github.com/kisexp/xdchain@v0.0.0-20211206025815-490d6b732aa7/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"fmt"
    23  	"sync"
    24  
    25  	"github.com/kisexp/xdchain/common"
    26  	"github.com/kisexp/xdchain/crypto"
    27  	"github.com/kisexp/xdchain/log"
    28  	"github.com/kisexp/xdchain/rlp"
    29  )
    30  
    31  var (
    32  	// emptyRoot is the known root hash of an empty trie.
    33  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    34  
    35  	// emptyState is the known hash of an empty state trie entry.
    36  	emptyState = crypto.Keccak256Hash(nil)
    37  )
    38  
    39  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    40  // node. It's used by state sync and commit to allow handling external references
    41  // between account and storage tries.
    42  type LeafCallback func(path []byte, leaf []byte, parent common.Hash) error
    43  
    44  // Trie is a Merkle Patricia Trie.
    45  // The zero value is an empty trie with no database.
    46  // Use New to create a trie that sits on top of a database.
    47  //
    48  // Trie is not safe for concurrent use.
    49  type Trie struct {
    50  	db   *Database
    51  	root node
    52  	// Keep track of the number leafs which have been inserted since the last
    53  	// hashing operation. This number will not directly map to the number of
    54  	// actually unhashed nodes
    55  	unhashed int
    56  }
    57  
    58  // newFlag returns the cache flag value for a newly created node.
    59  func (t *Trie) newFlag() nodeFlag {
    60  	return nodeFlag{dirty: true}
    61  }
    62  
    63  // New creates a trie with an existing root node from db.
    64  //
    65  // If root is the zero hash or the sha3 hash of an empty string, the
    66  // trie is initially empty and does not require a database. Otherwise,
    67  // New will panic if db is nil and returns a MissingNodeError if root does
    68  // not exist in the database. Accessing the trie loads nodes from db on demand.
    69  func New(root common.Hash, db *Database) (*Trie, error) {
    70  	if db == nil {
    71  		panic("trie.New called without a database")
    72  	}
    73  	trie := &Trie{
    74  		db: db,
    75  	}
    76  	if root != (common.Hash{}) && root != emptyRoot {
    77  		rootnode, err := trie.resolveHash(root[:], nil)
    78  		if err != nil {
    79  			return nil, err
    80  		}
    81  		trie.root = rootnode
    82  	}
    83  	return trie, nil
    84  }
    85  
    86  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
    87  // the key after the given start key.
    88  func (t *Trie) NodeIterator(start []byte) NodeIterator {
    89  	return newNodeIterator(t, start)
    90  }
    91  
    92  // Get returns the value for key stored in the trie.
    93  // The value bytes must not be modified by the caller.
    94  func (t *Trie) Get(key []byte) []byte {
    95  	res, err := t.TryGet(key)
    96  	if err != nil {
    97  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    98  	}
    99  	return res
   100  }
   101  
   102  // TryGet returns the value for key stored in the trie.
   103  // The value bytes must not be modified by the caller.
   104  // If a node was not found in the database, a MissingNodeError is returned.
   105  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   106  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   107  	if err == nil && didResolve {
   108  		t.root = newroot
   109  	}
   110  	return value, err
   111  }
   112  
   113  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   114  	switch n := (origNode).(type) {
   115  	case nil:
   116  		return nil, nil, false, nil
   117  	case valueNode:
   118  		return n, n, false, nil
   119  	case *shortNode:
   120  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   121  			// key not found in trie
   122  			return nil, n, false, nil
   123  		}
   124  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   125  		if err == nil && didResolve {
   126  			n = n.copy()
   127  			n.Val = newnode
   128  		}
   129  		return value, n, didResolve, err
   130  	case *fullNode:
   131  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   132  		if err == nil && didResolve {
   133  			n = n.copy()
   134  			n.Children[key[pos]] = newnode
   135  		}
   136  		return value, n, didResolve, err
   137  	case hashNode:
   138  		child, err := t.resolveHash(n, key[:pos])
   139  		if err != nil {
   140  			return nil, n, true, err
   141  		}
   142  		value, newnode, _, err := t.tryGet(child, key, pos)
   143  		return value, newnode, true, err
   144  	default:
   145  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   146  	}
   147  }
   148  
   149  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   150  // possible to use keybyte-encoding as the path might contain odd nibbles.
