github.com/klaytn/klaytn@v1.12.1/crypto/secp256k1/curve.go (about)

     1  // Copyright 2018 The klaytn Authors.
     2  // Copyright 2010 The Go Authors. All rights reserved.
     3  // Copyright 2011 ThePiachu. All rights reserved.
     4  // Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
     5  //
     6  // Redistribution and use in source and binary forms, with or without
     7  // modification, are permitted provided that the following conditions are
     8  // met:
     9  //
    10  // * Redistributions of source code must retain the above copyright
    11  //   notice, this list of conditions and the following disclaimer.
    12  // * Redistributions in binary form must reproduce the above
    13  //   copyright notice, this list of conditions and the following disclaimer
    14  //   in the documentation and/or other materials provided with the
    15  //   distribution.
    16  // * Neither the name of Google Inc. nor the names of its
    17  //   contributors may be used to endorse or promote products derived from
    18  //   this software without specific prior written permission.
    19  // * The name of ThePiachu may not be used to endorse or promote products
    20  //   derived from this software without specific prior written permission.
    21  //
    22  // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    23  // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    24  // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    25  // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    26  // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    27  // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    28  // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    29  // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    30  // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    31  // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    32  // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    33  //
    34  // This file is derived from crypto/secp256k1/curve.go (2018/06/04).
    35  // Modified and improved for the klaytn development.
    36  
    37  package secp256k1
    38  
    39  import (
    40  	"crypto/elliptic"
    41  	"math/big"
    42  	"unsafe"
    43  
    44  	"github.com/klaytn/klaytn/common"
    45  )
    46  
    47  /*
    48  #include "libsecp256k1/include/secp256k1.h"
    49  extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
    50  */
    51  import "C"
    52  
    53  const (
    54  	// number of bits in a big.Word
    55  	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
    56  	// number of bytes in a big.Word
    57  	wordBytes = wordBits / 8
    58  )
    59  
    60  // readBits encodes the absolute value of bigint as big-endian bytes. Callers
    61  // must ensure that buf has enough space. If buf is too short the result will
    62  // be incomplete.
    63  func readBits(bigint *big.Int, buf []byte) {
    64  	i := len(buf)
    65  	for _, d := range bigint.Bits() {
    66  		for j := 0; j < wordBytes && i > 0; j++ {
    67  			i--
    68  			buf[i] = byte(d)
    69  			d >>= 8
    70  		}
    71  	}
    72  }
    73  
    74  // This code is from https://github.com/ThePiachu/GoBit and implements
    75  // several Koblitz elliptic curves over prime fields.
    76  //
    77  // The curve methods, internally, on Jacobian coordinates. For a given
    78  // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
    79  // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
    80  // when the whole calculation can be performed within the transform
    81  // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
    82  // it's faster to apply and reverse the transform than to operate in
    83  // affine coordinates.
    84  
    85  // A BitCurve represents a Koblitz Curve with a=0.
    86  // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
    87  type BitCurve struct {
    88  	P       *big.Int // the order of the underlying field
    89  	N       *big.Int // the order of the base point
    90  	B       *big.Int // the constant of the BitCurve equation
    91  	Gx, Gy  *big.Int // (x,y) of the base point
    92  	BitSize int      // the size of the underlying field
    93  }
    94  
    95  func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
    96  	return &elliptic.CurveParams{
    97  		P:       BitCurve.P,
    98  		N:       BitCurve.N,
    99  		B:       BitCurve.B,
   100  		Gx:      BitCurve.Gx,
   101  		Gy:      BitCurve.Gy,
   102  		BitSize: BitCurve.BitSize,
   103  	}
   104  }
   105  
   106  // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
   107  func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
   108  	// y² = x³ + b
   109  	y2 := new(big.Int).Mul(y, y) // y²
   110  	y2.Mod(y2, BitCurve.P)       // y²%P
   111  
   112  	x3 := new(big.Int).Mul(x, x) // x²
   113  	x3.Mul(x3, x)                // x³
   114  
   115  	x3.Add(x3, BitCurve.B) // x³+B
   116  	x3.Mod(x3, BitCurve.P) //(x³+B)%P
   117  
   118  	return x3.Cmp(y2) == 0
   119  }
   120  
   121  // TODO: double check if the function is okay
   122  // affineFromJacobian reverses the Jacobian transform. See the comment at the
   123  // top of the file.
