github.com/klaytn/klaytn@v1.10.2/storage/statedb/proof.go (about)

     1  // Modifications Copyright 2018 The klaytn Authors
     2  // Copyright 2015 The go-ethereum Authors
     3  // This file is part of the go-ethereum library.
     4  //
     5  // The go-ethereum library is free software: you can redistribute it and/or modify
     6  // it under the terms of the GNU Lesser General Public License as published by
     7  // the Free Software Foundation, either version 3 of the License, or
     8  // (at your option) any later version.
     9  //
    10  // The go-ethereum library is distributed in the hope that it will be useful,
    11  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  // GNU Lesser General Public License for more details.
    14  //
    15  // You should have received a copy of the GNU Lesser General Public License
    16  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    17  //
    18  // This file is derived from trie/proof.go (2018/06/04).
    19  // Modified and improved for the klaytn development.
    20  
    21  package statedb
    22  
    23  import (
    24  	"bytes"
    25  	"errors"
    26  	"fmt"
    27  
    28  	"github.com/klaytn/klaytn/common"
    29  	"github.com/klaytn/klaytn/crypto"
    30  	"github.com/klaytn/klaytn/rlp"
    31  	"github.com/klaytn/klaytn/storage/database"
    32  )
    33  
    34  type ProofDBWriter interface {
    35  	WriteMerkleProof(key, value []byte)
    36  }
    37  
    38  type ProofDBReader interface {
    39  	ReadCachedTrieNode(hash common.Hash) ([]byte, error)
    40  }
    41  
    42  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    43  // on the path to the value at key. The value itself is also included in the last
    44  // node and can be retrieved by verifying the proof.
    45  //
    46  // If the trie does not contain a value for key, the returned proof contains all
    47  // nodes of the longest existing prefix of the key (at least the root node), ending
    48  // with the node that proves the absence of the key.
    49  func (t *Trie) Prove(key []byte, fromLevel uint, proofDB ProofDBWriter) error {
    50  	// Collect all nodes on the path to key.
    51  	key = keybytesToHex(key)
    52  	nodes := []node{}
    53  	tn := t.root
    54  	for len(key) > 0 && tn != nil {
    55  		switch n := tn.(type) {
    56  		case *shortNode:
    57  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    58  				// The trie doesn't contain the key.
    59  				tn = nil
    60  			} else {
    61  				tn = n.Val
    62  				key = key[len(n.Key):]
    63  			}
    64  			nodes = append(nodes, n)
    65  		case *fullNode:
    66  			tn = n.Children[key[0]]
    67  			key = key[1:]
    68  			nodes = append(nodes, n)
    69  		case hashNode:
    70  			var err error
    71  			tn, err = t.resolveHash(n, nil)
    72  			if err != nil {
    73  				logger.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    74  				return err
    75  			}
    76  		default:
    77  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    78  		}
    79  	}
    80  	hasher := newHasher(nil)
    81  	defer returnHasherToPool(hasher)
    82  
    83  	for i, n := range nodes {
    84  		// Don't bother checking for errors here since hasher panics
    85  		// if encoding doesn't work and we're not writing to any database.
    86  		n, _ = hasher.hashChildren(n, nil)
    87  		hn, _ := hasher.store(n, nil, false)
    88  		if hash, ok := hn.(hashNode); ok || i == 0 {
    89  			// If the node's database encoding is a hash (or is the
    90  			// root node), it becomes a proof element.
    91  			if fromLevel > 0 {
    92  				fromLevel--
    93  			} else {
    94  				enc, _ := rlp.EncodeToBytes(n)
    95  				if !ok {
    96  					hash = crypto.Keccak256(enc)
    97  				}
    98  				proofDB.WriteMerkleProof(hash, enc)
    99  			}
   100  		}
   101  	}
   102  	return nil
   103  }
   104  
   105  // NOTE-Klaytn-RemoveLater Below Prove is only used in tests, not in core codes.
   106  // Prove constructs a merkle proof for key. The result contains all encoded nodes
   107  // on the path to the value at key. The value itself is also included in the last
   108  // node and can be retrieved by verifying the proof.
   109  //
   110  // If the trie does not contain a value for key, the returned proof contains all
   111  // nodes of the longest existing prefix of the key (at least the root node), ending
   112  // with the node that proves the absence of the key.
