github.com/kdevb0x/go@v0.0.0-20180115030120-39687051e9e7/src/cmd/go/internal/work/buildid.go (about)

     1  // Copyright 2017 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package work
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io/ioutil"
    11  	"os"
    12  	"os/exec"
    13  	"strings"
    14  
    15  	"cmd/go/internal/base"
    16  	"cmd/go/internal/cache"
    17  	"cmd/go/internal/cfg"
    18  	"cmd/go/internal/load"
    19  	"cmd/go/internal/str"
    20  	"cmd/internal/buildid"
    21  )
    22  
    23  // Build IDs
    24  //
    25  // Go packages and binaries are stamped with build IDs that record both
    26  // the action ID, which is a hash of the inputs to the action that produced
    27  // the packages or binary, and the content ID, which is a hash of the action
    28  // output, namely the archive or binary itself. The hash is the same one
    29  // used by the build artifact cache (see cmd/go/internal/cache), but
    30  // truncated when stored in packages and binaries, as the full length is not
    31  // needed and is a bit unwieldy. The precise form is
    32  //
    33  //	actionID/[.../]contentID
    34  //
    35  // where the actionID and contentID are prepared by hashToString below.
    36  // and are found by looking for the first or last slash.
    37  // Usually the buildID is simply actionID/contentID, but see below for an
    38  // exception.
    39  //
    40  // The build ID serves two primary purposes.
    41  //
    42  // 1. The action ID half allows installed packages and binaries to serve as
    43  // one-element cache entries. If we intend to build math.a with a given
    44  // set of inputs summarized in the action ID, and the installed math.a already
    45  // has that action ID, we can reuse the installed math.a instead of rebuilding it.
    46  //
    47  // 2. The content ID half allows the easy preparation of action IDs for steps
    48  // that consume a particular package or binary. The content hash of every
    49  // input file for a given action must be included in the action ID hash.
    50  // Storing the content ID in the build ID lets us read it from the file with
    51  // minimal I/O, instead of reading and hashing the entire file.
    52  // This is especially effective since packages and binaries are typically
    53  // the largest inputs to an action.
    54  //
    55  // Separating action ID from content ID is important for reproducible builds.
    56  // The compiler is compiled with itself. If an output were represented by its
    57  // own action ID (instead of content ID) when computing the action ID of
    58  // the next step in the build process, then the compiler could never have its
    59  // own input action ID as its output action ID (short of a miraculous hash collision).
    60  // Instead we use the content IDs to compute the next action ID, and because
    61  // the content IDs converge, so too do the action IDs and therefore the
    62  // build IDs and the overall compiler binary. See cmd/dist's cmdbootstrap
    63  // for the actual convergence sequence.
    64  //
    65  // The “one-element cache” purpose is a bit more complex for installed
    66  // binaries. For a binary, like cmd/gofmt, there are two steps: compile
    67  // cmd/gofmt/*.go into main.a, and then link main.a into the gofmt binary.
    68  // We do not install gofmt's main.a, only the gofmt binary. Being able to
    69  // decide that the gofmt binary is up-to-date means computing the action ID
    70  // for the final link of the gofmt binary and comparing it against the
    71  // already-installed gofmt binary. But computing the action ID for the link
    72  // means knowing the content ID of main.a, which we did not keep.
    73  // To sidestep this problem, each binary actually stores an expanded build ID:
    74  //
    75  //	actionID(binary)/actionID(main.a)/contentID(main.a)/contentID(binary)
    76  //
    77  // (Note that this can be viewed equivalently as:
    78  //
    79  //	actionID(binary)/buildID(main.a)/contentID(binary)
    80  //
    81  // Storing the buildID(main.a) in the middle lets the computations that care
    82  // about the prefix or suffix halves ignore the middle and preserves the
    83  // original build ID as a contiguous string.)
