github.com/kisexp/xdchain@v0.0.0-20211206025815-490d6b732aa7/trie/iterator.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bytes"
    21  	"container/heap"
    22  	"errors"
    23  
    24  	"github.com/kisexp/xdchain/common"
    25  	"github.com/kisexp/xdchain/rlp"
    26  )
    27  
    28  // Iterator is a key-value trie iterator that traverses a Trie.
    29  type Iterator struct {
    30  	nodeIt NodeIterator
    31  
    32  	Key   []byte // Current data key on which the iterator is positioned on
    33  	Value []byte // Current data value on which the iterator is positioned on
    34  	Err   error
    35  }
    36  
    37  // NewIterator creates a new key-value iterator from a node iterator.
    38  // Note that the value returned by the iterator is raw. If the content is encoded
    39  // (e.g. storage value is RLP-encoded), it's caller's duty to decode it.
    40  func NewIterator(it NodeIterator) *Iterator {
    41  	return &Iterator{
    42  		nodeIt: it,
    43  	}
    44  }
    45  
    46  // Next moves the iterator forward one key-value entry.
    47  func (it *Iterator) Next() bool {
    48  	for it.nodeIt.Next(true) {
    49  		if it.nodeIt.Leaf() {
    50  			it.Key = it.nodeIt.LeafKey()
    51  			it.Value = it.nodeIt.LeafBlob()
    52  			return true
    53  		}
    54  	}
    55  	it.Key = nil
    56  	it.Value = nil
    57  	it.Err = it.nodeIt.Error()
    58  	return false
    59  }
    60  
    61  // Prove generates the Merkle proof for the leaf node the iterator is currently
    62  // positioned on.
    63  func (it *Iterator) Prove() [][]byte {
    64  	return it.nodeIt.LeafProof()
    65  }
    66  
    67  // NodeIterator is an iterator to traverse the trie pre-order.
    68  type NodeIterator interface {
    69  	// Next moves the iterator to the next node. If the parameter is false, any child
    70  	// nodes will be skipped.
    71  	Next(bool) bool
    72  
    73  	// Error returns the error status of the iterator.
    74  	Error() error
    75  
    76  	// Hash returns the hash of the current node.
    77  	Hash() common.Hash
    78  
    79  	// Parent returns the hash of the parent of the current node. The hash may be the one
    80  	// grandparent if the immediate parent is an internal node with no hash.
    81  	Parent() common.Hash
    82  
    83  	// Path returns the hex-encoded path to the current node.
    84  	// Callers must not retain references to the return value after calling Next.
    85  	// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
    86  	Path() []byte
    87  
    88  	// Leaf returns true iff the current node is a leaf node.
    89  	Leaf() bool
    90  
    91  	// LeafKey returns the key of the leaf. The method panics if the iterator is not
    92  	// positioned at a leaf. Callers must not retain references to the value after
    93  	// calling Next.
    94  	LeafKey() []byte
    95  
    96  	// LeafBlob returns the content of the leaf. The method panics if the iterator
    97  	// is not positioned at a leaf. Callers must not retain references to the value
    98  	// after calling Next.
    99  	LeafBlob() []byte
   100  
   101  	// LeafProof returns the Merkle proof of the leaf. The method panics if the
   102  	// iterator is not positioned at a leaf. Callers must not retain references
   103  	// to the value after calling Next.
   104  	LeafProof() [][]byte
   105  }
   106  
   107  // nodeIteratorState represents the iteration state at one particular node of the
   108  // trie, which can be resumed at a later invocation.
   109  type nodeIteratorState struct {
   110  	hash    common.Hash // Hash of the node being iterated (nil if not standalone)
   111  	node    node        // Trie node being iterated
   112  	parent  common.Hash // Hash of the first full ancestor node (nil if current is the root)
   113  	index   int         // Child to be processed next
   114  	pathlen int         // Length of the path to this node
   115  }
   116  
   117  type nodeIterator struct {
   118  	trie  *Trie                // Trie being iterated
   119  	stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
   120  	path  []byte               // Path to the current node
   121  	err   error                // Failure set in case of an internal error in the iterator
   122  }
   123  
   124  // errIteratorEnd is stored in nodeIterator.err when iteration is done.
