github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/pybind11/tests/test_eigen_matrix.cpp (about) 1 /* 2 tests/eigen.cpp -- automatic conversion of Eigen types 3 4 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> 5 6 All rights reserved. Use of this source code is governed by a 7 BSD-style license that can be found in the LICENSE file. 8 */ 9 10 #include <pybind11/eigen/matrix.h> 11 #include <pybind11/stl.h> 12 13 #include "constructor_stats.h" 14 #include "pybind11_tests.h" 15 16 PYBIND11_WARNING_DISABLE_MSVC(4996) 17 18 #include <Eigen/Cholesky> 19 20 using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; 21 22 // Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the 23 // (1-based) row/column number. 24 template <typename M> 25 void reset_ref(M &x) { 26 for (int i = 0; i < x.rows(); i++) { 27 for (int j = 0; j < x.cols(); j++) { 28 x(i, j) = 11 + 10 * i + j; 29 } 30 } 31 } 32 33 // Returns a static, column-major matrix 34 Eigen::MatrixXd &get_cm() { 35 static Eigen::MatrixXd *x; 36 if (!x) { 37 x = new Eigen::MatrixXd(3, 3); 38 reset_ref(*x); 39 } 40 return *x; 41 } 42 // Likewise, but row-major 43 MatrixXdR &get_rm() { 44 static MatrixXdR *x; 45 if (!x) { 46 x = new MatrixXdR(3, 3); 47 reset_ref(*x); 48 } 49 return *x; 50 } 51 // Resets the values of the static matrices returned by get_cm()/get_rm() 52 void reset_refs() { 53 reset_ref(get_cm()); 54 reset_ref(get_rm()); 55 } 56 57 // Returns element 2,1 from a matrix (used to test copy/nocopy) 58 double get_elem(const Eigen::Ref<const Eigen::MatrixXd> &m) { return m(2, 1); }; 59 60 // Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix 61 // reference is referencing rows/columns correctly). 62 template <typename MatrixArgType> 63 Eigen::MatrixXd adjust_matrix(MatrixArgType m) { 64 Eigen::MatrixXd ret(m); 65 for (int c = 0; c < m.cols(); c++) { 66 for (int r = 0; r < m.rows(); r++) { 67 ret(r, c) += 10 * r + 100 * c; // NOLINT(clang-analyzer-core.uninitialized.Assign) 68 } 69 } 70 return ret; 71 } 72 73 struct CustomOperatorNew { 74 CustomOperatorNew() = default; 75 76 Eigen::Matrix4d a = Eigen::Matrix4d::Zero(); 77 Eigen::Matrix4d b = Eigen::Matrix4d::Identity(); 78 79 EIGEN_MAKE_ALIGNED_OPERATOR_NEW; 80 }; 81 82 TEST_SUBMODULE(eigen_matrix, m) { 83 using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>; 84 using FixedMatrixC = Eigen::Matrix<float, 5, 6>; 85 using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; 86 using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>; 87 using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>; 88 using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>; 89 using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>; 90 using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>; 91 using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>; 92 using SparseMatrixC = Eigen::SparseMatrix<float>; 93 94 // various tests 95 m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; }); 96 m.def("double_row", 97 [](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; }); 98 m.def("double_complex", 99 [](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; }); 100 m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; }); 101 m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; }); 102 m.def("double_mat_cm", [](const Eigen::MatrixXf &x) -> Eigen::MatrixXf { return 2.0f * x; }); 103 m.def("double_mat_rm", [](const DenseMatrixR &x) -> DenseMatrixR { return 2.0f * x; }); 104 105 // test_eigen_ref_to_python 106 // Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended 107 m.def("cholesky1", 108 [](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); 109 m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd { 110 return x.llt().matrixL(); 111 }); 112 m.def("cholesky3", 113 [](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); 114 m.def("cholesky4", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd { 115 return x.llt().matrixL(); 116 }); 117 118 // test_eigen_ref_mutators 119 // Mutators: these add some value to the given element using Eigen, but Eigen should be mapping 120 // into the numpy array data and so the result should show up there. There are three versions: 121 // one that works on a contiguous-row matrix (numpy's default), one for a contiguous-column 122 // matrix, and one for any matrix. 