github.com/klaytn/klaytn@v1.12.1/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                             *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_ECMULT_IMPL_H_
     8  #define _SECP256K1_ECMULT_IMPL_H_
     9  
    10  #include <string.h>
    11  
    12  #include "group.h"
    13  #include "scalar.h"
    14  #include "ecmult.h"
    15  
    16  #if defined(EXHAUSTIVE_TEST_ORDER)
    17  /* We need to lower these values for exhaustive tests because
    18   * the tables cannot have infinities in them (this breaks the
    19   * affine-isomorphism stuff which tracks z-ratios) */
    20  #  if EXHAUSTIVE_TEST_ORDER > 128
    21  #    define WINDOW_A 5
    22  #    define WINDOW_G 8
    23  #  elif EXHAUSTIVE_TEST_ORDER > 8
    24  #    define WINDOW_A 4
    25  #    define WINDOW_G 4
    26  #  else
    27  #    define WINDOW_A 2
    28  #    define WINDOW_G 2
    29  #  endif
    30  #else
    31  /* optimal for 128-bit and 256-bit exponents. */
    32  #define WINDOW_A 5
    33  /** larger numbers may result in slightly better performance, at the cost of
    34      exponentially larger precomputed tables. */
    35  #ifdef USE_ENDOMORPHISM
    36  /** Two tables for window size 15: 1.375 MiB. */
    37  #define WINDOW_G 15
    38  #else
    39  /** One table for window size 16: 1.375 MiB. */
    40  #define WINDOW_G 16
    41  #endif
    42  #endif
    43  
    44  /** The number of entries a table with precomputed multiples needs to have. */
    45  #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
    46  
    47  /** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
    48   *  the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
    49   *  contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
    50   *  Prej's Z values are undefined, except for the last value.
    51   */
    52  static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
    53      secp256k1_gej d;
    54      secp256k1_ge a_ge, d_ge;
    55      int i;
    56  
    57      VERIFY_CHECK(!a->infinity);
    58  
    59      secp256k1_gej_double_var(&d, a, NULL);
    60  
    61      /*
    62       * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
    63       * of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
    64       */
    65      d_ge.x = d.x;
    66      d_ge.y = d.y;
    67      d_ge.infinity = 0;
    68  
    69      secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
    70      prej[0].x = a_ge.x;
    71      prej[0].y = a_ge.y;
    72      prej[0].z = a->z;
    73      prej[0].infinity = 0;
    74  
    75      zr[0] = d.z;
    76      for (i = 1; i < n; i++) {
    77          secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
    78      }
    79  
    80      /*
    81       * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
    82       * the final point's z coordinate is actually used though, so just update that.
    83       */
    84      secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
    85  }
    86  
    87  /** Fill a table 'pre' with precomputed odd multiples of a.
    88   *
    89   *  There are two versions of this function:
    90   *  - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
    91   *    resulting point set to a single constant Z denominator, stores the X and Y
    92   *    coordinates as ge_storage points in pre, and stores the global Z in rz.
    93   *    It only operates on tables sized for WINDOW_A wnaf multiples.
    94   *  - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
    95   *    resulting point set to actually affine points, and stores those in pre.
    96   *    It operates on tables of any size, but uses heap-allocated temporaries.
    97   *
    98   *  To compute a*P + b*G, we compute a table for P using the first function,
    99   *  and for G using the second (which requires an inverse, but it only needs to
   100   *  happen once).
