github.com/kisexp/xdchain@v0.0.0-20211206025815-490d6b732aa7/crypto/bls12381/pairing.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package bls12381
    18  
    19  type pair struct {
    20  	g1 *PointG1
    21  	g2 *PointG2
    22  }
    23  
    24  func newPair(g1 *PointG1, g2 *PointG2) pair {
    25  	return pair{g1, g2}
    26  }
    27  
    28  // Engine is BLS12-381 elliptic curve pairing engine
    29  type Engine struct {
    30  	G1   *G1
    31  	G2   *G2
    32  	fp12 *fp12
    33  	fp2  *fp2
    34  	pairingEngineTemp
    35  	pairs []pair
    36  }
    37  
    38  // NewPairingEngine creates new pairing engine instance.
    39  func NewPairingEngine() *Engine {
    40  	fp2 := newFp2()
    41  	fp6 := newFp6(fp2)
    42  	fp12 := newFp12(fp6)
    43  	g1 := NewG1()
    44  	g2 := newG2(fp2)
    45  	return &Engine{
    46  		fp2:               fp2,
    47  		fp12:              fp12,
    48  		G1:                g1,
    49  		G2:                g2,
    50  		pairingEngineTemp: newEngineTemp(),
    51  	}
    52  }
    53  
    54  type pairingEngineTemp struct {
    55  	t2  [10]*fe2
    56  	t12 [9]fe12
    57  }
    58  
    59  func newEngineTemp() pairingEngineTemp {
    60  	t2 := [10]*fe2{}
    61  	for i := 0; i < 10; i++ {
    62  		t2[i] = &fe2{}
    63  	}
    64  	t12 := [9]fe12{}
    65  	return pairingEngineTemp{t2, t12}
    66  }
    67  
    68  // AddPair adds a g1, g2 point pair to pairing engine
    69  func (e *Engine) AddPair(g1 *PointG1, g2 *PointG2) *Engine {
    70  	p := newPair(g1, g2)
    71  	if !e.isZero(p) {
    72  		e.affine(p)
    73  		e.pairs = append(e.pairs, p)
    74  	}
    75  	return e
    76  }
    77  
    78  // AddPairInv adds a G1, G2 point pair to pairing engine. G1 point is negated.
    79  func (e *Engine) AddPairInv(g1 *PointG1, g2 *PointG2) *Engine {
    80  	e.G1.Neg(g1, g1)
    81  	e.AddPair(g1, g2)
    82  	return e
    83  }
    84  
    85  // Reset deletes added pairs.
    86  func (e *Engine) Reset() *Engine {
    87  	e.pairs = []pair{}
    88  	return e
    89  }
    90  
    91  func (e *Engine) isZero(p pair) bool {
    92  	return e.G1.IsZero(p.g1) || e.G2.IsZero(p.g2)
    93  }
    94  
    95  func (e *Engine) affine(p pair) {
    96  	e.G1.Affine(p.g1)
    97  	e.G2.Affine(p.g2)
    98  }
    99  
   100  func (e *Engine) doublingStep(coeff *[3]fe2, r *PointG2) {
   101  	// Adaptation of Formula 3 in https://eprint.iacr.org/2010/526.pdf
   102  	fp2 := e.fp2
   103  	t := e.t2
   104  	fp2.mul(t[0], &r[0], &r[1])
   105  	fp2.mulByFq(t[0], t[0], twoInv)
   106  	fp2.square(t[1], &r[1])
   107  	fp2.square(t[2], &r[2])
   108  	fp2.double(t[7], t[2])
   109  	fp2.add(t[7], t[7], t[2])
   110  	fp2.mulByB(t[3], t[7])
   111  	fp2.double(t[4], t[3])
   112  	fp2.add(t[4], t[4], t[3])
   113  	fp2.add(t[5], t[1], t[4])
   114  	fp2.mulByFq(t[5], t[5], twoInv)
   115  	fp2.add(t[6], &r[1], &r[2])
   116  	fp2.square(t[6], t[6])
   117  	fp2.add(t[7], t[2], t[1])
   118  	fp2.sub(t[6], t[6], t[7])
   119  	fp2.sub(&coeff[0], t[3], t[1])
   120  	fp2.square(t[7], &r[0])
   121  	fp2.sub(t[4], t[1], t[4])
   122  	fp2.mul(&r[0], t[4], t[0])
   123  	fp2.square(t[2], t[3])
   124  	fp2.double(t[3], t[2])
   125  	fp2.add(t[3], t[3], t[2])
   126  	fp2.square(t[5], t[5])
   127  	fp2.sub(&r[1], t[5], t[3])
   128  	fp2.mul(&r[2], t[1], t[6])
   129  	fp2.double(t[0], t[7])
   130  	fp2.add(&coeff[1], t[0], t[7])
   131  	fp2.neg(&coeff[2], t[6])
   132  }
   133  
   134  func (e *Engine) additionStep(coeff *[3]fe2, r, q *PointG2) {
   135  	// Algorithm 12 in https://eprint.iacr.org/2010/526.pdf
   136  	fp2 := e.fp2
   137  	t := e.t2
   138  	fp2.mul(t[0], &q[1], &r[2])
   139  	fp2.neg(t[0], t[0])
   140  	fp2.add(t[0], t[0], &r[1])
   141  	fp2.mul(t[1], &q[0], &r[2])
   142  	fp2.neg(t[1], t[1])
   143  	fp2.add(t[1], t[1], &r[0])
   144  	fp2.square(t[2], t[0])
   145  	fp2.square(t[3], t[1])
   146  	fp2.mul(t[4], t[1], t[3])
   147  	fp2.mul(t[2], &r[2], t[2])
   148  	fp2.mul(t[3], &r[0], t[3])
   149  	fp2.double(t[5], t[3])
   150  	fp2.sub(t[5], t[4], t[5])
   151  	fp2.add(t[5], t[5], t[2])
