
   320  all, since it neither declares any new virtual methods nor provides any pure
   321  virtual method implementations.
   322  
   323  With either the repeated-virtuals or templated trampoline methods in place, you
   324  can now create a python class that inherits from ``Dog``:
   325  
   326  .. code-block:: python
   327  
   328      class ShihTzu(Dog):
   329          def bark(self):
   330              return "yip!"
   331  
   332  .. seealso::
   333  
   334      See the file :file:`tests/test_virtual_functions.cpp` for complete examples
   335      using both the duplication and templated trampoline approaches.
   336  
   337  .. _extended_aliases:
   338  
   339  Extended trampoline class functionality
   340  =======================================
   341  
   342  .. _extended_class_functionality_forced_trampoline:
   343  
   344  Forced trampoline class initialisation
   345  --------------------------------------
   346  The trampoline classes described in the previous sections are, by default, only
   347  initialized when needed.  More specifically, they are initialized when a python
   348  class actually inherits from a registered type (instead of merely creating an
   349  instance of the registered type), or when a registered constructor is only
   350  valid for the trampoline class but not the registered class.  This is primarily
   351  for performance reasons: when the trampoline class is not needed for anything
   352  except virtual method dispatching, not initializing the trampoline class
   353  improves performance by avoiding needing to do a run-time check to see if the
   354  inheriting python instance has an overridden method.
   355  
   356  Sometimes, however, it is useful to always initialize a trampoline class as an
   357  intermediate class that does more than just handle virtual method dispatching.
   358  For example, such a class might perform extra class initialization, extra
   359  destruction operations, and might define new members and methods to enable a
   360  more python-like interface to a class.
   361  
   362  In order to tell pybind11 that it should *always* initialize the trampoline
   363  class when creating new instances of a type, the class constructors should be
   364  declared using ``py::init_alias<Args, ...>()`` instead of the usual
   365  ``py::init<Args, ...>()``.  This forces construction via the trampoline class,
   366  ensuring member initialization and (eventual) destruction.
   367  
   368  .. seealso::
   369  
   370      See the file :file:`tests/test_virtual_functions.cpp` for complete examples
   371      showing both normal and forced trampoline instantiation.
   372  
   373  Different method signatures
   374  ---------------------------
   375  The macro's introduced in :ref:`overriding_virtuals` cover most of the standard
   376  use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy
   377  to create a direct one-on-one mapping between the arguments and method return
   378  type.
   379  
   380  An example would be when the C++ signature contains output arguments using
   381  references (See also :ref:`faq_reference_arguments`). Another way of solving
   382  this is to use the method body of the trampoline class to do conversions to the
   383  input and return of the Python method.
   384  
   385  The main building block to do so is the :func:`get_override`, this function
   386  allows retrieving a method implemented in Python from within the trampoline's
   387  methods. Consider for example a C++ method which has the signature
   388  ``bool myMethod(int32_t& value)``, where the return indicates whether
   389  something should be done with the ``value``. This can be made convenient on the
   390  Python side by allowing the Python function to return ``None`` or an ``int``:
   391  
   392  .. code-block:: cpp
   393  
   394      bool MyClass::myMethod(int32_t& value)
   395      {
   396          pybind11::gil_scoped_acquire gil;  // Acquire the GIL while in this scope.
   397          // Try to look up the overridden method on the Python side.
   398          pybind11::function override = pybind11::get_override(this, "myMethod");
   399          if (override) {  // method is found
   400              auto obj = override(value);  // Call the Python function.
   401              if (py::isinstance<py::int_>(obj)) {  // check if it returned a Python integer type
   402                  value = obj.cast<int32_t>();  // Cast it and assign it to the value.
   403                  return true;  // Return true; value should be used.
   404              } else {
   405                  return false;  // Python returned none, return false.
   406              }
   407          }
   408          return false;  // Alternatively return MyClass::myMethod(value);
   409      }
   410  
   411  
   412  .. _custom_constructors:
   413  
   414  Custom constructors
   415  ===================
   416  
   417  The syntax for binding constructors was previously introduced, but it only
   418  works when a constructor of the appropriate arguments actually exists on the
   419  C++ side.  To extend this to more general cases, pybind11 makes it possible
   420  to bind factory functions as constructors. For example, suppose you have a
   421  class like this:
   422  
   423  .. code-block:: cpp
   424  
   425      class Example {
   426      private:
   427          Example(int); // private constructor
   428      public:
   429          // Factory function:
   430          static Example create(int a) { return Example(a); }
   431      };
   432  
   433      py::class_<Example>(m, "Example")
   434          .def(py::init(&Example::create));
   435  
   436  While it is possible to create a straightforward binding of the static
   437  ``create`` method, it may sometimes be preferable to expose it as a constructor
   438  on the Python side. This can be accomplished by calling ``.def(py::init(...))``
   439  with the function reference returning the new instance passed as an argument.