123 auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r, c) += v; }; 124 auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; }; 125 126 // Mutators (Eigen maps into numpy variables): 127 m.def("add_rm", add_rm); // Only takes row-contiguous 128 m.def("add_cm", add_cm); // Only takes column-contiguous 129 // Overloaded versions that will accept either row or column contiguous: 130 m.def("add1", add_rm); 131 m.def("add1", add_cm); 132 m.def("add2", add_cm); 133 m.def("add2", add_rm); 134 // This one accepts a matrix of any stride: 135 m.def("add_any", 136 [](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; }); 137 138 // Return mutable references (numpy maps into eigen variables) 139 m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); }); 140 m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); }); 141 // The same references, but non-mutable (numpy maps into eigen variables, but is !writeable) 142 m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); }); 143 m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); }); 144 145 m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values 146 147 // Increments and returns ref to (same) matrix 148 m.def( 149 "incr_matrix", 150 [](Eigen::Ref<Eigen::MatrixXd> m, double v) { 151 m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v); 152 return m; 153 }, 154 py::return_value_policy::reference); 155 156 // Same, but accepts a matrix of any strides 157 m.def( 158 "incr_matrix_any", 159 [](py::EigenDRef<Eigen::MatrixXd> m, double v) { 160 m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v); 161 return m; 162 }, 163 py::return_value_policy::reference); 164 165 // Returns an eigen slice of even rows 166 m.def( 167 "even_rows", 168 [](py::EigenDRef<Eigen::MatrixXd> m) { 169 return py::EigenDMap<Eigen::MatrixXd>( 170 m.data(), 171 (m.rows() + 1) / 2, 172 m.cols(), 173 py::EigenDStride(m.outerStride(), 2 * m.innerStride())); 174 }, 175 py::return_value_policy::reference); 176 177 // Returns an eigen slice of even columns 178 m.def( 179 "even_cols", 180 [](py::EigenDRef<Eigen::MatrixXd> m) { 181 return py::EigenDMap<Eigen::MatrixXd>( 182 m.data(), 183 m.rows(), 184 (m.cols() + 1) / 2, 185 py::EigenDStride(2 * m.outerStride(), m.innerStride())); 186 }, 187 py::return_value_policy::reference); 188 189 // Returns diagonals: a vector-like object with an inner stride != 1 190 m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); }); 191 m.def("diagonal_1", 192 [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); }); 193 m.def("diagonal_n", 194 [](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); }); 195 196 // Return a block of a matrix (gives non-standard strides) 197 m.def("block", 198 [m](const py::object &x_obj, 199 int start_row, 200 int start_col, 201 int block_rows, 202 int block_cols) { 203 return m.attr("_block")(x_obj, x_obj, start_row, start_col, block_rows, block_cols); 204 }); 205 206 m.def( 207 "_block", 208 [](const py::object &x_obj, 209 const Eigen::Ref<const Eigen::MatrixXd> &x, 210 int start_row, 211 int start_col, 212 int block_rows, 213 int block_cols) { 214 // See PR #4217 for background. This test is a bit over the top, but might be useful 215 // as a concrete example to point to when explaining the dangling reference trap. 216 auto i0 = py::make_tuple(0, 0); 217 auto x0_orig = x_obj[*i0].cast<double>(); 218 if (x(0, 0) != x0_orig) { 219 throw std::runtime_error( 220 "Something in the type_caster for Eigen::Ref is terribly wrong."); 221 } 222 double x0_mod = x0_orig + 1; 223 x_obj[*i0] = x0_mod; 224 auto copy_detected = (x(0, 0) != x0_mod); 225 x_obj[*i0] = x0_orig; 226 if (copy_detected) { 227 throw std::runtime_error("type_caster for Eigen::Ref made a copy."); 228 } 229 return x.block(start_row, start_col, block_rows, block_cols); 230 }, 231 py::keep_alive<0, 1>()); 232 233 // test_eigen_return_references, test_eigen_keepalive 234 // return value referencing/copying tests: 235 class ReturnTester { 236 Eigen::MatrixXd mat = create(); 237 238 public: 239 ReturnTester() { print_created(this); } 240 ~ReturnTester() { print_destroyed(this); } 241 static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); } 242 // NOLINTNEXTLINE(readability-const-return-type) 243 