   151  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   152  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   153  	if err != nil {
   154  		return nil, resolved, err
   155  	}
   156  	if resolved > 0 {
   157  		t.root = newroot
   158  	}
   159  	if item == nil {
   160  		return nil, resolved, nil
   161  	}
   162  	enc, err := rlp.EncodeToBytes(item)
   163  	if err != nil {
   164  		log.Error("Encoding existing trie node failed", "err", err)
   165  		return nil, resolved, err
   166  	}
   167  	return enc, resolved, err
   168  }
   169  
   170  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item node, newnode node, resolved int, err error) {
   171  	// If we reached the requested path, return the current node
   172  	if pos >= len(path) {
   173  		// Don't return collapsed hash nodes though
   174  		if _, ok := origNode.(hashNode); !ok {
   175  			// Short nodes have expanded keys, compact them before returning
   176  			item := origNode
   177  			if sn, ok := item.(*shortNode); ok {
   178  				item = &shortNode{
   179  					Key: hexToCompact(sn.Key),
   180  					Val: sn.Val,
   181  				}
   182  			}
   183  			return item, origNode, 0, nil
   184  		}
   185  	}
   186  	// Path still needs to be traversed, descend into children
   187  	switch n := (origNode).(type) {
   188  	case nil:
   189  		// Non-existent path requested, abort
   190  		return nil, nil, 0, nil
   191  
   192  	case valueNode:
   193  		// Path prematurely ended, abort
   194  		return nil, nil, 0, nil
   195  
   196  	case *shortNode:
   197  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   198  			// Path branches off from short node
   199  			return nil, n, 0, nil
   200  		}
   201  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   202  		if err == nil && resolved > 0 {
   203  			n = n.copy()
   204  			n.Val = newnode
   205  		}
   206  		return item, n, resolved, err
   207  
   208  	case *fullNode:
   209  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   210  		if err == nil && resolved > 0 {
   211  			n = n.copy()
   212  			n.Children[path[pos]] = newnode
   213  		}
   214  		return item, n, resolved, err
   215  
   216  	case hashNode:
   217  		child, err := t.resolveHash(n, path[:pos])
   218  		if err != nil {
   219  			return nil, n, 1, err
   220  		}
   221  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   222  		return item, newnode, resolved + 1, err
   223  
   224  	default:
   225  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   226  	}
   227  }
   228  
   229  // Update associates key with value in the trie. Subsequent calls to
   230  // Get will return value. If value has length zero, any existing value
   231  // is deleted from the trie and calls to Get will return nil.
   232  //
   233  // The value bytes must not be modified by the caller while they are
   234  // stored in the trie.
   235  func (t *Trie) Update(key, value []byte) {
   236  	if err := t.TryUpdate(key, value); err != nil {
   237  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   238  	}
   239  }
   240  
   241  // TryUpdate associates key with value in the trie. Subsequent calls to
   242  // Get will return value. If value has length zero, any existing value
   243  // is deleted from the trie and calls to Get will return nil.
   244  //
   245  // The value bytes must not be modified by the caller while they are
   246  // stored in the trie.
   247  //
   248  // If a node was not found in the database, a MissingNodeError is returned.
   249  func (t *Trie) TryUpdate(key, value []byte) error {
   250  	t.unhashed++
   251  	k := keybytesToHex(key)
   252  	if len(value) != 0 {
   253  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   254  		if err != nil {
   255  			return err
   256  		}
   257  		t.root = n
   258  	} else {
   259  		_, n, err := t.delete(t.root, nil, k)
   260  		if err != nil {
   261  			return err
   262  		}
   263  		t.root = n
   264  	}
   265  	return nil
   266  }
   267  
   268  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   269  	if len(key) == 0 {
   270  		if v, ok := n.(valueNode); ok {
   271  			return !bytes.Equal(v, value.(valueNode)), value, nil
   272  		}
   273  		return true, value, nil
   274  	}
   275  	switch n := n.(type) {
   276  	case *shortNode:
   277  		matchlen := prefixLen(key, n.Key)
   278  		// If the whole key matches, keep this short node as is
   279  		// and only update the value.
   280  		if matchlen == len(n.Key) {
   281  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   282  			if !dirty || err != nil {
   283  				return false, n, err
   284  			}
   285  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   286  		}
   287  		// Otherwise branch out at the index where they differ.
   288  		branch := &fullNode{flags: t.newFlag()}
   289  		var err error
   290  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   291  		if err != nil {
   292  			return false, nil, err
   293  		}
   294  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   295  		if err != nil {
   296  			return false, nil, err
   297  		}
   298  		// Replace this shortNode with the branch if it occurs at index 0.
   299  		if matchlen == 0 {
   300  			return true, branch, nil
   301  		}
   302  		// Otherwise, replace it with a short node leading up to the branch.