   440  It is also possible to use this approach to bind a function returning a new
   441  instance by raw pointer or by the holder (e.g. ``std::unique_ptr``).
   442  
   443  The following example shows the different approaches:
   444  
   445  .. code-block:: cpp
   446  
   447      class Example {
   448      private:
   449          Example(int); // private constructor
   450      public:
   451          // Factory function - returned by value:
   452          static Example create(int a) { return Example(a); }
   453  
   454          // These constructors are publicly callable:
   455          Example(double);
   456          Example(int, int);
   457          Example(std::string);
   458      };
   459  
   460      py::class_<Example>(m, "Example")
   461          // Bind the factory function as a constructor:
   462          .def(py::init(&Example::create))
   463          // Bind a lambda function returning a pointer wrapped in a holder:
   464          .def(py::init([](std::string arg) {
   465              return std::unique_ptr<Example>(new Example(arg));
   466          }))
   467          // Return a raw pointer:
   468          .def(py::init([](int a, int b) { return new Example(a, b); }))
   469          // You can mix the above with regular C++ constructor bindings as well:
   470          .def(py::init<double>())
   471          ;
   472  
   473  When the constructor is invoked from Python, pybind11 will call the factory
   474  function and store the resulting C++ instance in the Python instance.
   475  
   476  When combining factory functions constructors with :ref:`virtual function
   477  trampolines <overriding_virtuals>` there are two approaches.  The first is to
   478  add a constructor to the alias class that takes a base value by
   479  rvalue-reference.  If such a constructor is available, it will be used to
   480  construct an alias instance from the value returned by the factory function.
   481  The second option is to provide two factory functions to ``py::init()``: the
   482  first will be invoked when no alias class is required (i.e. when the class is
   483  being used but not inherited from in Python), and the second will be invoked
   484  when an alias is required.
   485  
   486  You can also specify a single factory function that always returns an alias
   487  instance: this will result in behaviour similar to ``py::init_alias<...>()``,
   488  as described in the :ref:`extended trampoline class documentation
   489  <extended_aliases>`.
   490  
   491  The following example shows the different factory approaches for a class with
   492  an alias:
   493  
   494  .. code-block:: cpp
   495  
   496      #include <pybind11/factory.h>
   497      class Example {
   498      public:
   499          // ...
   500          virtual ~Example() = default;
   501      };
   502      class PyExample : public Example {
   503      public:
   504          using Example::Example;
   505          PyExample(Example &&base) : Example(std::move(base)) {}
   506      };
   507      py::class_<Example, PyExample>(m, "Example")
   508          // Returns an Example pointer.  If a PyExample is needed, the Example
   509          // instance will be moved via the extra constructor in PyExample, above.
   510          .def(py::init([]() { return new Example(); }))
   511          // Two callbacks:
   512          .def(py::init([]() { return new Example(); } /* no alias needed */,
   513                        []() { return new PyExample(); } /* alias needed */))
   514          // *Always* returns an alias instance (like py::init_alias<>())
   515          .def(py::init([]() { return new PyExample(); }))
   516          ;
   517  
   518  Brace initialization
   519  --------------------
   520  
   521  ``pybind11::init<>`` internally uses C++11 brace initialization to call the
   522  constructor of the target class. This means that it can be used to bind
   523  *implicit* constructors as well:
   524  
   525  .. code-block:: cpp
   526  
   527      struct Aggregate {
   528          int a;
   529          std::string b;
   530      };
   531  
   532      py::class_<Aggregate>(m, "Aggregate")
   533          .def(py::init<int, const std::string &>());
   534  
   535  .. note::
   536  
   537      Note that brace initialization preferentially invokes constructor overloads
   538      taking a ``std::initializer_list``. In the rare event that this causes an
   539      issue, you can work around it by using ``py::init(...)`` with a lambda
   540      function that constructs the new object as desired.
   541  
   542  .. _classes_with_non_public_destructors:
   543  
   544  Non-public destructors
   545  ======================
   546  
   547  If a class has a private or protected destructor (as might e.g. be the case in
   548  a singleton pattern), a compile error will occur when creating bindings via
   549  pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
   550  is responsible for managing the lifetime of instances will reference the
   551  destructor even if no deallocations ever take place. In order to expose classes
   552  with private or protected destructors, it is possible to override the holder
   553  type via a holder type argument to ``class_``. Pybind11 provides a helper class
   554  ``py::nodelete`` that disables any destructor invocations. In this case, it is
   555  crucial that instances are deallocated on the C++ side to avoid memory leaks.