   124  func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
   125  	if z.Sign() == 0 {
   126  		return new(big.Int), new(big.Int)
   127  	}
   128  
   129  	zinv := new(big.Int).ModInverse(z, BitCurve.P)
   130  	zinvsq := new(big.Int).Mul(zinv, zinv)
   131  
   132  	xOut = new(big.Int).Mul(x, zinvsq)
   133  	xOut.Mod(xOut, BitCurve.P)
   134  	zinvsq.Mul(zinvsq, zinv)
   135  	yOut = new(big.Int).Mul(y, zinvsq)
   136  	yOut.Mod(yOut, BitCurve.P)
   137  	return
   138  }
   139  
   140  // Add returns the sum of (x1,y1) and (x2,y2)
   141  func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
   142  	// If one point is at infinity, return the other point.
   143  	// Adding the point at infinity to any point will preserve the other point.
   144  	if x1.Sign() == 0 && y1.Sign() == 0 {
   145  		return x2, y2
   146  	}
   147  	if x2.Sign() == 0 && y2.Sign() == 0 {
   148  		return x1, y1
   149  	}
   150  	z := new(big.Int).SetInt64(1)
   151  	if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
   152  		return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
   153  	}
   154  	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
   155  }
   156  
   157  // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
   158  // (x2, y2, z2) and returns their sum, also in Jacobian form.
   159  func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
   160  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
   161  	z1z1 := new(big.Int).Mul(z1, z1)
   162  	z1z1.Mod(z1z1, BitCurve.P)
   163  	z2z2 := new(big.Int).Mul(z2, z2)
   164  	z2z2.Mod(z2z2, BitCurve.P)
   165  
   166  	u1 := new(big.Int).Mul(x1, z2z2)
   167  	u1.Mod(u1, BitCurve.P)
   168  	u2 := new(big.Int).Mul(x2, z1z1)
   169  	u2.Mod(u2, BitCurve.P)
   170  	h := new(big.Int).Sub(u2, u1)
   171  	if h.Sign() == -1 {
   172  		h.Add(h, BitCurve.P)
   173  	}
   174  	i := new(big.Int).Lsh(h, 1)
   175  	i.Mul(i, i)
   176  	j := new(big.Int).Mul(h, i)
   177  
   178  	s1 := new(big.Int).Mul(y1, z2)
   179  	s1.Mul(s1, z2z2)
   180  	s1.Mod(s1, BitCurve.P)
   181  	s2 := new(big.Int).Mul(y2, z1)
   182  	s2.Mul(s2, z1z1)
   183  	s2.Mod(s2, BitCurve.P)
   184  	r := new(big.Int).Sub(s2, s1)
   185  	if r.Sign() == -1 {
   186  		r.Add(r, BitCurve.P)
   187  	}
   188  	r.Lsh(r, 1)
   189  	v := new(big.Int).Mul(u1, i)
   190  
   191  	x3 := new(big.Int).Set(r)
   192  	x3.Mul(x3, x3)
   193  	x3.Sub(x3, j)
   194  	x3.Sub(x3, v)
   195  	x3.Sub(x3, v)
   196  	x3.Mod(x3, BitCurve.P)
   197  
   198  	y3 := new(big.Int).Set(r)
   199  	v.Sub(v, x3)
   200  	y3.Mul(y3, v)
   201  	s1.Mul(s1, j)
   202  	s1.Lsh(s1, 1)
   203  	y3.Sub(y3, s1)
   204  	y3.Mod(y3, BitCurve.P)
   205  
   206  	z3 := new(big.Int).Add(z1, z2)
   207  	z3.Mul(z3, z3)
   208  	z3.Sub(z3, z1z1)
   209  	if z3.Sign() == -1 {
   210  		z3.Add(z3, BitCurve.P)
   211  	}
   212  	z3.Sub(z3, z2z2)
   213  	if z3.Sign() == -1 {
   214  		z3.Add(z3, BitCurve.P)
   215  	}
   216  	z3.Mul(z3, h)
   217  	z3.Mod(z3, BitCurve.P)
   218  
   219  	return x3, y3, z3
   220  }
   221  
   222  // Double returns 2*(x,y)
   223  func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
   224  	z1 := new(big.Int).SetInt64(1)
   225  	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
   226  }
   227  
   228  // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
   229  // returns its double, also in Jacobian form.