    84  //
    85  // During the build, when it's time to build main.a, the gofmt binary has the
    86  // information needed to decide whether the eventual link would produce
    87  // the same binary: if the action ID for main.a's inputs matches and then
    88  // the action ID for the link step matches when assuming the given main.a
    89  // content ID, then the binary as a whole is up-to-date and need not be rebuilt.
    90  //
    91  // This is all a bit complex and may be simplified once we can rely on the
    92  // main cache, but at least at the start we will be using the content-based
    93  // staleness determination without a cache beyond the usual installed
    94  // package and binary locations.
    95  
    96  const buildIDSeparator = "/"
    97  
    98  // actionID returns the action ID half of a build ID.
    99  func actionID(buildID string) string {
   100  	i := strings.Index(buildID, buildIDSeparator)
   101  	if i < 0 {
   102  		return buildID
   103  	}
   104  	return buildID[:i]
   105  }
   106  
   107  // contentID returns the content ID half of a build ID.
   108  func contentID(buildID string) string {
   109  	return buildID[strings.LastIndex(buildID, buildIDSeparator)+1:]
   110  }
   111  
   112  // hashToString converts the hash h to a string to be recorded
   113  // in package archives and binaries as part of the build ID.
   114  // We use the first 96 bits of the hash and encode it in base64,
   115  // resulting in a 16-byte string. Because this is only used for
   116  // detecting the need to rebuild installed files (not for lookups
   117  // in the object file cache), 96 bits are sufficient to drive the
   118  // probability of a false "do not need to rebuild" decision to effectively zero.
   119  // We embed two different hashes in archives and four in binaries,
   120  // so cutting to 16 bytes is a significant savings when build IDs are displayed.
   121  // (16*4+3 = 67 bytes compared to 64*4+3 = 259 bytes for the
   122  // more straightforward option of printing the entire h in hex).
   123  func hashToString(h [cache.HashSize]byte) string {
   124  	const b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
   125  	const chunks = 5
   126  	var dst [chunks * 4]byte
   127  	for i := 0; i < chunks; i++ {
   128  		v := uint32(h[3*i])<<16 | uint32(h[3*i+1])<<8 | uint32(h[3*i+2])
   129  		dst[4*i+0] = b64[(v>>18)&0x3F]
   130  		dst[4*i+1] = b64[(v>>12)&0x3F]
   131  		dst[4*i+2] = b64[(v>>6)&0x3F]
   132  		dst[4*i+3] = b64[v&0x3F]
   133  	}
   134  	return string(dst[:])
   135  }
   136  
   137  // toolID returns the unique ID to use for the current copy of the
   138  // named tool (asm, compile, cover, link).
   139  //
   140  // It is important that if the tool changes (for example a compiler bug is fixed
   141  // and the compiler reinstalled), toolID returns a different string, so that old
   142  // package archives look stale and are rebuilt (with the fixed compiler).
   143  // This suggests using a content hash of the tool binary, as stored in the build ID.
   144  //
   145  // Unfortunately, we can't just open the tool binary, because the tool might be
   146  // invoked via a wrapper program specified by -toolexec and we don't know
   147  // what the wrapper program does. In particular, we want "-toolexec toolstash"
   148  // to continue working: it does no good if "-toolexec toolstash" is executing a
   149  // stashed copy of the compiler but the go command is acting as if it will run
   150  // the standard copy of the compiler. The solution is to ask the tool binary to tell
   151  // us its own build ID using the "-V=full" flag now supported by all tools.
   152  // Then we know we're getting the build ID of the compiler that will actually run
   153  // during the build. (How does the compiler binary know its own content hash?
   154  // We store it there using updateBuildID after the standard link step.)
   155  //
   156  // A final twist is that we'd prefer to have reproducible builds for release toolchains.
   157  // It should be possible to cross-compile for Windows from either Linux or Mac
   158  // or Windows itself and produce the same binaries, bit for bit. If the tool ID,
   159  // which influences the action ID half of the build ID, is based on the content ID,
   160  // then the Linux compiler binary and Mac compiler binary will have different tool IDs
   161  // and therefore produce executables with different action IDs.