   556  
   557  .. code-block:: cpp
   558  
   559      /* ... definition ... */
   560  
   561      class MyClass {
   562      private:
   563          ~MyClass() { }
   564      };
   565  
   566      /* ... binding code ... */
   567  
   568      py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
   569          .def(py::init<>())
   570  
   571  .. _destructors_that_call_python:
   572  
   573  Destructors that call Python
   574  ============================
   575  
   576  If a Python function is invoked from a C++ destructor, an exception may be thrown
   577  of type :class:`error_already_set`. If this error is thrown out of a class destructor,
   578  ``std::terminate()`` will be called, terminating the process. Class destructors
   579  must catch all exceptions of type :class:`error_already_set` to discard the Python
   580  exception using :func:`error_already_set::discard_as_unraisable`.
   581  
   582  Every Python function should be treated as *possibly throwing*. When a Python generator
   583  stops yielding items, Python will throw a ``StopIteration`` exception, which can pass
   584  though C++ destructors if the generator's stack frame holds the last reference to C++
   585  objects.
   586  
   587  For more information, see :ref:`the documentation on exceptions <unraisable_exceptions>`.
   588  
   589  .. code-block:: cpp
   590  
   591      class MyClass {
   592      public:
   593          ~MyClass() {
   594              try {
   595                  py::print("Even printing is dangerous in a destructor");
   596                  py::exec("raise ValueError('This is an unraisable exception')");
   597              } catch (py::error_already_set &e) {
   598                  // error_context should be information about where/why the occurred,
   599                  // e.g. use __func__ to get the name of the current function
   600                  e.discard_as_unraisable(__func__);
   601              }
   602          }
   603      };
   604  
   605  .. note::
   606  
   607      pybind11 does not support C++ destructors marked ``noexcept(false)``.
   608  
   609  .. versionadded:: 2.6
   610  
   611  .. _implicit_conversions:
   612  
   613  Implicit conversions
   614  ====================
   615  
   616  Suppose that instances of two types ``A`` and ``B`` are used in a project, and
   617  that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
   618  could be a fixed and an arbitrary precision number type).
   619  
   620  .. code-block:: cpp
   621  
   622      py::class_<A>(m, "A")
   623          /// ... members ...
   624  
   625      py::class_<B>(m, "B")
   626          .def(py::init<A>())
   627          /// ... members ...
   628  
   629      m.def("func",
   630          [](const B &) { /* .... */ }
   631      );
   632  
   633  To invoke the function ``func`` using a variable ``a`` containing an ``A``
   634  instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
   635  will automatically apply an implicit type conversion, which makes it possible
   636  to directly write ``func(a)``.
   637  
   638  In this situation (i.e. where ``B`` has a constructor that converts from
   639  ``A``), the following statement enables similar implicit conversions on the
   640  Python side:
   641  
   642  .. code-block:: cpp
   643  
   644      py::implicitly_convertible<A, B>();
   645  
   646  .. note::
   647  
   648      Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
   649      data type that is exposed to Python via pybind11.
   650  
   651      To prevent runaway recursion, implicit conversions are non-reentrant: an
   652      implicit conversion invoked as part of another implicit conversion of the
   653      same type (i.e. from ``A`` to ``B``) will fail.
   654  
   655  .. _static_properties:
   656  
   657  Static properties
   658  =================
   659  
   660  The section on :ref:`properties` discussed the creation of instance properties
   661  that are implemented in terms of C++ getters and setters.
   662  
   663  Static properties can also be created in a similar way to expose getters and
   664  setters of static class attributes. Note that the implicit ``self`` argument
   665  also exists in this case and is used to pass the Python ``type`` subclass
   666  instance. This parameter will often not be needed by the C++ side, and the
   667  following example illustrates how to instantiate a lambda getter function
   668  that ignores it:
   669  
   670  .. code-block:: cpp
   671  
   672      py::class_<Foo>(m, "Foo")
   673          .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
   674  
   675  Operator overloading
   676  ====================
   677  
   678  Suppose that we're given the following ``Vector2`` class with a vector addition
   679  and scalar multiplication operation, all implemented using overloaded operators
   680  in C++.
   681  
   682  .. code-block:: cpp
   683  
   684      class Vector2 {
   685      public:
   686          Vector2(float x, float y) : x(x), y(y) { }
   687  
   688          Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
   689          Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
   690          Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
   691          Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
   692  
   693          friend Vector2 operator*(float f, const Vector2 &v) {
   694              return Vector2(f * v.x, f * v.y);
   695          }
   696  
   697          std::string toString() const {
   698              return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
   699          }
   700      private:
   701          float x, y;
   702      };
   703  
   704  The following snippet shows how the above operators can be conveniently exposed
   705  to Python.