   113  func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDB database.DBManager) error {
   114  	return t.trie.Prove(key, fromLevel, proofDB)
   115  }
   116  
   117  // VerifyProof checks merkle proofs. The given proof must contain the value for
   118  // key in a trie with the given root hash. VerifyProof returns an error if the
   119  // proof contains invalid trie nodes or the wrong value.
   120  func VerifyProof(rootHash common.Hash, key []byte, proofDB database.DBManager) (value []byte, err error, nodes int) {
   121  	key = keybytesToHex(key)
   122  	wantHash := rootHash
   123  	for i := 0; ; i++ {
   124  		buf, _ := proofDB.ReadCachedTrieNode(wantHash)
   125  		if buf == nil {
   126  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash), i
   127  		}
   128  		n, err := decodeNode(wantHash[:], buf)
   129  		if err != nil {
   130  			return nil, fmt.Errorf("bad proof node %d: %v", i, err), i
   131  		}
   132  		keyrest, cld := get(n, key, true)
   133  		switch cld := cld.(type) {
   134  		case nil:
   135  			// The trie doesn't contain the key.
   136  			return nil, nil, i
   137  		case hashNode:
   138  			key = keyrest
   139  			copy(wantHash[:], cld)
   140  		case valueNode:
   141  			return cld, nil, i + 1
   142  		}
   143  	}
   144  }
   145  
   146  // proofToPath converts a merkle proof to trie node path. The main purpose of
   147  // this function is recovering a node path from the merkle proof stream. All
   148  // necessary nodes will be resolved and leave the remaining as hashnode.
   149  //
   150  // The given edge proof is allowed to be an existent or non-existent proof.
   151  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ProofDBReader, allowNonExistent bool) (node, []byte, error) {
   152  	// resolveNode retrieves and resolves trie node from merkle proof stream
   153  	resolveNode := func(hash common.Hash) (node, error) {
   154  		buf, _ := proofDb.ReadCachedTrieNode(hash)
   155  		if buf == nil {
   156  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   157  		}
   158  		n, err := decodeNode(hash[:], buf)
   159  		if err != nil {
   160  			return nil, fmt.Errorf("bad proof node %v", err)
   161  		}
   162  		return n, err
   163  	}
   164  	// If the root node is empty, resolve it first.
   165  	// Root node must be included in the proof.
   166  	if root == nil {
   167  		n, err := resolveNode(rootHash)
   168  		if err != nil {
   169  			return nil, nil, err
   170  		}
   171  		root = n
   172  	}
   173  	var (
   174  		err           error
   175  		child, parent node
   176  		keyrest       []byte
   177  		valnode       []byte
   178  	)
   179  	key, parent = keybytesToHex(key), root
   180  	for {
   181  		keyrest, child = get(parent, key, false)
   182  		switch cld := child.(type) {
   183  		case nil:
   184  			// The trie doesn't contain the key. It's possible
   185  			// the proof is a non-existing proof, but at least
   186  			// we can prove all resolved nodes are correct, it's
   187  			// enough for us to prove range.
   188  			if allowNonExistent {
   189  				return root, nil, nil
   190  			}
   191  			return nil, nil, errors.New("the node is not contained in trie")
   192  		case *shortNode:
   193  			key, parent = keyrest, child // Already resolved
   194  			continue
   195  		case *fullNode:
   196  			key, parent = keyrest, child // Already resolved
   197  			continue
   198  		case hashNode:
   199  			child, err = resolveNode(common.BytesToHash(cld))
   200  			if err != nil {
   201  				return nil, nil, err
   202  			}
   203  		case valueNode:
   204  			valnode = cld
   205  		}
   206  		// Link the parent and child.
   207  		switch pnode := parent.(type) {
   208  		case *shortNode:
   209  			pnode.Val = child
   210  		case *fullNode:
   211  			pnode.Children[key[0]] = child
   212  		default:
   213  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   214  		}
   215  		if len(valnode) > 0 {
   216  			return root, valnode, nil // The whole path is resolved
   217  		}
   218  		key, parent = keyrest, child
   219  	}
   220  }
   221  
   222  // unsetInternal removes all internal node references(hashnode, embedded node).
   223  // It should be called after a trie is constructed with two edge paths. Also
   224  // the given boundary keys must be the one used to construct the edge paths.
   225  //
   226  // It's the key step for range proof. All visited nodes should be marked dirty
   227  // since the node content might be modified. Besides it can happen that some
   228  // fullnodes only have one child which is disallowed. But if the proof is valid,
   229  // the missing children will be filled, otherwise it will be thrown anyway.