   230  func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
   231  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   232  
   233  	a := new(big.Int).Mul(x, x) // X1²
   234  	b := new(big.Int).Mul(y, y) // Y1²
   235  	c := new(big.Int).Mul(b, b) // B²
   236  
   237  	d := new(big.Int).Add(x, b) // X1+B
   238  	d.Mul(d, d)                 //(X1+B)²
   239  	d.Sub(d, a)                 //(X1+B)²-A
   240  	d.Sub(d, c)                 //(X1+B)²-A-C
   241  	d.Mul(d, common.Big2)       // 2*((X1+B)²-A-C)
   242  
   243  	e := new(big.Int).Mul(common.Big3, a) // 3*A
   244  	f := new(big.Int).Mul(e, e)           // E²
   245  
   246  	x3 := new(big.Int).Mul(common.Big2, d) // 2*D
   247  	x3.Sub(f, x3)                          // F-2*D
   248  	x3.Mod(x3, BitCurve.P)
   249  
   250  	y3 := new(big.Int).Sub(d, x3)                  // D-X3
   251  	y3.Mul(e, y3)                                  // E*(D-X3)
   252  	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) // E*(D-X3)-8*C
   253  	y3.Mod(y3, BitCurve.P)
   254  
   255  	z3 := new(big.Int).Mul(y, z) // Y1*Z1
   256  	z3.Mul(common.Big2, z3)      // 3*Y1*Z1
   257  	z3.Mod(z3, BitCurve.P)
   258  
   259  	return x3, y3, z3
   260  }
   261  
   262  func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
   263  	// Ensure scalar is exactly 32 bytes. We pad always, even if
   264  	// scalar is 32 bytes long, to avoid a timing side channel.
   265  	if len(scalar) > 32 {
   266  		panic("can't handle scalars > 256 bits")
   267  	}
   268  	// NOTE: potential timing issue
   269  	padded := make([]byte, 32)
   270  	copy(padded[32-len(scalar):], scalar)
   271  	scalar = padded
   272  
   273  	// Do the multiplication in C, updating point.
   274  	point := make([]byte, 64)
   275  	readBits(Bx, point[:32])
   276  	readBits(By, point[32:])
   277  
   278  	pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
   279  	scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
   280  	res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
   281  
   282  	// Unpack the result and clear temporaries.
   283  	x := new(big.Int).SetBytes(point[:32])
   284  	y := new(big.Int).SetBytes(point[32:])
   285  	for i := range point {
   286  		point[i] = 0
   287  	}
   288  	for i := range padded {
   289  		scalar[i] = 0
   290  	}
   291  	if res != 1 {
   292  		return nil, nil
   293  	}
   294  	return x, y
   295  }
   296  
   297  // ScalarBaseMult returns k*G, where G is the base point of the group and k is
   298  // an integer in big-endian form.
   299  func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
   300  	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
   301  }
   302  
   303  // Marshal converts a point into the form specified in section 4.3.6 of ANSI
   304  // X9.62.
   305  func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
   306  	byteLen := (BitCurve.BitSize + 7) >> 3
   307  	ret := make([]byte, 1+2*byteLen)
   308  	ret[0] = 4 // uncompressed point flag
   309  	readBits(x, ret[1:1+byteLen])
   310  	readBits(y, ret[1+byteLen:])
   311  	return ret
   312  }
   313  
   314  // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
   315  // error, x = nil.
   316  func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
   317  	byteLen := (BitCurve.BitSize + 7) >> 3
   318  	if len(data) != 1+2*byteLen {
   319  		return
   320  	}
   321  	if data[0] != 4 { // uncompressed form
   322  		return
   323  	}
   324  	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
   325  	y = new(big.Int).SetBytes(data[1+byteLen:])
   326  	return
   327  }
   328  
   329  var theCurve = new(BitCurve)
   330  
   331  func init() {
   332  	// See SEC 2 section 2.7.1
   333  	// curve parameters taken from:
   334  	// http://www.secg.org/sec2-v2.pdf
   335  	theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
   336  	theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
   337  	theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
   338  	theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
   339  	theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
   340  	theCurve.BitSize = 256
   341  }
   342  
   343  // S256 returns a BitCurve which implements secp256k1.
   344  func S256() *BitCurve {
   345  	return theCurve
   346  }