   706  
   707  .. code-block:: cpp
   708  
   709      #include <pybind11/operators.h>
   710  
   711      PYBIND11_MODULE(example, m) {
   712          py::class_<Vector2>(m, "Vector2")
   713              .def(py::init<float, float>())
   714              .def(py::self + py::self)
   715              .def(py::self += py::self)
   716              .def(py::self *= float())
   717              .def(float() * py::self)
   718              .def(py::self * float())
   719              .def(-py::self)
   720              .def("__repr__", &Vector2::toString);
   721      }
   722  
   723  Note that a line like
   724  
   725  .. code-block:: cpp
   726  
   727              .def(py::self * float())
   728  
   729  is really just short hand notation for
   730  
   731  .. code-block:: cpp
   732  
   733      .def("__mul__", [](const Vector2 &a, float b) {
   734          return a * b;
   735      }, py::is_operator())
   736  
   737  This can be useful for exposing additional operators that don't exist on the
   738  C++ side, or to perform other types of customization. The ``py::is_operator``
   739  flag marker is needed to inform pybind11 that this is an operator, which
   740  returns ``NotImplemented`` when invoked with incompatible arguments rather than
   741  throwing a type error.
   742  
   743  .. note::
   744  
   745      To use the more convenient ``py::self`` notation, the additional
   746      header file :file:`pybind11/operators.h` must be included.
   747  
   748  .. seealso::
   749  
   750      The file :file:`tests/test_operator_overloading.cpp` contains a
   751      complete example that demonstrates how to work with overloaded operators in
   752      more detail.
   753  
   754  .. _pickling:
   755  
   756  Pickling support
   757  ================
   758  
   759  Python's ``pickle`` module provides a powerful facility to serialize and
   760  de-serialize a Python object graph into a binary data stream. To pickle and
   761  unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be
   762  provided. Suppose the class in question has the following signature:
   763  
   764  .. code-block:: cpp
   765  
   766      class Pickleable {
   767      public:
   768          Pickleable(const std::string &value) : m_value(value) { }
   769          const std::string &value() const { return m_value; }
   770  
   771          void setExtra(int extra) { m_extra = extra; }
   772          int extra() const { return m_extra; }
   773      private:
   774          std::string m_value;
   775          int m_extra = 0;
   776      };
   777  
   778  Pickling support in Python is enabled by defining the ``__setstate__`` and
   779  ``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()``
   780  to bind these two functions:
   781  
   782  .. code-block:: cpp
   783  
   784      py::class_<Pickleable>(m, "Pickleable")
   785          .def(py::init<std::string>())
   786          .def("value", &Pickleable::value)
   787          .def("extra", &Pickleable::extra)
   788          .def("setExtra", &Pickleable::setExtra)
   789          .def(py::pickle(
   790              [](const Pickleable &p) { // __getstate__
   791                  /* Return a tuple that fully encodes the state of the object */
   792                  return py::make_tuple(p.value(), p.extra());
   793              },
   794              [](py::tuple t) { // __setstate__
   795                  if (t.size() != 2)
   796                      throw std::runtime_error("Invalid state!");
   797  
   798                  /* Create a new C++ instance */
   799                  Pickleable p(t[0].cast<std::string>());
   800  
   801                  /* Assign any additional state */
   802                  p.setExtra(t[1].cast<int>());
   803  
   804                  return p;
   805              }
   806          ));
   807  
   808  The ``__setstate__`` part of the ``py::pickle()`` definition follows the same
   809  rules as the single-argument version of ``py::init()``. The return type can be
   810  a value, pointer or holder type. See :ref:`custom_constructors` for details.
   811  
   812  An instance can now be pickled as follows:
   813  
   814  .. code-block:: python
   815  
   816      import pickle
   817  
   818      p = Pickleable("test_value")
   819      p.setExtra(15)
   820      data = pickle.dumps(p)
   821  
   822  
   823  .. note::
   824      If given, the second argument to ``dumps`` must be 2 or larger - 0 and 1 are
   825      not supported. Newer versions are also fine; for instance, specify ``-1`` to
   826      always use the latest available version. Beware: failure to follow these
   827      instructions will cause important pybind11 memory allocation routines to be
   828      skipped during unpickling, which will likely lead to memory corruption
   829      and/or segmentation faults. Python defaults to version 3 (Python 3-3.7) and
   830      version 4 for Python 3.8+.
   831  
   832  .. seealso::
   833  
   834      The file :file:`tests/test_pickling.cpp` contains a complete example
   835      that demonstrates how to pickle and unpickle types using pybind11 in more
   836      detail.
   837  
   838  .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
   839  
   840  Deepcopy support
   841  ================
   842  
   843  Python normally uses references in assignments. Sometimes a real copy is needed
   844  to prevent changing all copies. The ``copy`` module [#f5]_ provides these
   845  capabilities.