   125  var errIteratorEnd = errors.New("end of iteration")
   126  
   127  // seekError is stored in nodeIterator.err if the initial seek has failed.
   128  type seekError struct {
   129  	key []byte
   130  	err error
   131  }
   132  
   133  func (e seekError) Error() string {
   134  	return "seek error: " + e.err.Error()
   135  }
   136  
   137  func newNodeIterator(trie *Trie, start []byte) NodeIterator {
   138  	if trie.Hash() == emptyState {
   139  		return new(nodeIterator)
   140  	}
   141  	it := &nodeIterator{trie: trie}
   142  	it.err = it.seek(start)
   143  	return it
   144  }
   145  
   146  func (it *nodeIterator) Hash() common.Hash {
   147  	if len(it.stack) == 0 {
   148  		return common.Hash{}
   149  	}
   150  	return it.stack[len(it.stack)-1].hash
   151  }
   152  
   153  func (it *nodeIterator) Parent() common.Hash {
   154  	if len(it.stack) == 0 {
   155  		return common.Hash{}
   156  	}
   157  	return it.stack[len(it.stack)-1].parent
   158  }
   159  
   160  func (it *nodeIterator) Leaf() bool {
   161  	return hasTerm(it.path)
   162  }
   163  
   164  func (it *nodeIterator) LeafKey() []byte {
   165  	if len(it.stack) > 0 {
   166  		if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
   167  			return hexToKeybytes(it.path)
   168  		}
   169  	}
   170  	panic("not at leaf")
   171  }
   172  
   173  func (it *nodeIterator) LeafBlob() []byte {
   174  	if len(it.stack) > 0 {
   175  		if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
   176  			return node
   177  		}
   178  	}
   179  	panic("not at leaf")
   180  }
   181  
   182  func (it *nodeIterator) LeafProof() [][]byte {
   183  	if len(it.stack) > 0 {
   184  		if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
   185  			hasher := newHasher(false)
   186  			defer returnHasherToPool(hasher)
   187  			proofs := make([][]byte, 0, len(it.stack))
   188  
   189  			for i, item := range it.stack[:len(it.stack)-1] {
   190  				// Gather nodes that end up as hash nodes (or the root)
   191  				node, hashed := hasher.proofHash(item.node)
   192  				if _, ok := hashed.(hashNode); ok || i == 0 {
   193  					enc, _ := rlp.EncodeToBytes(node)
   194  					proofs = append(proofs, enc)
   195  				}
   196  			}
   197  			return proofs
   198  		}
   199  	}
   200  	panic("not at leaf")
   201  }
   202  
   203  func (it *nodeIterator) Path() []byte {
   204  	return it.path
   205  }
   206  
   207  func (it *nodeIterator) Error() error {
   208  	if it.err == errIteratorEnd {
   209  		return nil
   210  	}
   211  	if seek, ok := it.err.(seekError); ok {
   212  		return seek.err
   213  	}
   214  	return it.err
   215  }
   216  
   217  // Next moves the iterator to the next node, returning whether there are any
   218  // further nodes. In case of an internal error this method returns false and
   219  // sets the Error field to the encountered failure. If `descend` is false,
   220  // skips iterating over any subnodes of the current node.
   221  func (it *nodeIterator) Next(descend bool) bool {
   222  	if it.err == errIteratorEnd {
   223  		return false
   224  	}
   225  	if seek, ok := it.err.(seekError); ok {
   226  		if it.err = it.seek(seek.key); it.err != nil {
   227  			return false
   228  		}
   229  	}
   230  	// Otherwise step forward with the iterator and report any errors.
   231  	state, parentIndex, path, err := it.peek(descend)
   232  	it.err = err
   233  	if it.err != nil {
   234  		return false
   235  	}
   236  	it.push(state, parentIndex, path)
   237  	return true
   238  }
   239  
   240  func (it *nodeIterator) seek(prefix []byte) error {
   241  	// The path we're looking for is the hex encoded key without terminator.
