github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/pybind11/tests/test_eigen_matrix.cpp (about)

     1  /*
     2      tests/eigen.cpp -- automatic conversion of Eigen types
     3  
     4      Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
     5  
     6      All rights reserved. Use of this source code is governed by a
     7      BSD-style license that can be found in the LICENSE file.
     8  */
     9  
    10  #include <pybind11/eigen/matrix.h>
    11  #include <pybind11/stl.h>
    12  
    13  #include "constructor_stats.h"
    14  #include "pybind11_tests.h"
    15  
    16  PYBIND11_WARNING_DISABLE_MSVC(4996)
    17  
    18  #include <Eigen/Cholesky>
    19  
    20  using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
    21  
    22  // Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the
    23  // (1-based) row/column number.
    24  template <typename M>
    25  void reset_ref(M &x) {
    26      for (int i = 0; i < x.rows(); i++) {
    27          for (int j = 0; j < x.cols(); j++) {
    28              x(i, j) = 11 + 10 * i + j;
    29          }
    30      }
    31  }
    32  
    33  // Returns a static, column-major matrix
    34  Eigen::MatrixXd &get_cm() {
    35      static Eigen::MatrixXd *x;
    36      if (!x) {
    37          x = new Eigen::MatrixXd(3, 3);
    38          reset_ref(*x);
    39      }
    40      return *x;
    41  }
    42  // Likewise, but row-major
    43  MatrixXdR &get_rm() {
    44      static MatrixXdR *x;
    45      if (!x) {
    46          x = new MatrixXdR(3, 3);
    47          reset_ref(*x);
    48      }
    49      return *x;
    50  }
    51  // Resets the values of the static matrices returned by get_cm()/get_rm()
    52  void reset_refs() {
    53      reset_ref(get_cm());
    54      reset_ref(get_rm());
    55  }
    56  
    57  // Returns element 2,1 from a matrix (used to test copy/nocopy)
    58  double get_elem(const Eigen::Ref<const Eigen::MatrixXd> &m) { return m(2, 1); };
    59  
    60  // Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix
    61  // reference is referencing rows/columns correctly).
    62  template <typename MatrixArgType>
    63  Eigen::MatrixXd adjust_matrix(MatrixArgType m) {
    64      Eigen::MatrixXd ret(m);
    65      for (int c = 0; c < m.cols(); c++) {
    66          for (int r = 0; r < m.rows(); r++) {
    67              ret(r, c) += 10 * r + 100 * c; // NOLINT(clang-analyzer-core.uninitialized.Assign)
    68          }
    69      }
    70      return ret;
    71  }
    72  
    73  struct CustomOperatorNew {
    74      CustomOperatorNew() = default;
    75  
    76      Eigen::Matrix4d a = Eigen::Matrix4d::Zero();
    77      Eigen::Matrix4d b = Eigen::Matrix4d::Identity();
    78  
    79      EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    80  };
    81  
    82  TEST_SUBMODULE(eigen_matrix, m) {
    83      using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>;
    84      using FixedMatrixC = Eigen::Matrix<float, 5, 6>;
    85      using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
    86      using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>;
    87      using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>;
    88      using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>;
    89      using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>;
    90      using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>;
    91      using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>;
    92      using SparseMatrixC = Eigen::SparseMatrix<float>;
    93  
    94      // various tests
    95      m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; });
    96      m.def("double_row",
    97            [](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; });
    98      m.def("double_complex",
    99            [](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; });
   100      m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; });
   101      m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; });
   102      m.def("double_mat_cm", [](const Eigen::MatrixXf &x) -> Eigen::MatrixXf { return 2.0f * x; });
   103      m.def("double_mat_rm", [](const DenseMatrixR &x) -> DenseMatrixR { return 2.0f * x; });
   104  
   105      // test_eigen_ref_to_python
   106      // Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended
   107      m.def("cholesky1",
   108            [](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
   109      m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
   110          return x.llt().matrixL();
   111      });
   112      m.def("cholesky3",
   113            [](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
   114      m.def("cholesky4", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
   115          return x.llt().matrixL();
   116      });
   117  
   118      // test_eigen_ref_mutators
   119      // Mutators: these add some value to the given element using Eigen, but Eigen should be mapping
   120      // into the numpy array data and so the result should show up there.  There are three versions:
   121      // one that works on a contiguous-row matrix (numpy's default), one for a contiguous-column
   122      // matrix, and one for any matrix.
