github.com/klaytn/klaytn@v1.12.1/accounts/abi/type.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package abi
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"reflect"
    23  	"regexp"
    24  	"strconv"
    25  	"strings"
    26  
    27  	"github.com/klaytn/klaytn/common"
    28  )
    29  
    30  // Type enumerator
    31  const (
    32  	IntTy byte = iota
    33  	UintTy
    34  	BoolTy
    35  	StringTy
    36  	SliceTy
    37  	ArrayTy
    38  	TupleTy
    39  	AddressTy
    40  	FixedBytesTy
    41  	BytesTy
    42  	HashTy
    43  	FixedPointTy
    44  	FunctionTy
    45  )
    46  
    47  // Type is the reflection of the supported argument type
    48  type Type struct {
    49  	Elem *Type
    50  	Size int
    51  	T    byte // Our own type checking
    52  
    53  	stringKind string // holds the unparsed string for deriving signatures
    54  
    55  	// Tuple relative fields
    56  	TupleRawName  string       // Raw struct name defined in source code, may be empty.
    57  	TupleElems    []*Type      // Type information of all tuple fields
    58  	TupleRawNames []string     // Raw field name of all tuple fields
    59  	TupleType     reflect.Type // Underlying struct of the tuple
    60  }
    61  
    62  // typeRegex parses the abi sub types
    63  var typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
    64  
    65  // NewType creates a new reflection type of abi type given in t.
    66  func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) {
    67  	// check that array brackets are equal if they exist
    68  	if strings.Count(t, "[") != strings.Count(t, "]") {
    69  		return Type{}, fmt.Errorf("invalid arg type in abi")
    70  	}
    71  	typ.stringKind = t
    72  
    73  	// if there are brackets, get ready to go into slice/array mode and
    74  	// recursively create the type
    75  	if strings.Count(t, "[") != 0 {
    76  		// Note internalType can be empty here.
    77  		subInternal := internalType
    78  		if i := strings.LastIndex(internalType, "["); i != -1 {
    79  			subInternal = subInternal[:i]
    80  		}
    81  		// recursively embed the type
    82  		i := strings.LastIndex(t, "[")
    83  		embeddedType, err := NewType(t[:i], subInternal, components)
    84  		if err != nil {
    85  			return Type{}, err
    86  		}
    87  		// grab the last cell and create a type from there
    88  		sliced := t[i:]
    89  		// grab the slice size with regexp
    90  		re := regexp.MustCompile("[0-9]+")
    91  		intz := re.FindAllString(sliced, -1)
    92  
    93  		if len(intz) == 0 {
    94  			// is a slice
    95  			typ.T = SliceTy
    96  			typ.Elem = &embeddedType
    97  			typ.stringKind = embeddedType.stringKind + sliced
    98  		} else if len(intz) == 1 {
    99  			// is an array
   100  			typ.T = ArrayTy
   101  			typ.Elem = &embeddedType
   102  			typ.Size, err = strconv.Atoi(intz[0])
   103  			if err != nil {
   104  				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   105  			}
   106  			typ.stringKind = embeddedType.stringKind + sliced
   107  		} else {
   108  			return Type{}, fmt.Errorf("invalid formatting of array type")
   109  		}
   110  		return typ, err
   111  	}
   112  	// parse the type and size of the abi-type.