   152  	fp2.mul(&r[0], t[1], t[5])
   153  	fp2.sub(t[2], t[3], t[5])
   154  	fp2.mul(t[2], t[2], t[0])
   155  	fp2.mul(t[3], &r[1], t[4])
   156  	fp2.sub(&r[1], t[2], t[3])
   157  	fp2.mul(&r[2], &r[2], t[4])
   158  	fp2.mul(t[2], t[1], &q[1])
   159  	fp2.mul(t[3], t[0], &q[0])
   160  	fp2.sub(&coeff[0], t[3], t[2])
   161  	fp2.neg(&coeff[1], t[0])
   162  	coeff[2].set(t[1])
   163  }
   164  
   165  func (e *Engine) preCompute(ellCoeffs *[68][3]fe2, twistPoint *PointG2) {
   166  	// Algorithm 5 in  https://eprint.iacr.org/2019/077.pdf
   167  	if e.G2.IsZero(twistPoint) {
   168  		return
   169  	}
   170  	r := new(PointG2).Set(twistPoint)
   171  	j := 0
   172  	for i := x.BitLen() - 2; i >= 0; i-- {
   173  		e.doublingStep(&ellCoeffs[j], r)
   174  		if x.Bit(i) != 0 {
   175  			j++
   176  			ellCoeffs[j] = fe6{}
   177  			e.additionStep(&ellCoeffs[j], r, twistPoint)
   178  		}
   179  		j++
   180  	}
   181  }
   182  
   183  func (e *Engine) millerLoop(f *fe12) {
   184  	pairs := e.pairs
   185  	ellCoeffs := make([][68][3]fe2, len(pairs))
   186  	for i := 0; i < len(pairs); i++ {
   187  		e.preCompute(&ellCoeffs[i], pairs[i].g2)
   188  	}
   189  	fp12, fp2 := e.fp12, e.fp2
   190  	t := e.t2
   191  	f.one()
   192  	j := 0
   193  	for i := 62; /* x.BitLen() - 2 */ i >= 0; i-- {
   194  		if i != 62 {
   195  			fp12.square(f, f)
   196  		}
   197  		for i := 0; i <= len(pairs)-1; i++ {
   198  			fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
   199  			fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
   200  			fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
   201  		}
   202  		if x.Bit(i) != 0 {
   203  			j++
   204  			for i := 0; i <= len(pairs)-1; i++ {
   205  				fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
   206  				fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
   207  				fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
   208  			}
   209  		}
   210  		j++
   211  	}
   212  	fp12.conjugate(f, f)
   213  }
   214  
   215  func (e *Engine) exp(c, a *fe12) {
   216  	fp12 := e.fp12
   217  	fp12.cyclotomicExp(c, a, x)
   218  	fp12.conjugate(c, c)
   219  }
   220  
   221  func (e *Engine) finalExp(f *fe12) {
   222  	fp12 := e.fp12
   223  	t := e.t12
   224  	// easy part
   225  	fp12.frobeniusMap(&t[0], f, 6)
   226  	fp12.inverse(&t[1], f)
   227  	fp12.mul(&t[2], &t[0], &t[1])
   228  	t[1].set(&t[2])
   229  	fp12.frobeniusMapAssign(&t[2], 2)
   230  	fp12.mulAssign(&t[2], &t[1])
   231  	fp12.cyclotomicSquare(&t[1], &t[2])
   232  	fp12.conjugate(&t[1], &t[1])
   233  	// hard part
   234  	e.exp(&t[3], &t[2])
   235  	fp12.cyclotomicSquare(&t[4], &t[3])
   236  	fp12.mul(&t[5], &t[1], &t[3])
   237  	e.exp(&t[1], &t[5])
   238  	e.exp(&t[0], &t[1])
   239  	e.exp(&t[6], &t[0])
   240  	fp12.mulAssign(&t[6], &t[4])
   241  	e.exp(&t[4], &t[6])
   242  	fp12.conjugate(&t[5], &t[5])
   243  	fp12.mulAssign(&t[4], &t[5])
   244  	fp12.mulAssign(&t[4], &t[2])
   245  	fp12.conjugate(&t[5], &t[2])
   246  	fp12.mulAssign(&t[1], &t[2])
   247  	fp12.frobeniusMapAssign(&t[1], 3)
   248  	fp12.mulAssign(&t[6], &t[5])
   249  	fp12.frobeniusMapAssign(&t[6], 1)
   250  	fp12.mulAssign(&t[3], &t[0])
   251  	fp12.frobeniusMapAssign(&t[3], 2)
   252  	fp12.mulAssign(&t[3], &t[1])
   253  	fp12.mulAssign(&t[3], &t[6])
   254  	fp12.mul(f, &t[3], &t[4])
   255  }
   256  
   257  func (e *Engine) calculate() *fe12 {
   258  	f := e.fp12.one()
   259  	if len(e.pairs) == 0 {
   260  		return f
   261  	}
   262  	e.millerLoop(f)
   263  	e.finalExp(f)
   264  	return f
   265  }
   266  
   267  // Check computes pairing and checks if result is equal to one
   268  func (e *Engine) Check() bool {
   269  	return e.calculate().isOne()
   270  }
   271  
   272  // Result computes pairing and returns target group element as result.
   273  func (e *Engine) Result() *E {
   274  	r := e.calculate()
   275  	e.Reset()
   276  	return r
   277  }
   278  
   279  // GT returns target group instance.
   280  func (e *Engine) GT() *GT {
   281  	return NewGT()
   282  }