static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); } 244 Eigen::MatrixXd &get() { return mat; } 245 Eigen::MatrixXd *getPtr() { return &mat; } 246 const Eigen::MatrixXd &view() { return mat; } 247 const Eigen::MatrixXd *viewPtr() { return &mat; } 248 Eigen::Ref<Eigen::MatrixXd> ref() { return mat; } 249 Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; } 250 Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) { 251 return mat.block(r, c, nrow, ncol); 252 } 253 Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const { 254 return mat.block(r, c, nrow, ncol); 255 } 256 py::EigenDMap<Eigen::Matrix2d> corners() { 257 return py::EigenDMap<Eigen::Matrix2d>( 258 mat.data(), 259 py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1), 260 mat.innerStride() * (mat.innerSize() - 1))); 261 } 262 py::EigenDMap<const Eigen::Matrix2d> cornersConst() const { 263 return py::EigenDMap<const Eigen::Matrix2d>( 264 mat.data(), 265 py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1), 266 mat.innerStride() * (mat.innerSize() - 1))); 267 } 268 }; 269 using rvp = py::return_value_policy; 270 py::class_<ReturnTester>(m, "ReturnTester") 271 .def(py::init<>()) 272 .def_static("create", &ReturnTester::create) 273 .def_static("create_const", &ReturnTester::createConst) 274 .def("get", &ReturnTester::get, rvp::reference_internal) 275 .def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal) 276 .def("view", &ReturnTester::view, rvp::reference_internal) 277 .def("view_ptr", &ReturnTester::view, rvp::reference_internal) 278 .def("copy_get", &ReturnTester::get) // Default rvp: copy 279 .def("copy_view", &ReturnTester::view) // " 280 .def("ref", &ReturnTester::ref) // Default for Ref is to reference 281 .def("ref_const", &ReturnTester::refConst) // Likewise, but const 282 .def("ref_safe", &ReturnTester::ref, rvp::reference_internal) 283 .def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal) 284 .def("copy_ref", &ReturnTester::ref, rvp::copy) 285 .def("copy_ref_const", &ReturnTester::refConst, rvp::copy) 286 .def("block", &ReturnTester::block) 287 .def("block_safe", &ReturnTester::block, rvp::reference_internal) 288 .def("block_const", &ReturnTester::blockConst, rvp::reference_internal) 289 .def("copy_block", &ReturnTester::block, rvp::copy) 290 .def("corners", &ReturnTester::corners, rvp::reference_internal) 291 .def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal); 292 293 // test_special_matrix_objects 294 // Returns a DiagonalMatrix with diagonal (1,2,3,...) 295 m.def("incr_diag", [](int k) { 296 Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k); 297 for (int i = 0; i < k; i++) { 298 m.diagonal()[i] = i + 1; 299 } 300 return m; 301 }); 302 303 // Returns a SelfAdjointView referencing the lower triangle of m 304 m.def("symmetric_lower", 305 [](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Lower>(); }); 306 // Returns a SelfAdjointView referencing the lower triangle of m 307 m.def("symmetric_upper", 308 [](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Upper>(); }); 309 310 // Test matrix for various functions below. 311 Eigen::MatrixXf mat(5, 6); 312 mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14, 313 0, 8, 11; 314 315 // test_fixed, and various other tests 316 m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); }); 317 // Our Eigen does a hack which respects constness through the numpy writeable flag. 318 // Therefore, the const return actually affects this type despite being an rvalue. 319 // NOLINTNEXTLINE(readability-const-return-type) 320 m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); }); 321 m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); }); 322 m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; }); 323 m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; }); 324 // test_mutator_descriptors 325 m.def("fixed_mutator_r", [](const Eigen::Ref<FixedMatrixR> &) {}); 326 m.def("fixed_mutator_c", [](const Eigen::Ref<FixedMatrixC> &) {}); 327 m.def("fixed_mutator_a", [](const py::EigenDRef<FixedMatrixC> &) {}); 328 // test_dense 329 m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); }); 330 m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); }); 331 m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; }); 332 m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; }); 