   123      auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r, c) += v; };
   124      auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; };
   125  
   126      // Mutators (Eigen maps into numpy variables):
   127      m.def("add_rm", add_rm); // Only takes row-contiguous
   128      m.def("add_cm", add_cm); // Only takes column-contiguous
   129      // Overloaded versions that will accept either row or column contiguous:
   130      m.def("add1", add_rm);
   131      m.def("add1", add_cm);
   132      m.def("add2", add_cm);
   133      m.def("add2", add_rm);
   134      // This one accepts a matrix of any stride:
   135      m.def("add_any",
   136            [](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; });
   137  
   138      // Return mutable references (numpy maps into eigen variables)
   139      m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); });
   140      m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); });
   141      // The same references, but non-mutable (numpy maps into eigen variables, but is !writeable)
   142      m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); });
   143      m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); });
   144  
   145      m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values
   146  
   147      // Increments and returns ref to (same) matrix
   148      m.def(
   149          "incr_matrix",
   150          [](Eigen::Ref<Eigen::MatrixXd> m, double v) {
   151              m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
   152              return m;
   153          },
   154          py::return_value_policy::reference);
   155  
   156      // Same, but accepts a matrix of any strides
   157      m.def(
   158          "incr_matrix_any",
   159          [](py::EigenDRef<Eigen::MatrixXd> m, double v) {
   160              m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
   161              return m;
   162          },
   163          py::return_value_policy::reference);
   164  
   165      // Returns an eigen slice of even rows
   166      m.def(
   167          "even_rows",
   168          [](py::EigenDRef<Eigen::MatrixXd> m) {
   169              return py::EigenDMap<Eigen::MatrixXd>(
   170                  m.data(),
   171                  (m.rows() + 1) / 2,
   172                  m.cols(),
   173                  py::EigenDStride(m.outerStride(), 2 * m.innerStride()));
   174          },
   175          py::return_value_policy::reference);
   176  
   177      // Returns an eigen slice of even columns
   178      m.def(
   179          "even_cols",
   180          [](py::EigenDRef<Eigen::MatrixXd> m) {
   181              return py::EigenDMap<Eigen::MatrixXd>(
   182                  m.data(),
   183                  m.rows(),
   184                  (m.cols() + 1) / 2,
   185                  py::EigenDStride(2 * m.outerStride(), m.innerStride()));
   186          },
   187          py::return_value_policy::reference);
   188  
   189      // Returns diagonals: a vector-like object with an inner stride != 1
   190      m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); });
   191      m.def("diagonal_1",
   192            [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); });
   193      m.def("diagonal_n",
   194            [](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); });
   195  
   196      // Return a block of a matrix (gives non-standard strides)
   197      m.def("block",
   198            [m](const py::object &x_obj,
   199                int start_row,
   200                int start_col,
   201                int block_rows,
   202                int block_cols) {
   203                return m.attr("_block")(x_obj, x_obj, start_row, start_col, block_rows, block_cols);
   204            });
   205  
   206      m.def(
   207          "_block",
   208          [](const py::object &x_obj,
   209             const Eigen::Ref<const Eigen::MatrixXd> &x,
   210             int start_row,
   211             int start_col,
   212             int block_rows,
   213             int block_cols) {
   214              // See PR #4217 for background. This test is a bit over the top, but might be useful
   215              // as a concrete example to point to when explaining the dangling reference trap.