   230  //
   231  // Note we have the assumption here the given boundary keys are different
   232  // and right is larger than left.
   233  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   234  	left, right = keybytesToHex(left), keybytesToHex(right)
   235  
   236  	// Step down to the fork point. There are two scenarios can happen:
   237  	// - the fork point is a shortnode: either the key of left proof or
   238  	//   right proof doesn't match with shortnode's key.
   239  	// - the fork point is a fullnode: both two edge proofs are allowed
   240  	//   to point to a non-existent key.
   241  	var (
   242  		pos    = 0
   243  		parent node
   244  
   245  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   246  		shortForkLeft, shortForkRight int
   247  	)
   248  findFork:
   249  	for {
   250  		switch rn := (n).(type) {
   251  		case *shortNode:
   252  			rn.flags = nodeFlag{dirty: true}
   253  
   254  			// If either the key of left proof or right proof doesn't match with
   255  			// shortnode, stop here and the forkpoint is the shortnode.
   256  			if len(left)-pos < len(rn.Key) {
   257  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   258  			} else {
   259  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   260  			}
   261  			if len(right)-pos < len(rn.Key) {
   262  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   263  			} else {
   264  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   265  			}
   266  			if shortForkLeft != 0 || shortForkRight != 0 {
   267  				break findFork
   268  			}
   269  			parent = n
   270  			n, pos = rn.Val, pos+len(rn.Key)
   271  		case *fullNode:
   272  			rn.flags = nodeFlag{dirty: true}
   273  
   274  			// If either the node pointed by left proof or right proof is nil,
   275  			// stop here and the forkpoint is the fullnode.
   276  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   277  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   278  				break findFork
   279  			}
   280  			parent = n
   281  			n, pos = rn.Children[left[pos]], pos+1
   282  		default:
   283  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   284  		}
   285  	}
   286  	switch rn := n.(type) {
   287  	case *shortNode:
   288  		// There can have these five scenarios:
   289  		// - both proofs are less than the trie path => no valid range
   290  		// - both proofs are greater than the trie path => no valid range
   291  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   292  		// - left proof points to the shortnode, but right proof is greater
   293  		// - right proof points to the shortnode, but left proof is less
   294  		if shortForkLeft == -1 && shortForkRight == -1 {
   295  			return false, errors.New("empty range")
   296  		}
   297  		if shortForkLeft == 1 && shortForkRight == 1 {
   298  			return false, errors.New("empty range")
   299  		}
   300  		if shortForkLeft != 0 && shortForkRight != 0 {
   301  			// The fork point is root node, unset the entire trie
   302  			if parent == nil {
   303  				return true, nil
   304  			}
   305  			parent.(*fullNode).Children[left[pos-1]] = nil
   306  			return false, nil
   307  		}
   308  		// Only one proof points to non-existent key.
   309  		if shortForkRight != 0 {
   310  			if _, ok := rn.Val.(valueNode); ok {
   311  				// The fork point is root node, unset the entire trie
   312  				if parent == nil {
   313  					return true, nil
   314  				}
   315  				parent.(*fullNode).Children[left[pos-1]] = nil
   316  				return false, nil
   317  			}
   318  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   319  		}
   320  		if shortForkLeft != 0 {
   321  			if _, ok := rn.Val.(valueNode); ok {
   322  				// The fork point is root node, unset the entire trie
   323  				if parent == nil {
   324  					return true, nil
   325  				}
   326  				parent.(*fullNode).Children[right[pos-1]] = nil
   327  				return false, nil
   328  			}
   329  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   330  		}
   331  		return false, nil
   332  	case *fullNode:
   333  		// unset all internal nodes in the forkpoint
   334  		for i := left[pos] + 1; i < right[pos]; i++ {
   335  			rn.Children[i] = nil
   336  		}
   337  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   338  			return false, err
   339  		}
   340  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   341  			return false, err
   342  		}
   343  		return false, nil
   344  	default:
   345  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   346  	}
   347  }
   348  
   349  // unset removes all internal node references either the left most or right most.
   350  // It can meet these scenarios:
   351  //
   352  // - The given path is existent in the trie, unset the associated nodes with the
   353  //   specific direction
   354  // - The given path is non-existent in the trie
   355  //   - the fork point is a fullnode, the corresponding child pointed by path
   356  //     is nil, return
   357  //   - the fork point is a shortnode, the shortnode is included in the range,
   358  //     keep the entire branch and return.
   359  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   360  //     unset the entire branch.