   162  // To avoids this problem, for releases we use the release version string instead
   163  // of the compiler binary's content hash. This assumes that all compilers built
   164  // on all different systems are semantically equivalent, which is of course only true
   165  // modulo bugs. (Producing the exact same executables also requires that the different
   166  // build setups agree on details like $GOROOT and file name paths, but at least the
   167  // tool IDs do not make it impossible.)
   168  func (b *Builder) toolID(name string) string {
   169  	b.id.Lock()
   170  	id := b.toolIDCache[name]
   171  	b.id.Unlock()
   172  
   173  	if id != "" {
   174  		return id
   175  	}
   176  
   177  	cmdline := str.StringList(cfg.BuildToolexec, base.Tool(name), "-V=full")
   178  	cmd := exec.Command(cmdline[0], cmdline[1:]...)
   179  	cmd.Env = base.EnvForDir(cmd.Dir, os.Environ())
   180  	var stdout, stderr bytes.Buffer
   181  	cmd.Stdout = &stdout
   182  	cmd.Stderr = &stderr
   183  	if err := cmd.Run(); err != nil {
   184  		base.Fatalf("go tool %s: %v\n%s%s", name, err, stdout.Bytes(), stderr.Bytes())
   185  	}
   186  
   187  	line := stdout.String()
   188  	f := strings.Fields(line)
   189  	if len(f) < 3 || f[0] != name || f[1] != "version" || f[2] == "devel" && !strings.HasPrefix(f[len(f)-1], "buildID=") {
   190  		base.Fatalf("go tool %s -V=full: unexpected output:\n\t%s", name, line)
   191  	}
   192  	if f[2] == "devel" {
   193  		// On the development branch, use the content ID part of the build ID.
   194  		id = contentID(f[len(f)-1])
   195  	} else {
   196  		// For a release, the output is like: "compile version go1.9.1". Use the whole line.
   197  		id = f[2]
   198  	}
   199  
   200  	b.id.Lock()
   201  	b.toolIDCache[name] = id
   202  	b.id.Unlock()
   203  
   204  	return id
   205  }
   206  
   207  // gccToolID returns the unique ID to use for a tool that is invoked
   208  // by the GCC driver. This is in particular gccgo, but this can also
   209  // be used for gcc, g++, gfortran, etc.; those tools all use the GCC
   210  // driver under different names. The approach used here should also
   211  // work for sufficiently new versions of clang. Unlike toolID, the
   212  // name argument is the program to run. The language argument is the
   213  // type of input file as passed to the GCC driver's -x option.
   214  //
   215  // For these tools we have no -V=full option to dump the build ID,
   216  // but we can run the tool with -v -### to reliably get the compiler proper
   217  // and hash that. That will work in the presence of -toolexec.
   218  //
   219  // In order to get reproducible builds for released compilers, we
   220  // detect a released compiler by the absence of "experimental" in the
   221  // --version output, and in that case we just use the version string.
   222  func (b *Builder) gccgoToolID(name, language string) (string, error) {
   223  	key := name + "." + language
   224  	b.id.Lock()
   225  	id := b.toolIDCache[key]
   226  	b.id.Unlock()
   227  
   228  	if id != "" {
   229  		return id, nil
   230  	}
   231  
   232  	// Invoke the driver with -### to see the subcommands and the
   233  	// version strings. Use -x to set the language. Pretend to
   234  	// compile an empty file on standard input.
   235  	cmdline := str.StringList(cfg.BuildToolexec, name, "-###", "-x", language, "-c", "-")
   236  	cmd := exec.Command(cmdline[0], cmdline[1:]...)