   113  	matches := typeRegex.FindAllStringSubmatch(t, -1)
   114  	if len(matches) == 0 {
   115  		return Type{}, fmt.Errorf("invalid type '%v'", t)
   116  	}
   117  	parsedType := matches[0]
   118  
   119  	// varSize is the size of the variable
   120  	var varSize int
   121  	if len(parsedType[3]) > 0 {
   122  		var err error
   123  		varSize, err = strconv.Atoi(parsedType[2])
   124  		if err != nil {
   125  			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   126  		}
   127  	} else {
   128  		if parsedType[0] == "uint" || parsedType[0] == "int" {
   129  			// this should fail because it means that there's something wrong with
   130  			// the abi type (the compiler should always format it to the size...always)
   131  			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   132  		}
   133  	}
   134  	// varType is the parsed abi type
   135  	switch varType := parsedType[1]; varType {
   136  	case "int":
   137  		typ.Size = varSize
   138  		typ.T = IntTy
   139  	case "uint":
   140  		typ.Size = varSize
   141  		typ.T = UintTy
   142  	case "bool":
   143  		typ.T = BoolTy
   144  	case "address":
   145  		typ.Size = 20
   146  		typ.T = AddressTy
   147  	case "string":
   148  		typ.T = StringTy
   149  	case "bytes":
   150  		if varSize == 0 {
   151  			typ.T = BytesTy
   152  		} else {
   153  			typ.T = FixedBytesTy
   154  			typ.Size = varSize
   155  		}
   156  	case "tuple":
   157  		var (
   158  			fields     []reflect.StructField
   159  			elems      []*Type
   160  			names      []string
   161  			expression string // canonical parameter expression
   162  		)
   163  		expression += "("
   164  		overloadedNames := make(map[string]string)
   165  		for idx, c := range components {
   166  			cType, err := NewType(c.Type, c.InternalType, c.Components)
   167  			if err != nil {
   168  				return Type{}, err
   169  			}
   170  			fieldName, err := overloadedArgName(c.Name, overloadedNames)
   171  			if err != nil {
   172  				return Type{}, err
   173  			}
   174  			overloadedNames[fieldName] = fieldName
   175  			fields = append(fields, reflect.StructField{
   176  				Name: fieldName, // reflect.StructOf will panic for any exported field.
   177  				Type: cType.GetType(),
   178  				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
   179  			})
   180  			elems = append(elems, &cType)
   181  			names = append(names, c.Name)
   182  			expression += cType.stringKind
   183  			if idx != len(components)-1 {
   184  				expression += ","
   185  			}
   186  		}
   187  		expression += ")"
   188  
   189  		typ.TupleType = reflect.StructOf(fields)
   190  		typ.TupleElems = elems
   191  		typ.TupleRawNames = names
   192  		typ.T = TupleTy
   193  		typ.stringKind = expression
   194  
   195  		const structPrefix = "struct "
   196  		// After solidity 0.5.10, a new field of abi "internalType"
   197  		// is introduced. From that we can obtain the struct name
   198  		// user defined in the source code.
   199  		if internalType != "" && strings.HasPrefix(internalType, structPrefix) {
   200  			// Foo.Bar type definition is not allowed in golang,
   201  			// convert the format to FooBar
   202  			typ.TupleRawName = strings.Replace(internalType[len(structPrefix):], ".", "", -1)
   203  		}
   204  
   205  	case "function":
   206  		typ.T = FunctionTy
   207  		typ.Size = 24
   208  	default:
   209  		return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   210  	}
   211  
   212  	return
   213  }
   214  
   215  // GetType returns the reflection type of the ABI type.
   216  func (t Type) GetType() reflect.Type {
   217  	switch t.T {
   218  	case IntTy:
   219  		return reflectIntType(false, t.Size)
   220  	case UintTy:
   221  		return reflectIntType(true, t.Size)
   222  	case BoolTy:
   223  		return reflect.TypeOf(false)
   224  	case StringTy:
   225  		return reflect.TypeOf("")
   226  	case SliceTy:
   227  		return reflect.SliceOf(t.Elem.GetType())
   228  	case ArrayTy:
   229  		return reflect.ArrayOf(t.Size, t.Elem.GetType())
   230  	case TupleTy:
   231  		return t.TupleType
   232  	case AddressTy:
   233  		return reflect.TypeOf(common.Address{})
   234  	case FixedBytesTy:
   235  		return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0)))
   236  	case BytesTy:
   237  		return reflect.SliceOf(reflect.TypeOf(byte(0)))
   238  	case HashTy:
   239  		// hashtype currently not used
   240  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   241  	case FixedPointTy:
   242  		// fixedpoint type currently not used
   243  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   244  	case FunctionTy:
   245  		return reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
   246  	default:
   247  		panic("Invalid type")
   248  	}
   249  }
   250  
   251  func overloadedArgName(rawName string, names map[string]string) (string, error) {
   252  	fieldName := ToCamelCase(rawName)
   253  	if fieldName == "" {
   254  		return "", errors.New("abi: purely anonymous or underscored field is not supported")
   255  	}
   256  	// Handle overloaded fieldNames
   257  	_, ok := names[fieldName]
   258  	for idx := 0; ok; idx++ {
   259  		fieldName = fmt.Sprintf("%s%d", ToCamelCase(rawName), idx)
   260  		_, ok = names[fieldName]
   261  	}
   262  	return fieldName, nil
   263  }
   264  
   265  // String implements Stringer
   266  func (t Type) String() (out string) {
   267  	return t.stringKind
   268  }
   269  
   270  func (t Type) pack(v reflect.Value) ([]byte, error) {
   271  	// dereference pointer first if it's a pointer
   272  	v = indirect(v)
   273  	if err := typeCheck(t, v); err != nil {
   274  		return nil, err
   275  	}
   276  
   277  	switch t.T {
   278  	case SliceTy, ArrayTy:
   279  		var ret []byte
   280  
   281  		if t.requiresLengthPrefix() {
   282  			// append length
   283  			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
   284  		}
   285  
   286  		// calculate offset if any
   287  		offset := 0
   288  		offsetReq := isDynamicType(*t.Elem)
   289  		if offsetReq {
   290  			offset = getTypeSize(*t.Elem) * v.Len()
   291  		}
   292  		var tail []byte
   293  		for i := 0; i < v.Len(); i++ {
   294  			val, err := t.Elem.pack(v.Index(i))
   295  			if err != nil {
   296  				return nil, err
   297  			}
   298  			if !offsetReq {
   299  				ret = append(ret, val...)
