github.com/klaytn/klaytn@v1.12.1/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_ECMULT_CONST_IMPL_ 8 #define _SECP256K1_ECMULT_CONST_IMPL_ 9 10 #include "scalar.h" 11 #include "group.h" 12 #include "ecmult_const.h" 13 #include "ecmult_impl.h" 14 15 #ifdef USE_ENDOMORPHISM 16 #define WNAF_BITS 128 17 #else 18 #define WNAF_BITS 256 19 #endif 20 #define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w)) 21 22 /* This is like `ECMULT_TABLE_GET_GE` but is constant time */ 23 #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ 24 int m; \ 25 int abs_n = (n) * (((n) > 0) * 2 - 1); \ 26 int idx_n = abs_n / 2; \ 27 secp256k1_fe neg_y; \ 28 VERIFY_CHECK(((n) & 1) == 1); \ 29 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ 30 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ 31 VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \ 32 VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \ 33 for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \ 34 /* This loop is used to avoid secret data in array indices. See 35 * the comment in ecmult_gen_impl.h for rationale. */ \ 36 secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \ 37 secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \ 38 } \ 39 (r)->infinity = 0; \ 40 secp256k1_fe_negate(&neg_y, &(r)->y, 1); \ 41 secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ 42 } while(0) 43 44 45 /** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val) 46 * with the following guarantees: 47 * - each wnaf[i] an odd integer between -(1 << w) and (1 << w) 48 * - each wnaf[i] is nonzero 49 * - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w 50 * 51 * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar 52 * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) 53 * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003 54 * 55 * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 56 */ 57 static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { 58 int global_sign; 59 int skew = 0; 60 int word = 0; 61 62 /* 1 2 3 */ 63 int u_last; 64 int u; 65 66 int flip; 67 int bit; 68 secp256k1_scalar neg_s; 69 int not_neg_one; 70 /* Note that we cannot handle even numbers by negating them to be odd, as is 71 * done in other implementations, since if our scalars were specified to have 72 * width < 256 for performance reasons, their negations would have width 256 73 * and we'd lose any performance benefit. Instead, we use a technique from 74 * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even) 75 * or 2 (for odd) to the number we are encoding, returning a skew value indicating 76 * this, and having the caller compensate after doing the multiplication. */ 77 78 /* Negative numbers will be negated to keep their bit representation below the maximum width */ 79 flip = secp256k1_scalar_is_high(&s); 80 /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ 81 bit = flip ^ !secp256k1_scalar_is_even(&s); 82 /* We check for negative one, since adding 2 to it will cause an overflow */ 83 secp256k1_scalar_negate(&neg_s, &s); 84 not_neg_one = !secp256k1_scalar_is_one(&neg_s); 85 secp256k1_scalar_cadd_bit(&s, bit, not_neg_one); 86 /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects 87 * that we added two to it and flipped it. In fact for -1 these operations are 88 * identical. We only flipped, but since skewing is required (in the sense that 89 * the skew must be 1 or 2, never zero) and flipping is not, we need to change 90 * our flags to claim that we only skewed. */ 91 global_sign = secp256k1_scalar_cond_negate(&s, flip); 92 global_sign *= not_neg_one * 2 - 1; 93 skew = 1 << bit; 94 95 /* 4 */ 96 u_last = secp256k1_scalar_shr_int(&s, w); 97 while (word * w < WNAF_BITS) { 98 int sign; 99 int even; 100 101 /* 4.1 4.4 */ 102 u = secp256k1_scalar_shr_int(&s, w); 103 /* 4.2 */ 104 even = ((u & 1) == 0); 105 sign = 2 * (u_last > 0) - 1; 106 u += sign * even; 107 u_last -= sign * even * (1 << w); 108 109 /* 4.3, adapted for global sign change */ 110 wnaf[word++] = u_last * global_sign; 111 112 u_last = u; 113 } 114 wnaf[word] = u * global_sign; 115 116 VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); 117 VERIFY_CHECK(word == WNAF_SIZE(w)); 