   216              auto i0 = py::make_tuple(0, 0);
   217              auto x0_orig = x_obj[*i0].cast<double>();
   218              if (x(0, 0) != x0_orig) {
   219                  throw std::runtime_error(
   220                      "Something in the type_caster for Eigen::Ref is terribly wrong.");
   221              }
   222              double x0_mod = x0_orig + 1;
   223              x_obj[*i0] = x0_mod;
   224              auto copy_detected = (x(0, 0) != x0_mod);
   225              x_obj[*i0] = x0_orig;
   226              if (copy_detected) {
   227                  throw std::runtime_error("type_caster for Eigen::Ref made a copy.");
   228              }
   229              return x.block(start_row, start_col, block_rows, block_cols);
   230          },
   231          py::keep_alive<0, 1>());
   232  
   233      // test_eigen_return_references, test_eigen_keepalive
   234      // return value referencing/copying tests:
   235      class ReturnTester {
   236          Eigen::MatrixXd mat = create();
   237  
   238      public:
   239          ReturnTester() { print_created(this); }
   240          ~ReturnTester() { print_destroyed(this); }
   241          static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); }
   242          // NOLINTNEXTLINE(readability-const-return-type)
   243          static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); }
   244          Eigen::MatrixXd &get() { return mat; }
   245          Eigen::MatrixXd *getPtr() { return &mat; }
   246          const Eigen::MatrixXd &view() { return mat; }
   247          const Eigen::MatrixXd *viewPtr() { return &mat; }
   248          Eigen::Ref<Eigen::MatrixXd> ref() { return mat; }
   249          Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; }
   250          Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) {
   251              return mat.block(r, c, nrow, ncol);
   252          }
   253          Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const {
   254              return mat.block(r, c, nrow, ncol);
   255          }
   256          py::EigenDMap<Eigen::Matrix2d> corners() {
   257              return py::EigenDMap<Eigen::Matrix2d>(
   258                  mat.data(),
   259                  py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
   260                                   mat.innerStride() * (mat.innerSize() - 1)));
   261          }
   262          py::EigenDMap<const Eigen::Matrix2d> cornersConst() const {
   263              return py::EigenDMap<const Eigen::Matrix2d>(
   264                  mat.data(),
   265                  py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
   266                                   mat.innerStride() * (mat.innerSize() - 1)));
   267          }
   268      };
   269      using rvp = py::return_value_policy;
   270      py::class_<ReturnTester>(m, "ReturnTester")
   271          .def(py::init<>())
   272          .def_static("create", &ReturnTester::create)
   273          .def_static("create_const", &ReturnTester::createConst)
   274          .def("get", &ReturnTester::get, rvp::reference_internal)
   275          .def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal)
   276          .def("view", &ReturnTester::view, rvp::reference_internal)
   277          .def("view_ptr", &ReturnTester::view, rvp::reference_internal)
   278          .def("copy_get", &ReturnTester::get)       // Default rvp: copy
   279          .def("copy_view", &ReturnTester::view)     //         "
   280          .def("ref", &ReturnTester::ref)            // Default for Ref is to reference
   281          .def("ref_const", &ReturnTester::refConst) // Likewise, but const
   282          .def("ref_safe", &ReturnTester::ref, rvp::reference_internal)
   283          .def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal)
   284          .def("copy_ref", &ReturnTester::ref, rvp::copy)
   285          .def("copy_ref_const", &ReturnTester::refConst, rvp::copy)
   286          .def("block", &ReturnTester::block)
   287          .def("block_safe", &ReturnTester::block, rvp::reference_internal)
   288          .def("block_const", &ReturnTester::blockConst, rvp::reference_internal)
   289          .def("copy_block", &ReturnTester::block, rvp::copy)
   290          .def("corners", &ReturnTester::corners, rvp::reference_internal)
   291          .def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal);
   292  
   293      // test_special_matrix_objects
   294      // Returns a DiagonalMatrix with diagonal (1,2,3,...)
   295      m.def("incr_diag", [](int k) {
   296          Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k);
   297          for (int i = 0; i < k; i++) {
   298              m.diagonal()[i] = i + 1;
   299          }
   300          return m;
   301      });
   302  
   303      // Returns a SelfAdjointView referencing the lower triangle of m
   304      m.def("symmetric_lower",
   305            [](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Lower>(); });
   306      // Returns a SelfAdjointView referencing the lower triangle of m
   307      m.def("symmetric_upper",
   308            [](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Upper>(); });
   309  
   310      // Test matrix for various functions below.
   311      Eigen::MatrixXf mat(5, 6);
   312      mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14,
   313          0, 8, 11;
   314  
   315      // test_fixed, and various other tests
   316      m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); });
   317      // Our Eigen does a hack which respects constness through the numpy writeable flag.
   318      // Therefore, the const return actually affects this type despite being an rvalue.