   237  	cmd.Env = base.EnvForDir(cmd.Dir, os.Environ())
   238  	out, err := cmd.CombinedOutput()
   239  	if err != nil {
   240  		return "", fmt.Errorf("%s: %v; output: %q", name, err, out)
   241  	}
   242  
   243  	version := ""
   244  	lines := strings.Split(string(out), "\n")
   245  	for _, line := range lines {
   246  		if fields := strings.Fields(line); len(fields) > 1 && fields[1] == "version" {
   247  			version = line
   248  			break
   249  		}
   250  	}
   251  	if version == "" {
   252  		return "", fmt.Errorf("%s: can not find version number in %q", name, out)
   253  	}
   254  
   255  	if !strings.Contains(version, "experimental") {
   256  		// This is a release. Use this line as the tool ID.
   257  		id = version
   258  	} else {
   259  		// This is a development version. The first line with
   260  		// a leading space is the compiler proper.
   261  		compiler := ""
   262  		for _, line := range lines {
   263  			if len(line) > 1 && line[0] == ' ' {
   264  				compiler = line
   265  				break
   266  			}
   267  		}
   268  		if compiler == "" {
   269  			return "", fmt.Errorf("%s: can not find compilation command in %q", name, out)
   270  		}
   271  
   272  		fields := strings.Fields(compiler)
   273  		if len(fields) == 0 {
   274  			return "", fmt.Errorf("%s: compilation command confusion %q", name, out)
   275  		}
   276  		exe := fields[0]
   277  		if !strings.ContainsAny(exe, `/\`) {
   278  			if lp, err := exec.LookPath(exe); err == nil {
   279  				exe = lp
   280  			}
   281  		}
   282  		if _, err := os.Stat(exe); err != nil {
   283  			return "", fmt.Errorf("%s: can not find compiler %q: %v; output %q", name, exe, err, out)
   284  		}
   285  		id = b.fileHash(exe)
   286  	}
   287  
   288  	b.id.Lock()
   289  	b.toolIDCache[name] = id
   290  	b.id.Unlock()
   291  
   292  	return id, nil
   293  }
   294  
   295  // gccgoBuildIDELFFile creates an assembler file that records the
   296  // action's build ID in an SHF_EXCLUDE section.
   297  func (b *Builder) gccgoBuildIDELFFile(a *Action) (string, error) {
   298  	sfile := a.Objdir + "_buildid.s"
   299  
   300  	var buf bytes.Buffer
   301  	fmt.Fprintf(&buf, "\t"+`.section .go.buildid,"e"`+"\n")
   302  	fmt.Fprintf(&buf, "\t.byte ")
   303  	for i := 0; i < len(a.buildID); i++ {
   304  		if i > 0 {
   305  			if i%8 == 0 {
   306  				fmt.Fprintf(&buf, "\n\t.byte ")
   307  			} else {
   308  				fmt.Fprintf(&buf, ",")
   309  			}
   310  		}
   311  		fmt.Fprintf(&buf, "%#02x", a.buildID[i])
   312  	}
   313  	fmt.Fprintf(&buf, "\n")
   314  	fmt.Fprintf(&buf, "\t"+`.section .note.GNU-stack,"",@progbits`+"\n")
   315  	fmt.Fprintf(&buf, "\t"+`.section .note.GNU-split-stack,"",@progbits`+"\n")
   316  
   317  	if cfg.BuildN || cfg.BuildX {
   318  		for _, line := range bytes.Split(buf.Bytes(), []byte("\n")) {
   319  			b.Showcmd("", "echo '%s' >> %s", line, sfile)
   320  		}
   321  		if cfg.BuildN {
   322  			return sfile, nil
   323  		}
   324  	}
   325  
   326  	if err := ioutil.WriteFile(sfile, buf.Bytes(), 0666); err != nil {
   327  		return "", err
   328  	}
   329  
   330  	return sfile, nil
   331  }
   332  
   333  // buildID returns the build ID found in the given file.
   334  // If no build ID is found, buildID returns the content hash of the file.
   335  func (b *Builder) buildID(file string) string {
   336  	b.id.Lock()
   337  	id := b.buildIDCache[file]
   338  	b.id.Unlock()
   339  
   340  	if id != "" {
   341  		return id
   342  	}
   343  
   344  	id, err := buildid.ReadFile(file)
   345  	if err != nil {
   346  		id = b.fileHash(file)
   347  	}
   348  
   349  	b.id.Lock()
   350  	b.buildIDCache[file] = id
   351  	b.id.Unlock()
   352  
   353  	return id
   354  }
   355  
   356  // fileHash returns the content hash of the named file.