   303  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   304  
   305  	case *fullNode:
   306  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   307  		if !dirty || err != nil {
   308  			return false, n, err
   309  		}
   310  		n = n.copy()
   311  		n.flags = t.newFlag()
   312  		n.Children[key[0]] = nn
   313  		return true, n, nil
   314  
   315  	case nil:
   316  		return true, &shortNode{key, value, t.newFlag()}, nil
   317  
   318  	case hashNode:
   319  		// We've hit a part of the trie that isn't loaded yet. Load
   320  		// the node and insert into it. This leaves all child nodes on
   321  		// the path to the value in the trie.
   322  		rn, err := t.resolveHash(n, prefix)
   323  		if err != nil {
   324  			return false, nil, err
   325  		}
   326  		dirty, nn, err := t.insert(rn, prefix, key, value)
   327  		if !dirty || err != nil {
   328  			return false, rn, err
   329  		}
   330  		return true, nn, nil
   331  
   332  	default:
   333  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   334  	}
   335  }
   336  
   337  // Delete removes any existing value for key from the trie.
   338  func (t *Trie) Delete(key []byte) {
   339  	if err := t.TryDelete(key); err != nil {
   340  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   341  	}
   342  }
   343  
   344  // TryDelete removes any existing value for key from the trie.
   345  // If a node was not found in the database, a MissingNodeError is returned.
   346  func (t *Trie) TryDelete(key []byte) error {
   347  	t.unhashed++
   348  	k := keybytesToHex(key)
   349  	_, n, err := t.delete(t.root, nil, k)
   350  	if err != nil {
   351  		return err
   352  	}
   353  	t.root = n
   354  	return nil
   355  }
   356  
   357  // delete returns the new root of the trie with key deleted.
   358  // It reduces the trie to minimal form by simplifying
   359  // nodes on the way up after deleting recursively.
   360  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   361  	switch n := n.(type) {
   362  	case *shortNode:
   363  		matchlen := prefixLen(key, n.Key)
   364  		if matchlen < len(n.Key) {
   365  			return false, n, nil // don't replace n on mismatch
   366  		}
   367  		if matchlen == len(key) {
   368  			return true, nil, nil // remove n entirely for whole matches
   369  		}
   370  		// The key is longer than n.Key. Remove the remaining suffix
   371  		// from the subtrie. Child can never be nil here since the
   372  		// subtrie must contain at least two other values with keys
   373  		// longer than n.Key.
   374  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   375  		if !dirty || err != nil {
   376  			return false, n, err
   377  		}
   378  		switch child := child.(type) {
   379  		case *shortNode:
   380  			// Deleting from the subtrie reduced it to another
   381  			// short node. Merge the nodes to avoid creating a
   382  			// shortNode{..., shortNode{...}}. Use concat (which
   383  			// always creates a new slice) instead of append to
   384  			// avoid modifying n.Key since it might be shared with
   385  			// other nodes.
   386  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   387  		default:
   388  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   389  		}
   390  
   391  	case *fullNode:
   392  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   393  		if !dirty || err != nil {
   394  			return false, n, err
   395  		}
   396  		n = n.copy()
   397  		n.flags = t.newFlag()
   398  		n.Children[key[0]] = nn
   399  
   400  		// Check how many non-nil entries are left after deleting and
   401  		// reduce the full node to a short node if only one entry is
   402  		// left. Since n must've contained at least two children
   403  		// before deletion (otherwise it would not be a full node) n
   404  		// can never be reduced to nil.
   405  		//
   406  		// When the loop is done, pos contains the index of the single
   407  		// value that is left in n or -2 if n contains at least two
   408  		// values.
   409  		pos := -1
   410  		for i, cld := range &n.Children {
   411  			if cld != nil {
   412  				if pos == -1 {
   413  					pos = i
   414  				} else {
   415  					pos = -2
   416  					break
   417  				}
   418  			}
   419  		}
   420  		if pos >= 0 {
   421  			if pos != 16 {
   422  				// If the remaining entry is a short node, it replaces
   423  				// n and its key gets the missing nibble tacked to the
   424  				// front. This avoids creating an invalid
   425  				// shortNode{..., shortNode{...}}.  Since the entry
   426  				// might not be loaded yet, resolve it just for this
   427  				// check.
   428  				cnode, err := t.resolve(n.Children[pos], prefix)
   429  				if err != nil {
   430  					return false, nil, err
   431  				}
   432  				if cnode, ok := cnode.(*shortNode); ok {
   433  					k := append([]byte{byte(pos)}, cnode.Key...)