333 // test_sparse, test_sparse_signature 334 m.def("sparse_r", [mat]() -> SparseMatrixR { 335 // NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn) 336 return Eigen::SparseView<Eigen::MatrixXf>(mat); 337 }); 338 m.def("sparse_c", 339 [mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); }); 340 m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; }); 341 m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; }); 342 // test_partially_fixed 343 m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; }); 344 m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; }); 345 m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; }); 346 m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; }); 347 348 // test_cpp_casting 349 // Test that we can cast a numpy object to a Eigen::MatrixXd explicitly 350 m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); }); 351 m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); }); 352 m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); }); 353 m.def("cpp_ref_any", 354 [](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); }); 355 356 // [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works. 357 358 // test_nocopy_wrapper 359 // Test that we can prevent copying into an argument that would normally copy: First a version 360 // that would allow copying (if types or strides don't match) for comparison: 361 m.def("get_elem", &get_elem); 362 // Now this alternative that calls the tells pybind to fail rather than copy: 363 m.def( 364 "get_elem_nocopy", 365 [](const Eigen::Ref<const Eigen::MatrixXd> &m) -> double { return get_elem(m); }, 366 py::arg{}.noconvert()); 367 // Also test a row-major-only no-copy const ref: 368 m.def( 369 "get_elem_rm_nocopy", 370 [](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long { 371 return m(2, 1); 372 }, 373 py::arg{}.noconvert()); 374 375 // test_issue738, test_zero_length 376 // Issue #738: 1×N or N×1 2D matrices were neither accepted nor properly copied with an 377 // incompatible stride value on the length-1 dimension--but that should be allowed (without 378 // requiring a copy!) because the stride value can be safely ignored on a size-1 dimension. 379 // Similarly, 0×N or N×0 matrices were not accepted--again, these should be allowed since 380 // they contain no data. This particularly affects numpy ≥ 1.23, which sets the strides to 381 // 0 if any dimension size is 0. 382 m.def("iss738_f1", 383 &adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>, 384 py::arg{}.noconvert()); 385 m.def("iss738_f2", 386 &adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>, 387 py::arg{}.noconvert()); 388 389 // test_issue1105 390 // Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense 391 // eigen Vector or RowVector, the argument would fail to load because the numpy copy would 392 // fail: numpy won't broadcast a Nx1 into a 1-dimensional vector. 393 m.def("iss1105_col", [](const Eigen::VectorXd &) { return true; }); 394 m.def("iss1105_row", [](const Eigen::RowVectorXd &) { return true; }); 395 396 // test_named_arguments 397 // Make sure named arguments are working properly: 398 m.def( 399 "matrix_multiply", 400 [](const py::EigenDRef<const Eigen::MatrixXd> &A, 401 const py::EigenDRef<const Eigen::MatrixXd> &B) -> Eigen::MatrixXd { 402 if (A.cols() != B.rows()) { 403 throw std::domain_error("Nonconformable matrices!"); 404 } 405 return A * B; 406 }, 407 py::arg("A"), 408 py::arg("B")); 409 410 // test_custom_operator_new 411 py::class_<CustomOperatorNew>(m, "CustomOperatorNew") 412 .def(py::init<>()) 413 .def_readonly("a", &CustomOperatorNew::a) 414 .def_readonly("b", &CustomOperatorNew::b); 415 416 // test_eigen_ref_life_support 417 // In case of a failure (the caster's temp array does not live long enough), creating 418 // a new array (np.ones(10)) increases the chances that the temp array will be garbage 419 // collected and/or that its memory will be overridden with different values. 420 m.def("get_elem_direct", [](const Eigen::Ref<const Eigen::VectorXd> &v) { 421 py::module_::import("numpy").attr("ones")(10); 422 return v(5); 423 }); 424 m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) { 425 py::module_::import("numpy").attr("ones")(10); 426 return v[0](5); 427 }); 428 }