   242  	key := keybytesToHex(prefix)
   243  	key = key[:len(key)-1]
   244  	// Move forward until we're just before the closest match to key.
   245  	for {
   246  		state, parentIndex, path, err := it.peek(bytes.HasPrefix(key, it.path))
   247  		if err == errIteratorEnd {
   248  			return errIteratorEnd
   249  		} else if err != nil {
   250  			return seekError{prefix, err}
   251  		} else if bytes.Compare(path, key) >= 0 {
   252  			return nil
   253  		}
   254  		it.push(state, parentIndex, path)
   255  	}
   256  }
   257  
   258  // peek creates the next state of the iterator.
   259  func (it *nodeIterator) peek(descend bool) (*nodeIteratorState, *int, []byte, error) {
   260  	if len(it.stack) == 0 {
   261  		// Initialize the iterator if we've just started.
   262  		root := it.trie.Hash()
   263  		state := &nodeIteratorState{node: it.trie.root, index: -1}
   264  		if root != emptyRoot {
   265  			state.hash = root
   266  		}
   267  		err := state.resolve(it.trie, nil)
   268  		return state, nil, nil, err
   269  	}
   270  	if !descend {
   271  		// If we're skipping children, pop the current node first
   272  		it.pop()
   273  	}
   274  
   275  	// Continue iteration to the next child
   276  	for len(it.stack) > 0 {
   277  		parent := it.stack[len(it.stack)-1]
   278  		ancestor := parent.hash
   279  		if (ancestor == common.Hash{}) {
   280  			ancestor = parent.parent
   281  		}
   282  		state, path, ok := it.nextChild(parent, ancestor)
   283  		if ok {
   284  			if err := state.resolve(it.trie, path); err != nil {
   285  				return parent, &parent.index, path, err
   286  			}
   287  			return state, &parent.index, path, nil
   288  		}
   289  		// No more child nodes, move back up.
   290  		it.pop()
   291  	}
   292  	return nil, nil, nil, errIteratorEnd
   293  }
   294  
   295  func (st *nodeIteratorState) resolve(tr *Trie, path []byte) error {
   296  	if hash, ok := st.node.(hashNode); ok {
   297  		resolved, err := tr.resolveHash(hash, path)
   298  		if err != nil {
   299  			return err
   300  		}
   301  		st.node = resolved
   302  		st.hash = common.BytesToHash(hash)
   303  	}
   304  	return nil
   305  }
   306  
   307  func (it *nodeIterator) nextChild(parent *nodeIteratorState, ancestor common.Hash) (*nodeIteratorState, []byte, bool) {
   308  	switch node := parent.node.(type) {
   309  	case *fullNode:
   310  		// Full node, move to the first non-nil child.
   311  		for i := parent.index + 1; i < len(node.Children); i++ {
   312  			child := node.Children[i]
   313  			if child != nil {
   314  				hash, _ := child.cache()
   315  				state := &nodeIteratorState{
   316  					hash:    common.BytesToHash(hash),
   317  					node:    child,
   318  					parent:  ancestor,
   319  					index:   -1,
   320  					pathlen: len(it.path),
   321  				}
   322  				path := append(it.path, byte(i))
   323  				parent.index = i - 1
   324  				return state, path, true
   325  			}
   326  		}
   327  	case *shortNode:
   328  		// Short node, return the pointer singleton child
   329  		if parent.index < 0 {
   330  			hash, _ := node.Val.cache()
   331  			state := &nodeIteratorState{
   332  				hash:    common.BytesToHash(hash),
   333  				node:    node.Val,
   334  				parent:  ancestor,
   335  				index:   -1,
   336  				pathlen: len(it.path),
   337  			}
   338  			path := append(it.path, node.Key...)