   361  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   362  	switch cld := child.(type) {
   363  	case *fullNode:
   364  		if removeLeft {
   365  			for i := 0; i < int(key[pos]); i++ {
   366  				cld.Children[i] = nil
   367  			}
   368  			cld.flags = nodeFlag{dirty: true}
   369  		} else {
   370  			for i := key[pos] + 1; i < 16; i++ {
   371  				cld.Children[i] = nil
   372  			}
   373  			cld.flags = nodeFlag{dirty: true}
   374  		}
   375  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   376  	case *shortNode:
   377  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   378  			// Find the fork point, it's an non-existent branch.
   379  			if removeLeft {
   380  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   381  					// The key of fork shortnode is less than the path
   382  					// (it belongs to the range), unset the entrie
   383  					// branch. The parent must be a fullnode.
   384  					fn := parent.(*fullNode)
   385  					fn.Children[key[pos-1]] = nil
   386  				} else {
   387  					// The key of fork shortnode is greater than the
   388  					// path(it doesn't belong to the range), keep
   389  					// it with the cached hash available.
   390  				}
   391  			} else {
   392  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   393  					// The key of fork shortnode is greater than the
   394  					// path(it belongs to the range), unset the entrie
   395  					// branch. The parent must be a fullnode.
   396  					fn := parent.(*fullNode)
   397  					fn.Children[key[pos-1]] = nil
   398  				} else {
   399  					// The key of fork shortnode is less than the
   400  					// path(it doesn't belong to the range), keep
   401  					// it with the cached hash available.
   402  				}
   403  			}
   404  			return nil
   405  		}
   406  		if _, ok := cld.Val.(valueNode); ok {
   407  			fn := parent.(*fullNode)
   408  			fn.Children[key[pos-1]] = nil
   409  			return nil
   410  		}
   411  		cld.flags = nodeFlag{dirty: true}
   412  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   413  	case nil:
   414  		// If the node is nil, then it's a child of the fork point
   415  		// fullnode(it's a non-existent branch).
   416  		return nil
   417  	default:
   418  		panic("it shouldn't happen") // hashNode, valueNode
   419  	}
   420  }
   421  
   422  // hasRightElement returns the indicator whether there exists more elements
   423  // in the right side of the given path. The given path can point to an existent
   424  // key or a non-existent one. This function has the assumption that the whole
   425  // path should already be resolved.
   426  func hasRightElement(node node, key []byte) bool {
   427  	pos, key := 0, keybytesToHex(key)
   428  	for node != nil {
   429  		switch rn := node.(type) {
   430  		case *fullNode:
   431  			for i := key[pos] + 1; i < 16; i++ {
   432  				if rn.Children[i] != nil {
   433  					return true
   434  				}
   435  			}
   436  			node, pos = rn.Children[key[pos]], pos+1
   437  		case *shortNode:
   438  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   439  				return bytes.Compare(rn.Key, key[pos:]) > 0
   440  			}
   441  			node, pos = rn.Val, pos+len(rn.Key)
   442  		case valueNode:
   443  			return false // We have resolved the whole path
   444  		default:
   445  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   446  		}
   447  	}
   448  	return false
   449  }
   450  
   451  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   452  // can prove the given trie leaves range is matched with the specific root.
   453  // Besides, the range should be consecutive (no gap inside) and monotonic
   454  // increasing.
   455  //
   456  // Note the given proof actually contains two edge proofs. Both of them can
   457  // be non-existent proofs. For example the first proof is for a non-existent
   458  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   459  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   460  // batch is valid.
   461  //
   462  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   463  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   464  // are paired.
   465  //
   466  // Expect the normal case, this function can also be used to verify the following
   467  // range proofs:
   468  //
   469  // - All elements proof. In this case the proof can be nil, but the range should
   470  //   be all the leaves in the trie.
   471  //
   472  // - One element proof. In this case no matter the edge proof is a non-existent
   473  //   proof or not, we can always verify the correctness of the proof.
   474  //
   475  // - Zero element proof. In this case a single non-existent proof is enough to prove.
   476  //   Besides, if there are still some other leaves available on the right side, then
   477  //   an error will be returned.
   478  //
   479  // Except returning the error to indicate the proof is valid or not, the function will
   480  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   481  //
   482  // Note: This method does not verify that the proof is of minimal form. If the input
   483  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   484  // data, then the proof will still be accepted.