   357  func (b *Builder) fileHash(file string) string {
   358  	sum, err := cache.FileHash(file)
   359  	if err != nil {
   360  		return ""
   361  	}
   362  	return hashToString(sum)
   363  }
   364  
   365  // useCache tries to satisfy the action a, which has action ID actionHash,
   366  // by using a cached result from an earlier build. At the moment, the only
   367  // cached result is the installed package or binary at target.
   368  // If useCache decides that the cache can be used, it sets a.buildID
   369  // and a.built for use by parent actions and then returns true.
   370  // Otherwise it sets a.buildID to a temporary build ID for use in the build
   371  // and returns false. When useCache returns false the expectation is that
   372  // the caller will build the target and then call updateBuildID to finish the
   373  // build ID computation.
   374  // When useCache returns false, it may have initiated buffering of output
   375  // during a's work. The caller should defer b.flushOutput(a), to make sure
   376  // that flushOutput is eventually called regardless of whether the action
   377  // succeeds. The flushOutput call must happen after updateBuildID.
   378  func (b *Builder) useCache(a *Action, p *load.Package, actionHash cache.ActionID, target string) bool {
   379  	// The second half of the build ID here is a placeholder for the content hash.
   380  	// It's important that the overall buildID be unlikely verging on impossible
   381  	// to appear in the output by chance, but that should be taken care of by
   382  	// the actionID half; if it also appeared in the input that would be like an
   383  	// engineered 96-bit partial SHA256 collision.
   384  	a.actionID = actionHash
   385  	actionID := hashToString(actionHash)
   386  	contentID := actionID // temporary placeholder, likely unique
   387  	a.buildID = actionID + buildIDSeparator + contentID
   388  
   389  	// Executable binaries also record the main build ID in the middle.
   390  	// See "Build IDs" comment above.
   391  	if a.Mode == "link" {
   392  		mainpkg := a.Deps[0]
   393  		a.buildID = actionID + buildIDSeparator + mainpkg.buildID + buildIDSeparator + contentID
   394  	}
   395  
   396  	// Check to see if target exists and matches the expected action ID.
   397  	// If so, it's up to date and we can reuse it instead of rebuilding it.
   398  	var buildID string
   399  	if target != "" && !cfg.BuildA {
   400  		var err error
   401  		buildID, err = buildid.ReadFile(target)
   402  		if err != nil && b.ComputeStaleOnly {
   403  			if p != nil && !p.Stale {
   404  				p.Stale = true
   405  				p.StaleReason = "target missing"
   406  			}
   407  			return true
   408  		}
   409  		if strings.HasPrefix(buildID, actionID+buildIDSeparator) {
   410  			a.buildID = buildID
   411  			a.built = target
   412  			// Poison a.Target to catch uses later in the build.
   413  			a.Target = "DO NOT USE - " + a.Mode
   414  			return true
   415  		}
   416  	}
   417  
   418  	// Special case for building a main package: if the only thing we
   419  	// want the package for is to link a binary, and the binary is
   420  	// already up-to-date, then to avoid a rebuild, report the package
   421  	// as up-to-date as well. See "Build IDs" comment above.
   422  	// TODO(rsc): Rewrite this code to use a TryCache func on the link action.
   423  	if target != "" && !cfg.BuildA && a.Mode == "build" && len(a.triggers) == 1 && a.triggers[0].Mode == "link" {
   424  		buildID, err := buildid.ReadFile(target)
   425  		if err == nil {
   426  			id := strings.Split(buildID, buildIDSeparator)
   427  			if len(id) == 4 && id[1] == actionID {
   428  				// Temporarily assume a.buildID is the package build ID
   429  				// stored in the installed binary, and see if that makes
   430  				// the upcoming link action ID a match. If so, report that
   431  				// we built the package, safe in the knowledge that the
   432  				// link step will not ask us for the actual package file.