   300  				continue
   301  			}
   302  			ret = append(ret, packNum(reflect.ValueOf(offset))...)
   303  			offset += len(val)
   304  			tail = append(tail, val...)
   305  		}
   306  		return append(ret, tail...), nil
   307  	case TupleTy:
   308  		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
   309  		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
   310  		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
   311  		// type as
   312  		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
   313  		// and as
   314  		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
   315  		//     tail(X(i)) = enc(X(i))
   316  		// otherwise, i.e. if Ti is a dynamic type.
   317  		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
   318  		if err != nil {
   319  			return nil, err
   320  		}
   321  		// Calculate prefix occupied size.
   322  		offset := 0
   323  		for _, elem := range t.TupleElems {
   324  			offset += getTypeSize(*elem)
   325  		}
   326  		var ret, tail []byte
   327  		for i, elem := range t.TupleElems {
   328  			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
   329  			if !field.IsValid() {
   330  				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
   331  			}
   332  			val, err := elem.pack(field)
   333  			if err != nil {
   334  				return nil, err
   335  			}
   336  			if isDynamicType(*elem) {
   337  				ret = append(ret, packNum(reflect.ValueOf(offset))...)
   338  				tail = append(tail, val...)
   339  				offset += len(val)
   340  			} else {
   341  				ret = append(ret, val...)
   342  			}
   343  		}
   344  		return append(ret, tail...), nil
   345  
   346  	default:
   347  		return packElement(t, v), nil
   348  	}
   349  }
   350  
   351  // requireLengthPrefix returns whether the type requires any sort of length
   352  // prefixing.
   353  func (t Type) requiresLengthPrefix() bool {
   354  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
   355  }
   356  
   357  // isDynamicType returns true if the type is dynamic.
   358  // The following types are called “dynamic”:
   359  // * bytes
   360  // * string
   361  // * T[] for any T
   362  // * T[k] for any dynamic T and any k >= 0
   363  // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
   364  func isDynamicType(t Type) bool {
   365  	if t.T == TupleTy {
   366  		for _, elem := range t.TupleElems {
   367  			if isDynamicType(*elem) {
   368  				return true
   369  			}
   370  		}
   371  		return false
   372  	}
   373  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
   374  }
   375  
   376  // getTypeSize returns the size that this type needs to occupy.
   377  // We distinguish static and dynamic types. Static types are encoded in-place
   378  // and dynamic types are encoded at a separately allocated location after the
   379  // current block.
   380  // So for a static variable, the size returned represents the size that the
   381  // variable actually occupies.
   382  // For a dynamic variable, the returned size is fixed 32 bytes, which is used
   383  // to store the location reference for actual value storage.
   384  func getTypeSize(t Type) int {
   385  	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
   386  		// Recursively calculate type size if it is a nested array
   387  		if t.Elem.T == ArrayTy || t.Elem.T == TupleTy {
   388  			return t.Size * getTypeSize(*t.Elem)
   389  		}
   390  		return t.Size * 32
   391  	} else if t.T == TupleTy && !isDynamicType(t) {
   392  		total := 0
   393  		for _, elem := range t.TupleElems {
   394  			total += getTypeSize(*elem)
   395  		}
   396  		return total
   397  	}
   398  	return 32
   399  }