   846  
   847  A class with pickle support is automatically also (deep)copy
   848  compatible. However, performance can be improved by adding custom
   849  ``__copy__`` and ``__deepcopy__`` methods.
   850  
   851  For simple classes (deep)copy can be enabled by using the copy constructor,
   852  which should look as follows:
   853  
   854  .. code-block:: cpp
   855  
   856      py::class_<Copyable>(m, "Copyable")
   857          .def("__copy__",  [](const Copyable &self) {
   858              return Copyable(self);
   859          })
   860          .def("__deepcopy__", [](const Copyable &self, py::dict) {
   861              return Copyable(self);
   862          }, "memo"_a);
   863  
   864  .. note::
   865  
   866      Dynamic attributes will not be copied in this example.
   867  
   868  .. [#f5] https://docs.python.org/3/library/copy.html
   869  
   870  Multiple Inheritance
   871  ====================
   872  
   873  pybind11 can create bindings for types that derive from multiple base types
   874  (aka. *multiple inheritance*). To do so, specify all bases in the template
   875  arguments of the ``class_`` declaration:
   876  
   877  .. code-block:: cpp
   878  
   879      py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
   880         ...
   881  
   882  The base types can be specified in arbitrary order, and they can even be
   883  interspersed with alias types and holder types (discussed earlier in this
   884  document)---pybind11 will automatically find out which is which. The only
   885  requirement is that the first template argument is the type to be declared.
   886  
   887  It is also permitted to inherit multiply from exported C++ classes in Python,
   888  as well as inheriting from multiple Python and/or pybind11-exported classes.
   889  
   890  There is one caveat regarding the implementation of this feature:
   891  
   892  When only one base type is specified for a C++ type that actually has multiple
   893  bases, pybind11 will assume that it does not participate in multiple
   894  inheritance, which can lead to undefined behavior. In such cases, add the tag
   895  ``multiple_inheritance`` to the class constructor:
   896  
   897  .. code-block:: cpp
   898  
   899      py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
   900  
   901  The tag is redundant and does not need to be specified when multiple base types
   902  are listed.
   903  
   904  .. _module_local:
   905  
   906  Module-local class bindings
   907  ===========================
   908  
   909  When creating a binding for a class, pybind11 by default makes that binding
   910  "global" across modules.  What this means is that a type defined in one module
   911  can be returned from any module resulting in the same Python type.  For
   912  example, this allows the following:
   913  
   914  .. code-block:: cpp
   915  
   916      // In the module1.cpp binding code for module1:
   917      py::class_<Pet>(m, "Pet")
   918          .def(py::init<std::string>())
   919          .def_readonly("name", &Pet::name);
   920  
   921  .. code-block:: cpp
   922  
   923      // In the module2.cpp binding code for module2:
   924      m.def("create_pet", [](std::string name) { return new Pet(name); });
   925  
   926  .. code-block:: pycon
   927  
   928      >>> from module1 import Pet
   929      >>> from module2 import create_pet
   930      >>> pet1 = Pet("Kitty")
   931      >>> pet2 = create_pet("Doggy")
   932      >>> pet2.name()
   933      'Doggy'
   934  
   935  When writing binding code for a library, this is usually desirable: this
   936  allows, for example, splitting up a complex library into multiple Python
   937  modules.
   938  
   939  In some cases, however, this can cause conflicts.  For example, suppose two
   940  unrelated modules make use of an external C++ library and each provide custom
   941  bindings for one of that library's classes.  This will result in an error when
   942  a Python program attempts to import both modules (directly or indirectly)
   943  because of conflicting definitions on the external type:
   944  
   945  .. code-block:: cpp
   946  
   947      // dogs.cpp
   948  
   949      // Binding for external library class:
   950      py::class<pets::Pet>(m, "Pet")
   951          .def("name", &pets::Pet::name);
   952  
   953      // Binding for local extension class:
   954      py::class<Dog, pets::Pet>(m, "Dog")
   955          .def(py::init<std::string>());
   956  
   957  .. code-block:: cpp
   958  
   959      // cats.cpp, in a completely separate project from the above dogs.cpp.