   433  				// Note that (*Builder).LinkAction arranged that all of
   434  				// a.triggers[0]'s dependencies other than a are also
   435  				// dependencies of a, so that we can be sure that,
   436  				// other than a.buildID, b.linkActionID is only accessing
   437  				// build IDs of completed actions.
   438  				oldBuildID := a.buildID
   439  				a.buildID = id[1] + buildIDSeparator + id[2]
   440  				linkID := hashToString(b.linkActionID(a.triggers[0]))
   441  				if id[0] == linkID {
   442  					// Poison a.Target to catch uses later in the build.
   443  					a.Target = "DO NOT USE - main build pseudo-cache Target"
   444  					a.built = "DO NOT USE - main build pseudo-cache built"
   445  					return true
   446  				}
   447  				// Otherwise restore old build ID for main build.
   448  				a.buildID = oldBuildID
   449  			}
   450  		}
   451  	}
   452  
   453  	// Special case for linking a test binary: if the only thing we
   454  	// want the binary for is to run the test, and the test result is cached,
   455  	// then to avoid the link step, report the link as up-to-date.
   456  	// We avoid the nested build ID problem in the previous special case
   457  	// by recording the test results in the cache under the action ID half.
   458  	if !cfg.BuildA && len(a.triggers) == 1 && a.triggers[0].TryCache != nil && a.triggers[0].TryCache(b, a.triggers[0]) {
   459  		a.Target = "DO NOT USE -  pseudo-cache Target"
   460  		a.built = "DO NOT USE - pseudo-cache built"
   461  		return true
   462  	}
   463  
   464  	if b.ComputeStaleOnly {
   465  		// Invoked during go list only to compute and record staleness.
   466  		if p := a.Package; p != nil && !p.Stale {
   467  			p.Stale = true
   468  			if cfg.BuildA {
   469  				p.StaleReason = "build -a flag in use"
   470  			} else {
   471  				p.StaleReason = "build ID mismatch"
   472  				for _, p1 := range p.Internal.Imports {
   473  					if p1.Stale && p1.StaleReason != "" {
   474  						if strings.HasPrefix(p1.StaleReason, "stale dependency: ") {
   475  							p.StaleReason = p1.StaleReason
   476  							break
   477  						}
   478  						if strings.HasPrefix(p.StaleReason, "build ID mismatch") {
   479  							p.StaleReason = "stale dependency: " + p1.ImportPath
   480  						}
   481  					}
   482  				}
   483  			}
   484  		}
   485  		return true
   486  	}
   487  
   488  	// Check the build artifact cache.
   489  	// We treat hits in this cache as being "stale" for the purposes of go list
   490  	// (in effect, "stale" means whether p.Target is up-to-date),
   491  	// but we're still happy to use results from the build artifact cache.
   492  	if c := cache.Default(); c != nil {
   493  		if !cfg.BuildA {
   494  			entry, err := c.Get(actionHash)
   495  			if err == nil {
   496  				file := c.OutputFile(entry.OutputID)
   497  				info, err1 := os.Stat(file)
   498  				buildID, err2 := buildid.ReadFile(file)
   499  				if err1 == nil && err2 == nil && info.Size() == entry.Size {
   500  					stdout, stdoutEntry, err := c.GetBytes(cache.Subkey(a.actionID, "stdout"))
   501  					if err == nil {
   502  						if len(stdout) > 0 {
   503  							if cfg.BuildX || cfg.BuildN {
   504  								b.Showcmd("", "%s  # internal", joinUnambiguously(str.StringList("cat", c.OutputFile(stdoutEntry.OutputID))))
   505  							}
   506  							if !cfg.BuildN {
   507  								b.Print(string(stdout))
   508  							}
   509  						}
   510  						a.built = file
   511  						a.Target = "DO NOT USE - using cache"
   512  						a.buildID = buildID
   513  						return true
   514  					}
   515  				}
   516  			}
   517  		}
   518  
   519  		// Begin saving output for later writing to cache.