   339  			return state, path, true
   340  		}
   341  	}
   342  	return parent, it.path, false
   343  }
   344  
   345  func (it *nodeIterator) push(state *nodeIteratorState, parentIndex *int, path []byte) {
   346  	it.path = path
   347  	it.stack = append(it.stack, state)
   348  	if parentIndex != nil {
   349  		*parentIndex++
   350  	}
   351  }
   352  
   353  func (it *nodeIterator) pop() {
   354  	parent := it.stack[len(it.stack)-1]
   355  	it.path = it.path[:parent.pathlen]
   356  	it.stack = it.stack[:len(it.stack)-1]
   357  }
   358  
   359  func compareNodes(a, b NodeIterator) int {
   360  	if cmp := bytes.Compare(a.Path(), b.Path()); cmp != 0 {
   361  		return cmp
   362  	}
   363  	if a.Leaf() && !b.Leaf() {
   364  		return -1
   365  	} else if b.Leaf() && !a.Leaf() {
   366  		return 1
   367  	}
   368  	if cmp := bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes()); cmp != 0 {
   369  		return cmp
   370  	}
   371  	if a.Leaf() && b.Leaf() {
   372  		return bytes.Compare(a.LeafBlob(), b.LeafBlob())
   373  	}
   374  	return 0
   375  }
   376  
   377  type differenceIterator struct {
   378  	a, b  NodeIterator // Nodes returned are those in b - a.
   379  	eof   bool         // Indicates a has run out of elements
   380  	count int          // Number of nodes scanned on either trie
   381  }
   382  
   383  // NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
   384  // are not in a. Returns the iterator, and a pointer to an integer recording the number
   385  // of nodes seen.
   386  func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
   387  	a.Next(true)
   388  	it := &differenceIterator{
   389  		a: a,
   390  		b: b,
   391  	}
   392  	return it, &it.count
   393  }
   394  
   395  func (it *differenceIterator) Hash() common.Hash {
   396  	return it.b.Hash()
   397  }
   398  
   399  func (it *differenceIterator) Parent() common.Hash {
   400  	return it.b.Parent()
   401  }
   402  
   403  func (it *differenceIterator) Leaf() bool {
   404  	return it.b.Leaf()
   405  }
   406  
   407  func (it *differenceIterator) LeafKey() []byte {
   408  	return it.b.LeafKey()
   409  }
   410  
   411  func (it *differenceIterator) LeafBlob() []byte {
   412  	return it.b.LeafBlob()
   413  }
   414  
   415  func (it *differenceIterator) LeafProof() [][]byte {
   416  	return it.b.LeafProof()
   417  }
   418  
   419  func (it *differenceIterator) Path() []byte {
   420  	return it.b.Path()
   421  }
   422  
   423  func (it *differenceIterator) Next(bool) bool {
   424  	// Invariants:
   425  	// - We always advance at least one element in b.
   426  	// - At the start of this function, a's path is lexically greater than b's.
   427  	if !it.b.Next(true) {
   428  		return false
   429  	}
   430  	it.count++
   431  
   432  	if it.eof {
   433  		// a has reached eof, so we just return all elements from b
   434  		return true
   435  	}
   436  
   437  	for {
   438  		switch compareNodes(it.a, it.b) {
   439  		case -1:
   440  			// b jumped past a; advance a
   441  			if !it.a.Next(true) {
   442  				it.eof = true
   443  				return true
   444  			}
   445  			it.count++
   446  		case 1:
   447  			// b is before a
   448  			return true
   449  		case 0:
   450  			// a and b are identical; skip this whole subtree if the nodes have hashes
   451  			hasHash := it.a.Hash() == common.Hash{}
   452  			if !it.b.Next(hasHash) {
   453  				return false
   454  			}
   455  			it.count++
   456  			if !it.a.Next(hasHash) {
   457  				it.eof = true
   458  				return true
   459  			}
   460  			it.count++
   461  		}
   462  	}
   463  }
   464  
   465  func (it *differenceIterator) Error() error {
   466  	if err := it.a.Error(); err != nil {
   467  		return err
   468  	}
   469  	return it.b.Error()
   470  }
   471  
   472  type nodeIteratorHeap []NodeIterator
   473  
   474  func (h nodeIteratorHeap) Len() int            { return len(h) }
   475  func (h nodeIteratorHeap) Less(i, j int) bool  { return compareNodes(h[i], h[j]) < 0 }
   476  func (h nodeIteratorHeap) Swap(i, j int)       { h[i], h[j] = h[j], h[i] }
   477  func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
   478  func (h *nodeIteratorHeap) Pop() interface{} {
   479  	n := len(*h)
   480  	x := (*h)[n-1]
   481  	*h = (*h)[0 : n-1]
   482  	return x
   483  }
   484  
   485  type unionIterator struct {
   486  	items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
   487  	count int               // Number of nodes scanned across all tries
   488  }
   489  
   490  // NewUnionIterator constructs a NodeIterator that iterates over elements in the union
   491  // of the provided NodeIterators. Returns the iterator, and a pointer to an integer
   492  // recording the number of nodes visited.