   960  
   961      // Binding for external library class:
   962      py::class<pets::Pet>(m, "Pet")
   963          .def("get_name", &pets::Pet::name);
   964  
   965      // Binding for local extending class:
   966      py::class<Cat, pets::Pet>(m, "Cat")
   967          .def(py::init<std::string>());
   968  
   969  .. code-block:: pycon
   970  
   971      >>> import cats
   972      >>> import dogs
   973      Traceback (most recent call last):
   974        File "<stdin>", line 1, in <module>
   975      ImportError: generic_type: type "Pet" is already registered!
   976  
   977  To get around this, you can tell pybind11 to keep the external class binding
   978  localized to the module by passing the ``py::module_local()`` attribute into
   979  the ``py::class_`` constructor:
   980  
   981  .. code-block:: cpp
   982  
   983      // Pet binding in dogs.cpp:
   984      py::class<pets::Pet>(m, "Pet", py::module_local())
   985          .def("name", &pets::Pet::name);
   986  
   987  .. code-block:: cpp
   988  
   989      // Pet binding in cats.cpp:
   990      py::class<pets::Pet>(m, "Pet", py::module_local())
   991          .def("get_name", &pets::Pet::name);
   992  
   993  This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes,
   994  avoiding the conflict and allowing both modules to be loaded.  C++ code in the
   995  ``dogs`` module that casts or returns a ``Pet`` instance will result in a
   996  ``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result
   997  in a ``cats.Pet`` Python instance.
   998  
   999  This does come with two caveats, however: First, external modules cannot return
  1000  or cast a ``Pet`` instance to Python (unless they also provide their own local
  1001  bindings).  Second, from the Python point of view they are two distinct classes.
  1002  
  1003  Note that the locality only applies in the C++ -> Python direction.  When
  1004  passing such a ``py::module_local`` type into a C++ function, the module-local
  1005  classes are still considered.  This means that if the following function is
  1006  added to any module (including but not limited to the ``cats`` and ``dogs``
  1007  modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet``
  1008  argument:
  1009  
  1010  .. code-block:: cpp
  1011  
  1012      m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
  1013  
  1014  For example, suppose the above function is added to each of ``cats.cpp``,
  1015  ``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that
  1016  does *not* bind ``Pets`` at all).
  1017  
  1018  .. code-block:: pycon
  1019  
  1020      >>> import cats, dogs, frogs  # No error because of the added py::module_local()
  1021      >>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
  1022      >>> (cats.pet_name(mycat), dogs.pet_name(mydog))
  1023      ('Fluffy', 'Rover')
  1024      >>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
  1025      ('Rover', 'Fluffy', 'Fluffy')
  1026  
  1027  It is possible to use ``py::module_local()`` registrations in one module even
  1028  if another module registers the same type globally: within the module with the
  1029  module-local definition, all C++ instances will be cast to the associated bound
  1030  Python type.  In other modules any such values are converted to the global
  1031  Python type created elsewhere.
  1032  
  1033  .. note::
  1034  
  1035      STL bindings (as provided via the optional :file:`pybind11/stl_bind.h`
  1036      header) apply ``py::module_local`` by default when the bound type might
  1037      conflict with other modules; see :ref:`stl_bind` for details.
  1038  
  1039  .. note::
  1040  
  1041      The localization of the bound types is actually tied to the shared object
  1042      or binary generated by the compiler/linker.  For typical modules created
  1043      with ``PYBIND11_MODULE()``, this distinction is not significant.  It is
  1044      possible, however, when :ref:`embedding` to embed multiple modules in the
  1045      same binary (see :ref:`embedding_modules`).  In such a case, the
  1046      localization will apply across all embedded modules within the same binary.
  1047  
  1048  .. seealso::
  1049  
  1050      The file :file:`tests/test_local_bindings.cpp` contains additional examples
  1051      that demonstrate how ``py::module_local()`` works.
  1052  
  1053  Binding protected member functions
  1054  ==================================
  1055  
  1056  It's normally not possible to expose ``protected`` member functions to Python:
  1057  
  1058  .. code-block:: cpp
  1059  
  1060      class A {
  1061      protected:
  1062          int foo() const { return 42; }
  1063      };
  1064  
  1065      py::class_<A>(m, "A")
  1066          .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
  1067  
  1068  On one hand, this is good because non-``public`` members aren't meant to be
  1069  accessed from the outside. But we may want to make use of ``protected``
  1070  functions in derived Python classes.
  1071  
  1072  The following pattern makes this possible:
  1073  
  1074  .. code-block:: cpp
  1075  
  1076      class A {
  1077      protected:
  1078          int foo() const { return 42; }
  1079      };
  1080  
  1081      class Publicist : public A { // helper type for exposing protected functions
  1082      public:
  1083          using A::foo; // inherited with different access modifier
  1084      };
  1085  
  1086      py::class_<A>(m, "A") // bind the primary class
  1087          .def("foo", &Publicist::foo); // expose protected methods via the publicist
  1088  
  1089  This works because ``&Publicist::foo`` is exactly the same function as
  1090  ``&A::foo`` (same signature and address), just with a different access
  1091  modifier. The only purpose of the ``Publicist`` helper class is to make
  1092  the function name ``public``.