118 return skew; 119 } 120 121 122 static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) { 123 secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; 124 secp256k1_ge tmpa; 125 secp256k1_fe Z; 126 127 int skew_1; 128 int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; 129 #ifdef USE_ENDOMORPHISM 130 secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; 131 int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)]; 132 int skew_lam; 133 secp256k1_scalar q_1, q_lam; 134 #endif 135 136 int i; 137 secp256k1_scalar sc = *scalar; 138 139 /* build wnaf representation for q. */ 140 #ifdef USE_ENDOMORPHISM 141 /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ 142 secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc); 143 skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1); 144 skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1); 145 #else 146 skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1); 147 #endif 148 149 /* Calculate odd multiples of a. 150 * All multiples are brought to the same Z 'denominator', which is stored 151 * in Z. Due to secp256k1' isomorphism we can do all operations pretending 152 * that the Z coordinate was 1, use affine addition formulae, and correct 153 * the Z coordinate of the result once at the end. 154 */ 155 secp256k1_gej_set_ge(r, a); 156 secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r); 157 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { 158 secp256k1_fe_normalize_weak(&pre_a[i].y); 159 } 160 #ifdef USE_ENDOMORPHISM 161 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { 162 secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); 163 } 164 #endif 165 166 /* first loop iteration (separated out so we can directly set r, rather 167 * than having it start at infinity, get doubled several times, then have 168 * its new value added to it) */ 169 i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)]; 170 VERIFY_CHECK(i != 0); 171 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); 172 secp256k1_gej_set_ge(r, &tmpa); 173 #ifdef USE_ENDOMORPHISM 174 i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)]; 175 VERIFY_CHECK(i != 0); 176 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); 177 secp256k1_gej_add_ge(r, r, &tmpa); 178 #endif 179 /* remaining loop iterations */ 180 for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) { 181 int n; 182 int j; 183 for (j = 0; j < WINDOW_A - 1; ++j) { 184 secp256k1_gej_double_nonzero(r, r, NULL); 185 } 186 187 n = wnaf_1[i]; 188 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); 189 VERIFY_CHECK(n != 0); 190 secp256k1_gej_add_ge(r, r, &tmpa); 191 #ifdef USE_ENDOMORPHISM 192 n = wnaf_lam[i]; 193 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); 194 VERIFY_CHECK(n != 0); 195 secp256k1_gej_add_ge(r, r, &tmpa); 196 #endif 197 } 198 199 secp256k1_fe_mul(&r->z, &r->z, &Z); 200 201 { 202 /* Correct for wNAF skew */ 203 secp256k1_ge correction = *a; 204 secp256k1_ge_storage correction_1_stor; 205 #ifdef USE_ENDOMORPHISM 206 secp256k1_ge_storage correction_lam_stor; 207 #endif 208 secp256k1_ge_storage a2_stor; 209 secp256k1_gej tmpj; 210 secp256k1_gej_set_ge(&tmpj, &correction); 211 secp256k1_gej_double_var(&tmpj, &tmpj, NULL); 212 secp256k1_ge_set_gej(&correction, &tmpj); 213 secp256k1_ge_to_storage(&correction_1_stor, a); 214 #ifdef USE_ENDOMORPHISM 215 secp256k1_ge_to_storage(&correction_lam_stor, a); 216 #endif 217 secp256k1_ge_to_storage(&a2_stor, &correction); 218 219 /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */ 220 secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2); 221 #ifdef USE_ENDOMORPHISM 222 secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); 223 #endif 224 225 /* Apply the correction */ 226 secp256k1_ge_from_storage(&correction, &correction_1_stor); 227 secp256k1_ge_neg(&correction, &correction); 228 secp256k1_gej_add_ge(r, r, &correction); 229 230 #ifdef USE_ENDOMORPHISM 231 secp256k1_ge_from_storage(&correction, &correction_lam_stor); 232 secp256k1_ge_neg(&correction, &correction); 233 secp256k1_ge_mul_lambda(&correction, &correction); 234 secp256k1_gej_add_ge(r, r, &correction); 235 #endif 236 } 237 } 238 239 #endif