   493  func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
   494  	h := make(nodeIteratorHeap, len(iters))
   495  	copy(h, iters)
   496  	heap.Init(&h)
   497  
   498  	ui := &unionIterator{items: &h}
   499  	return ui, &ui.count
   500  }
   501  
   502  func (it *unionIterator) Hash() common.Hash {
   503  	return (*it.items)[0].Hash()
   504  }
   505  
   506  func (it *unionIterator) Parent() common.Hash {
   507  	return (*it.items)[0].Parent()
   508  }
   509  
   510  func (it *unionIterator) Leaf() bool {
   511  	return (*it.items)[0].Leaf()
   512  }
   513  
   514  func (it *unionIterator) LeafKey() []byte {
   515  	return (*it.items)[0].LeafKey()
   516  }
   517  
   518  func (it *unionIterator) LeafBlob() []byte {
   519  	return (*it.items)[0].LeafBlob()
   520  }
   521  
   522  func (it *unionIterator) LeafProof() [][]byte {
   523  	return (*it.items)[0].LeafProof()
   524  }
   525  
   526  func (it *unionIterator) Path() []byte {
   527  	return (*it.items)[0].Path()
   528  }
   529  
   530  // Next returns the next node in the union of tries being iterated over.
   531  //
   532  // It does this by maintaining a heap of iterators, sorted by the iteration
   533  // order of their next elements, with one entry for each source trie. Each
   534  // time Next() is called, it takes the least element from the heap to return,
   535  // advancing any other iterators that also point to that same element. These
   536  // iterators are called with descend=false, since we know that any nodes under
   537  // these nodes will also be duplicates, found in the currently selected iterator.
   538  // Whenever an iterator is advanced, it is pushed back into the heap if it still
   539  // has elements remaining.
   540  //
   541  // In the case that descend=false - eg, we're asked to ignore all subnodes of the
   542  // current node - we also advance any iterators in the heap that have the current
   543  // path as a prefix.
   544  func (it *unionIterator) Next(descend bool) bool {
   545  	if len(*it.items) == 0 {
   546  		return false
   547  	}
   548  
   549  	// Get the next key from the union
   550  	least := heap.Pop(it.items).(NodeIterator)
   551  
   552  	// Skip over other nodes as long as they're identical, or, if we're not descending, as
   553  	// long as they have the same prefix as the current node.
   554  	for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
   555  		skipped := heap.Pop(it.items).(NodeIterator)
   556  		// Skip the whole subtree if the nodes have hashes; otherwise just skip this node
   557  		if skipped.Next(skipped.Hash() == common.Hash{}) {
   558  			it.count++
   559  			// If there are more elements, push the iterator back on the heap
   560  			heap.Push(it.items, skipped)
   561  		}
   562  	}
   563  	if least.Next(descend) {
   564  		it.count++
   565  		heap.Push(it.items, least)
   566  	}
   567  	return len(*it.items) > 0
   568  }
   569  
   570  func (it *unionIterator) Error() error {
   571  	for i := 0; i < len(*it.items); i++ {
   572  		if err := (*it.items)[i].Error(); err != nil {
   573  			return err
   574  		}
   575  	}
   576  	return nil
   577  }