  1093  
  1094  If the intent is to expose ``protected`` ``virtual`` functions which can be
  1095  overridden in Python, the publicist pattern can be combined with the previously
  1096  described trampoline:
  1097  
  1098  .. code-block:: cpp
  1099  
  1100      class A {
  1101      public:
  1102          virtual ~A() = default;
  1103  
  1104      protected:
  1105          virtual int foo() const { return 42; }
  1106      };
  1107  
  1108      class Trampoline : public A {
  1109      public:
  1110          int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); }
  1111      };
  1112  
  1113      class Publicist : public A {
  1114      public:
  1115          using A::foo;
  1116      };
  1117  
  1118      py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
  1119          .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
  1120  
  1121  Binding final classes
  1122  =====================
  1123  
  1124  Some classes may not be appropriate to inherit from. In C++11, classes can
  1125  use the ``final`` specifier to ensure that a class cannot be inherited from.
  1126  The ``py::is_final`` attribute can be used to ensure that Python classes
  1127  cannot inherit from a specified type. The underlying C++ type does not need
  1128  to be declared final.
  1129  
  1130  .. code-block:: cpp
  1131  
  1132      class IsFinal final {};
  1133  
  1134      py::class_<IsFinal>(m, "IsFinal", py::is_final());
  1135  
  1136  When you try to inherit from such a class in Python, you will now get this
  1137  error:
  1138  
  1139  .. code-block:: pycon
  1140  
  1141      >>> class PyFinalChild(IsFinal):
  1142      ...     pass
  1143      ...
  1144      TypeError: type 'IsFinal' is not an acceptable base type
  1145  
  1146  .. note:: This attribute is currently ignored on PyPy
  1147  
  1148  .. versionadded:: 2.6
  1149  
  1150  Binding classes with template parameters
  1151  ========================================
  1152  
  1153  pybind11 can also wrap classes that have template parameters. Consider these classes:
  1154  
  1155  .. code-block:: cpp
  1156  
  1157      struct Cat {};
  1158      struct Dog {};
  1159  
  1160      template <typename PetType>
  1161      struct Cage {
  1162          Cage(PetType& pet);
  1163          PetType& get();
  1164      };
  1165  
  1166  C++ templates may only be instantiated at compile time, so pybind11 can only
  1167  wrap instantiated templated classes. You cannot wrap a non-instantiated template:
  1168  
  1169  .. code-block:: cpp
  1170  
  1171      // BROKEN (this will not compile)
  1172      py::class_<Cage>(m, "Cage");
  1173          .def("get", &Cage::get);
  1174  
  1175  You must explicitly specify each template/type combination that you want to
  1176  wrap separately.
  1177  
  1178  .. code-block:: cpp
  1179  
  1180      // ok
  1181      py::class_<Cage<Cat>>(m, "CatCage")
  1182          .def("get", &Cage<Cat>::get);
  1183  
  1184      // ok
  1185      py::class_<Cage<Dog>>(m, "DogCage")
  1186          .def("get", &Cage<Dog>::get);
  1187  
  1188  If your class methods have template parameters you can wrap those as well,
  1189  but once again each instantiation must be explicitly specified:
  1190  
  1191  .. code-block:: cpp
  1192  
  1193      typename <typename T>
  1194      struct MyClass {
  1195          template <typename V>
  1196          T fn(V v);
  1197      };
  1198  
  1199      py::class<MyClass<int>>(m, "MyClassT")
  1200          .def("fn", &MyClass<int>::fn<std::string>);
  1201  
  1202  Custom automatic downcasters
  1203  ============================
  1204  
  1205  As explained in :ref:`inheritance`, pybind11 comes with built-in
  1206  understanding of the dynamic type of polymorphic objects in C++; that
  1207  is, returning a Pet to Python produces a Python object that knows it's
  1208  wrapping a Dog, if Pet has virtual methods and pybind11 knows about
  1209  Dog and this Pet is in fact a Dog. Sometimes, you might want to
  1210  provide this automatic downcasting behavior when creating bindings for
  1211  a class hierarchy that does not use standard C++ polymorphism, such as
  1212  LLVM [#f4]_. As long as there's some way to determine at runtime
  1213  whether a downcast is safe, you can proceed by specializing the
  1214  ``pybind11::polymorphic_type_hook`` template:
  1215  
  1216  .. code-block:: cpp
  1217  
  1218      enum class PetKind { Cat, Dog, Zebra };
  1219      struct Pet {   // Not polymorphic: has no virtual methods
  1220          const PetKind kind;
  1221          int age = 0;
  1222        protected:
  1223          Pet(PetKind _kind) : kind(_kind) {}
  1224      };
  1225      struct Dog : Pet {
  1226          Dog() : Pet(PetKind::Dog) {}
  1227          std::string sound = "woof!";
  1228          std::string bark() const { return sound; }
  1229      };