   434  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   435  				}
   436  			}
   437  			// Otherwise, n is replaced by a one-nibble short node
   438  			// containing the child.
   439  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   440  		}
   441  		// n still contains at least two values and cannot be reduced.
   442  		return true, n, nil
   443  
   444  	case valueNode:
   445  		return true, nil, nil
   446  
   447  	case nil:
   448  		return false, nil, nil
   449  
   450  	case hashNode:
   451  		// We've hit a part of the trie that isn't loaded yet. Load
   452  		// the node and delete from it. This leaves all child nodes on
   453  		// the path to the value in the trie.
   454  		rn, err := t.resolveHash(n, prefix)
   455  		if err != nil {
   456  			return false, nil, err
   457  		}
   458  		dirty, nn, err := t.delete(rn, prefix, key)
   459  		if !dirty || err != nil {
   460  			return false, rn, err
   461  		}
   462  		return true, nn, nil
   463  
   464  	default:
   465  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   466  	}
   467  }
   468  
   469  func concat(s1 []byte, s2 ...byte) []byte {
   470  	r := make([]byte, len(s1)+len(s2))
   471  	copy(r, s1)
   472  	copy(r[len(s1):], s2)
   473  	return r
   474  }
   475  
   476  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   477  	if n, ok := n.(hashNode); ok {
   478  		return t.resolveHash(n, prefix)
   479  	}
   480  	return n, nil
   481  }
   482  
   483  func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
   484  	hash := common.BytesToHash(n)
   485  	if node := t.db.node(hash); node != nil {
   486  		return node, nil
   487  	}
   488  	return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
   489  }
   490  
   491  // Hash returns the root hash of the trie. It does not write to the
   492  // database and can be used even if the trie doesn't have one.
   493  func (t *Trie) Hash() common.Hash {
   494  	hash, cached, _ := t.hashRoot(nil)
   495  	t.root = cached
   496  	return common.BytesToHash(hash.(hashNode))
   497  }
   498  
   499  // Commit writes all nodes to the trie's memory database, tracking the internal
   500  // and external (for account tries) references.
   501  func (t *Trie) Commit(onleaf LeafCallback) (root common.Hash, err error) {
   502  	if t.db == nil {
   503  		panic("commit called on trie with nil database")
   504  	}
   505  	if t.root == nil {
   506  		return emptyRoot, nil
   507  	}
   508  	// Derive the hash for all dirty nodes first. We hold the assumption
   509  	// in the following procedure that all nodes are hashed.
   510  	rootHash := t.Hash()
   511  	h := newCommitter()
   512  	defer returnCommitterToPool(h)
   513  
   514  	// Do a quick check if we really need to commit, before we spin
   515  	// up goroutines. This can happen e.g. if we load a trie for reading storage
   516  	// values, but don't write to it.
   517  	if _, dirty := t.root.cache(); !dirty {
   518  		return rootHash, nil
   519  	}
   520  	var wg sync.WaitGroup
   521  	if onleaf != nil {
   522  		h.onleaf = onleaf
   523  		h.leafCh = make(chan *leaf, leafChanSize)
   524  		wg.Add(1)
   525  		go func() {
   526  			defer wg.Done()
   527  			h.commitLoop(t.db)
   528  		}()
   529  	}
   530  	var newRoot hashNode
   531  	newRoot, err = h.Commit(t.root, t.db)
   532  	if onleaf != nil {
   533  		// The leafch is created in newCommitter if there was an onleaf callback
   534  		// provided. The commitLoop only _reads_ from it, and the commit
   535  		// operation was the sole writer. Therefore, it's safe to close this
   536  		// channel here.
   537  		close(h.leafCh)
   538  		wg.Wait()
   539  	}
   540  	if err != nil {
   541  		return common.Hash{}, err
   542  	}
   543  	t.root = newRoot
   544  	return rootHash, nil
   545  }
   546  
   547  // hashRoot calculates the root hash of the given trie
   548  func (t *Trie) hashRoot(db *Database) (node, node, error) {
   549  	if t.root == nil {
   550  		return hashNode(emptyRoot.Bytes()), nil, nil
   551  	}
   552  	// If the number of changes is below 100, we let one thread handle it
   553  	h := newHasher(t.unhashed >= 100)
   554  	defer returnHasherToPool(h)
   555  	hashed, cached := h.hash(t.root, true)
   556  	t.unhashed = 0
   557  	return hashed, cached, nil
   558  }
   559  
   560  // Reset drops the referenced root node and cleans all internal state.
   561  func (t *Trie) Reset() {
   562  	t.root = nil
   563  	t.unhashed = 0
   564  }