   319      // NOLINTNEXTLINE(readability-const-return-type)
   320      m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); });
   321      m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); });
   322      m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; });
   323      m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; });
   324      // test_mutator_descriptors
   325      m.def("fixed_mutator_r", [](const Eigen::Ref<FixedMatrixR> &) {});
   326      m.def("fixed_mutator_c", [](const Eigen::Ref<FixedMatrixC> &) {});
   327      m.def("fixed_mutator_a", [](const py::EigenDRef<FixedMatrixC> &) {});
   328      // test_dense
   329      m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); });
   330      m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); });
   331      m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; });
   332      m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; });
   333      // test_sparse, test_sparse_signature
   334      m.def("sparse_r", [mat]() -> SparseMatrixR {
   335          // NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
   336          return Eigen::SparseView<Eigen::MatrixXf>(mat);
   337      });
   338      m.def("sparse_c",
   339            [mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); });
   340      m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; });
   341      m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; });
   342      // test_partially_fixed
   343      m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; });
   344      m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; });
   345      m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; });
   346      m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; });
   347  
   348      // test_cpp_casting
   349      // Test that we can cast a numpy object to a Eigen::MatrixXd explicitly
   350      m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); });
   351      m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); });
   352      m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); });
   353      m.def("cpp_ref_any",
   354            [](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); });
   355  
   356      // [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works.
   357  
   358      // test_nocopy_wrapper
   359      // Test that we can prevent copying into an argument that would normally copy: First a version
   360      // that would allow copying (if types or strides don't match) for comparison:
   361      m.def("get_elem", &get_elem);
   362      // Now this alternative that calls the tells pybind to fail rather than copy:
   363      m.def(
   364          "get_elem_nocopy",
   365          [](const Eigen::Ref<const Eigen::MatrixXd> &m) -> double { return get_elem(m); },
   366          py::arg{}.noconvert());
   367      // Also test a row-major-only no-copy const ref:
   368      m.def(
   369          "get_elem_rm_nocopy",
   370          [](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long {
   371              return m(2, 1);
   372          },
   373          py::arg{}.noconvert());
   374  
   375      // test_issue738, test_zero_length
   376      // Issue #738: 1×N or N×1 2D matrices were neither accepted nor properly copied with an
   377      // incompatible stride value on the length-1 dimension--but that should be allowed (without
   378      // requiring a copy!) because the stride value can be safely ignored on a size-1 dimension.
   379      // Similarly, 0×N or N×0 matrices were not accepted--again, these should be allowed since
   380      // they contain no data. This particularly affects numpy ≥ 1.23, which sets the strides to
   381      // 0 if any dimension size is 0.
   382      m.def("iss738_f1",
   383            &adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>,
   384            py::arg{}.noconvert());
   385      m.def("iss738_f2",
   386            &adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>,
   387            py::arg{}.noconvert());
   388  
   389      // test_issue1105
   390      // Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense
   391      // eigen Vector or RowVector, the argument would fail to load because the numpy copy would
   392      // fail: numpy won't broadcast a Nx1 into a 1-dimensional vector.
   393      m.def("iss1105_col", [](const Eigen::VectorXd &) { return true; });
   394      m.def("iss1105_row", [](const Eigen::RowVectorXd &) { return true; });
   395  
   396      // test_named_arguments
   397      // Make sure named arguments are working properly:
   398      m.def(
   399          "matrix_multiply",
   400          [](const py::EigenDRef<const Eigen::MatrixXd> &A,
   401             const py::EigenDRef<const Eigen::MatrixXd> &B) -> Eigen::MatrixXd {
   402              if (A.cols() != B.rows()) {
   403                  throw std::domain_error("Nonconformable matrices!");
   404              }
   405              return A * B;
   406          },
   407          py::arg("A"),
   408          py::arg("B"));
   409  
   410      // test_custom_operator_new
   411      py::class_<CustomOperatorNew>(m, "CustomOperatorNew")
   412          .def(py::init<>())
   413          .def_readonly("a", &CustomOperatorNew::a)
   414          .def_readonly("b", &CustomOperatorNew::b);
   415  
   416      // test_eigen_ref_life_support
   417      // In case of a failure (the caster's temp array does not live long enough), creating
   418      // a new array (np.ones(10)) increases the chances that the temp array will be garbage
   419      // collected and/or that its memory will be overridden with different values.
   420      m.def("get_elem_direct", [](const Eigen::Ref<const Eigen::VectorXd> &v) {
   421          py::module_::import("numpy").attr("ones")(10);
   422          return v(5);
   423      });
   424      m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) {
   425          py::module_::import("numpy").attr("ones")(10);
   426          return v[0](5);
   427      });
   428  }