  1230  
  1231      namespace PYBIND11_NAMESPACE {
  1232          template<> struct polymorphic_type_hook<Pet> {
  1233              static const void *get(const Pet *src, const std::type_info*& type) {
  1234                  // note that src may be nullptr
  1235                  if (src && src->kind == PetKind::Dog) {
  1236                      type = &typeid(Dog);
  1237                      return static_cast<const Dog*>(src);
  1238                  }
  1239                  return src;
  1240              }
  1241          };
  1242      } // namespace PYBIND11_NAMESPACE
  1243  
  1244  When pybind11 wants to convert a C++ pointer of type ``Base*`` to a
  1245  Python object, it calls ``polymorphic_type_hook<Base>::get()`` to
  1246  determine if a downcast is possible. The ``get()`` function should use
  1247  whatever runtime information is available to determine if its ``src``
  1248  parameter is in fact an instance of some class ``Derived`` that
  1249  inherits from ``Base``. If it finds such a ``Derived``, it sets ``type
  1250  = &typeid(Derived)`` and returns a pointer to the ``Derived`` object
  1251  that contains ``src``. Otherwise, it just returns ``src``, leaving
  1252  ``type`` at its default value of nullptr. If you set ``type`` to a
  1253  type that pybind11 doesn't know about, no downcasting will occur, and
  1254  the original ``src`` pointer will be used with its static type
  1255  ``Base*``.
  1256  
  1257  It is critical that the returned pointer and ``type`` argument of
  1258  ``get()`` agree with each other: if ``type`` is set to something
  1259  non-null, the returned pointer must point to the start of an object
  1260  whose type is ``type``. If the hierarchy being exposed uses only
  1261  single inheritance, a simple ``return src;`` will achieve this just
  1262  fine, but in the general case, you must cast ``src`` to the
  1263  appropriate derived-class pointer (e.g. using
  1264  ``static_cast<Derived>(src)``) before allowing it to be returned as a
  1265  ``void*``.
  1266  
  1267  .. [#f4] https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
  1268  
  1269  .. note::
  1270  
  1271      pybind11's standard support for downcasting objects whose types
  1272      have virtual methods is implemented using
  1273      ``polymorphic_type_hook`` too, using the standard C++ ability to
  1274      determine the most-derived type of a polymorphic object using
  1275      ``typeid()`` and to cast a base pointer to that most-derived type
  1276      (even if you don't know what it is) using ``dynamic_cast<void*>``.
  1277  
  1278  .. seealso::
  1279  
  1280      The file :file:`tests/test_tagbased_polymorphic.cpp` contains a
  1281      more complete example, including a demonstration of how to provide
  1282      automatic downcasting for an entire class hierarchy without
  1283      writing one get() function for each class.
  1284  
  1285  Accessing the type object
  1286  =========================
  1287  
  1288  You can get the type object from a C++ class that has already been registered using:
  1289  
  1290  .. code-block:: cpp
  1291  
  1292      py::type T_py = py::type::of<T>();
  1293  
  1294  You can directly use ``py::type::of(ob)`` to get the type object from any python
  1295  object, just like ``type(ob)`` in Python.
  1296  
  1297  .. note::
  1298  
  1299      Other types, like ``py::type::of<int>()``, do not work, see :ref:`type-conversions`.
  1300  
  1301  .. versionadded:: 2.6
  1302  
  1303  Custom type setup
  1304  =================
  1305  
  1306  For advanced use cases, such as enabling garbage collection support, you may
  1307  wish to directly manipulate the ``PyHeapTypeObject`` corresponding to a
  1308  ``py::class_`` definition.
  1309  
  1310  You can do that using ``py::custom_type_setup``:
  1311  
  1312  .. code-block:: cpp
  1313  
  1314     struct OwnsPythonObjects {
  1315         py::object value = py::none();
  1316     };
  1317     py::class_<OwnsPythonObjects> cls(
  1318         m, "OwnsPythonObjects", py::custom_type_setup([](PyHeapTypeObject *heap_type) {
  1319             auto *type = &heap_type->ht_type;
  1320             type->tp_flags |= Py_TPFLAGS_HAVE_GC;
  1321             type->tp_traverse = [](PyObject *self_base, visitproc visit, void *arg) {
  1322                 auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
  1323                 Py_VISIT(self.value.ptr());
  1324                 return 0;
  1325             };
  1326             type->tp_clear = [](PyObject *self_base) {
  1327                 auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
  1328                 self.value = py::none();
  1329                 return 0;
  1330             };
  1331         }));
  1332     cls.def(py::init<>());
  1333     cls.def_readwrite("value", &OwnsPythonObjects::value);
  1334  
  1335  .. versionadded:: 2.8