   485  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ProofDBReader) (bool, error) {
   486  	if len(keys) != len(values) {
   487  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   488  	}
   489  	// Ensure the received batch is monotonic increasing.
   490  	for i := 0; i < len(keys)-1; i++ {
   491  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   492  			return false, errors.New("range is not monotonically increasing")
   493  		}
   494  	}
   495  	// Special case, there is no edge proof at all. The given range is expected
   496  	// to be the whole leaf-set in the trie.
   497  	if proof == nil {
   498  		tr, _ := NewTrie(common.Hash{}, NewDatabase(database.NewMemoryDBManager()))
   499  		for index, key := range keys {
   500  			tr.TryUpdate(key, values[index])
   501  		}
   502  		if have, want := tr.Hash(), rootHash; have != want {
   503  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   504  		}
   505  		return false, nil // No more elements
   506  	}
   507  	// Special case, there is a provided edge proof but zero key/value
   508  	// pairs, ensure there are no more accounts / slots in the trie.
   509  	if len(keys) == 0 {
   510  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   511  		if err != nil {
   512  			return false, err
   513  		}
   514  		if val != nil || hasRightElement(root, firstKey) {
   515  			return false, errors.New("more entries available")
   516  		}
   517  		return hasRightElement(root, firstKey), nil
   518  	}
   519  	// Special case, there is only one element and two edge keys are same.
   520  	// In this case, we can't construct two edge paths. So handle it here.
   521  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   522  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   523  		if err != nil {
   524  			return false, err
   525  		}
   526  		if !bytes.Equal(firstKey, keys[0]) {
   527  			return false, errors.New("correct proof but invalid key")
   528  		}
   529  		if !bytes.Equal(val, values[0]) {
   530  			return false, errors.New("correct proof but invalid data")
   531  		}
   532  		return hasRightElement(root, firstKey), nil
   533  	}
   534  	// Ok, in all other cases, we require two edge paths available.
   535  	// First check the validity of edge keys.
   536  	if bytes.Compare(firstKey, lastKey) >= 0 {
   537  		return false, errors.New("invalid edge keys")
   538  	}
   539  	// todo(rjl493456442) different length edge keys should be supported
   540  	if len(firstKey) != len(lastKey) {
   541  		return false, errors.New("inconsistent edge keys")
   542  	}
   543  	// Convert the edge proofs to edge trie paths. Then we can
   544  	// have the same tree architecture with the original one.
   545  	// For the first edge proof, non-existent proof is allowed.
   546  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   547  	if err != nil {
   548  		return false, err
   549  	}
   550  	// Pass the root node here, the second path will be merged
   551  	// with the first one. For the last edge proof, non-existent
   552  	// proof is also allowed.
   553  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   554  	if err != nil {
   555  		return false, err
   556  	}
   557  	// Remove all internal references. All the removed parts should
   558  	// be re-filled(or re-constructed) by the given leaves range.
   559  	empty, err := unsetInternal(root, firstKey, lastKey)
   560  	if err != nil {
   561  		return false, err
   562  	}
   563  	// Rebuild the trie with the leaf stream, the shape of trie
   564  	// should be same with the original one.
   565  	tr := &Trie{root: root, db: NewDatabase(database.NewMemoryDBManager())}
   566  	if empty {
   567  		tr.root = nil
   568  	}
   569  	for index, key := range keys {
   570  		tr.TryUpdate(key, values[index])
   571  	}
   572  	if tr.Hash() != rootHash {
   573  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   574  	}
   575  	return hasRightElement(root, keys[len(keys)-1]), nil
   576  }
   577  
   578  // get returns the child of the given node. Return nil if the
   579  // node with specified key doesn't exist at all.
   580  //
   581  // There is an additional flag `skipResolved`. If it's set then
   582  // all resolved nodes won't be returned.
   583  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   584  	for {
   585  		switch n := tn.(type) {
   586  		case *shortNode:
   587  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   588  				return nil, nil
   589  			}
   590  			tn = n.Val
   591  			key = key[len(n.Key):]
   592  			if !skipResolved {
   593  				return key, tn
   594  			}
   595  		case *fullNode:
   596  			tn = n.Children[key[0]]
   597  			key = key[1:]
   598  			if !skipResolved {
   599  				return key, tn
   600  			}
   601  		case hashNode:
   602  			return key, n
   603  		case nil:
   604  			return key, nil
   605  		case valueNode:
   606  			return nil, n
   607  		default:
   608  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   609  		}
   610  	}
   611  }