   520  		a.output = []byte{}
   521  	}
   522  
   523  	return false
   524  }
   525  
   526  // flushOutput flushes the output being queued in a.
   527  func (b *Builder) flushOutput(a *Action) {
   528  	b.Print(string(a.output))
   529  	a.output = nil
   530  }
   531  
   532  // updateBuildID updates the build ID in the target written by action a.
   533  // It requires that useCache was called for action a and returned false,
   534  // and that the build was then carried out and given the temporary
   535  // a.buildID to record as the build ID in the resulting package or binary.
   536  // updateBuildID computes the final content ID and updates the build IDs
   537  // in the binary.
   538  //
   539  // Keep in sync with src/cmd/buildid/buildid.go
   540  func (b *Builder) updateBuildID(a *Action, target string, rewrite bool) error {
   541  	if cfg.BuildX || cfg.BuildN {
   542  		if rewrite {
   543  			b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList(base.Tool("buildid"), "-w", target)))
   544  		}
   545  		if cfg.BuildN {
   546  			return nil
   547  		}
   548  	}
   549  
   550  	// Find occurrences of old ID and compute new content-based ID.
   551  	r, err := os.Open(target)
   552  	if err != nil {
   553  		return err
   554  	}
   555  	matches, hash, err := buildid.FindAndHash(r, a.buildID, 0)
   556  	r.Close()
   557  	if err != nil {
   558  		return err
   559  	}
   560  	newID := a.buildID[:strings.LastIndex(a.buildID, buildIDSeparator)] + buildIDSeparator + hashToString(hash)
   561  	if len(newID) != len(a.buildID) {
   562  		return fmt.Errorf("internal error: build ID length mismatch %q vs %q", a.buildID, newID)
   563  	}
   564  
   565  	// Replace with new content-based ID.
   566  	a.buildID = newID
   567  	if len(matches) == 0 {
   568  		// Assume the user specified -buildid= to override what we were going to choose.
   569  		return nil
   570  	}
   571  
   572  	if rewrite {
   573  		w, err := os.OpenFile(target, os.O_WRONLY, 0)
   574  		if err != nil {
   575  			return err
   576  		}
   577  		err = buildid.Rewrite(w, matches, newID)
   578  		if err != nil {
   579  			w.Close()
   580  			return err
   581  		}
   582  		if err := w.Close(); err != nil {
   583  			return err
   584  		}
   585  	}
   586  
   587  	// Cache package builds, but not binaries (link steps).
   588  	// The expectation is that binaries are not reused
   589  	// nearly as often as individual packages, and they're
   590  	// much larger, so the cache-footprint-to-utility ratio
   591  	// of binaries is much lower for binaries.
   592  	// Not caching the link step also makes sure that repeated "go run" at least
   593  	// always rerun the linker, so that they don't get too fast.
   594  	// (We don't want people thinking go is a scripting language.)
   595  	// Note also that if we start caching binaries, then we will
   596  	// copy the binaries out of the cache to run them, and then
   597  	// that will mean the go process is itself writing a binary
   598  	// and then executing it, so we will need to defend against
   599  	// ETXTBSY problems as discussed in exec.go and golang.org/issue/22220.
   600  	if c := cache.Default(); c != nil && a.Mode == "build" {
   601  		r, err := os.Open(target)
   602  		if err == nil {
   603  			if a.output == nil {
   604  				panic("internal error: a.output not set")
   605  			}
   606  			outputID, _, err := c.Put(a.actionID, r)
   607  			if err == nil && cfg.BuildX {
   608  				b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList("cp", target, c.OutputFile(outputID))))
   609  			}
   610  			c.PutBytes(cache.Subkey(a.actionID, "stdout"), a.output)
   611  			r.Close()
   612  		}
   613  	}
   614  
   615  	return nil
   616  }