   101   */
   102  static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
   103      secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
   104      secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
   105  
   106      /* Compute the odd multiples in Jacobian form. */
   107      secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
   108      /* Bring them to the same Z denominator. */
   109      secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
   110  }
   111  
   112  static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
   113      secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
   114      secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
   115      secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
   116      int i;
   117  
   118      /* Compute the odd multiples in Jacobian form. */
   119      secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
   120      /* Convert them in batch to affine coordinates. */
   121      secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
   122      /* Convert them to compact storage form. */
   123      for (i = 0; i < n; i++) {
   124          secp256k1_ge_to_storage(&pre[i], &prea[i]);
   125      }
   126  
   127      free(prea);
   128      free(prej);
   129      free(zr);
   130  }
   131  
   132  /** The following two macro retrieves a particular odd multiple from a table
   133   *  of precomputed multiples. */
   134  #define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
   135      VERIFY_CHECK(((n) & 1) == 1); \
   136      VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
   137      VERIFY_CHECK((n) <=  ((1 << ((w)-1)) - 1)); \
   138      if ((n) > 0) { \
   139          *(r) = (pre)[((n)-1)/2]; \
   140      } else { \
   141          secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
   142      } \
   143  } while(0)
   144  
   145  #define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
   146      VERIFY_CHECK(((n) & 1) == 1); \
   147      VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
   148      VERIFY_CHECK((n) <=  ((1 << ((w)-1)) - 1)); \
   149      if ((n) > 0) { \
   150          secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
   151      } else { \
   152          secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
   153          secp256k1_ge_neg((r), (r)); \
   154      } \
   155  } while(0)
   156  
   157  static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
   158      ctx->pre_g = NULL;
   159  #ifdef USE_ENDOMORPHISM
   160      ctx->pre_g_128 = NULL;
   161  #endif
   162  }
   163  
   164  static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
   165      secp256k1_gej gj;
   166  
   167      if (ctx->pre_g != NULL) {
   168          return;
   169      }
   170  
   171      /* get the generator */
   172      secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
   173  
   174      ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
   175  
   176      /* precompute the tables with odd multiples */
   177      secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
   178  
   179  #ifdef USE_ENDOMORPHISM
   180      {
   181          secp256k1_gej g_128j;
   182          int i;
   183  
   184          ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
   185  
   186          /* calculate 2^128*generator */
   187          g_128j = gj;
   188          for (i = 0; i < 128; i++) {
   189              secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
   190          }
   191          secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
   192      }
   193  #endif
   194  }
   195  
   196  static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
   197                                             const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
   198      if (src->pre_g == NULL) {
   199          dst->pre_g = NULL;
   200      } else {
   201          size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
   202          dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
   203          memcpy(dst->pre_g, src->pre_g, size);
   204      }
   205  #ifdef USE_ENDOMORPHISM
   206      if (src->pre_g_128 == NULL) {
   207          dst->pre_g_128 = NULL;
   208      } else {
   209          size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
   210          dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
   211          memcpy(dst->pre_g_128, src->pre_g_128, size);
   212      }
   213  #endif
   214  }
   215  
   216  static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
   217      return ctx->pre_g != NULL;
   218  }
   219  
   220  static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
   221      free(ctx->pre_g);
   222  #ifdef USE_ENDOMORPHISM
   223      free(ctx->pre_g_128);
   224  #endif
   225      secp256k1_ecmult_context_init(ctx);
   226  }
   227  
   228  /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
   229   *  with the following guarantees:
   230   *  - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
   231   *  - two non-zero entries in wnaf are separated by at least w-1 zeroes.
   232   *  - the number of set values in wnaf is returned. This number is at most 256, and at most one more
   233   *    than the number of bits in the (absolute value) of the input.
   234   */
   235  static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
   236      secp256k1_scalar s = *a;
   237      int last_set_bit = -1;
   238      int bit = 0;
   239      int sign = 1;
   240      int carry = 0;
   241  
   242      VERIFY_CHECK(wnaf != NULL);
   243      VERIFY_CHECK(0 <= len && len <= 256);
   244      VERIFY_CHECK(a != NULL);
   245      VERIFY_CHECK(2 <= w && w <= 31);
   246  
   247      memset(wnaf, 0, len * sizeof(wnaf[0]));
   248  
   249      if (secp256k1_scalar_get_bits(&s, 255, 1)) {
   250          secp256k1_scalar_negate(&s, &s);
   251          sign = -1;
   252      }
   253  
   254      while (bit < len) {
   255          int now;
   256          int word;
   257          if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
   258              bit++;
   259              continue;
   260          }
   261  
   262          now = w;
   263          if (now > len - bit) {
   264              now = len - bit;
   265          }
   266  
   267          word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
   268  
   269          carry = (word >> (w-1)) & 1;
   270          word -= carry << w;
   271  
   272          wnaf[bit] = sign * word;
   273          last_set_bit = bit;
   274  
   275          bit += now;
   276      }
   277  #ifdef VERIFY
   278      CHECK(carry == 0);
   279      while (bit < 256) {
   280          CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
   281      } 
   282  #endif
   283      return last_set_bit + 1;
   284  }
   285  
   286  static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
   287      secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
   288      secp256k1_ge tmpa;
   289      secp256k1_fe Z;
   290  #ifdef USE_ENDOMORPHISM
   291      secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
   292      secp256k1_scalar na_1, na_lam;
   293      /* Splitted G factors. */
   294      secp256k1_scalar ng_1, ng_128;
   295      int wnaf_na_1[130];
   296      int wnaf_na_lam[130];
   297      int bits_na_1;
   298      int bits_na_lam;
   299      int wnaf_ng_1[129];
   300      int bits_ng_1;
   301      int wnaf_ng_128[129];
   302      int bits_ng_128;
   303  #else
   304      int wnaf_na[256];
   305      int bits_na;
   306      int wnaf_ng[256];
   307      int bits_ng;
   308  #endif
   309      int i;
   310      int bits;
   311  
   312  #ifdef USE_ENDOMORPHISM
   313      /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
   314      secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
   315  
   316      /* build wnaf representation for na_1 and na_lam. */
   317      bits_na_1   = secp256k1_ecmult_wnaf(wnaf_na_1,   130, &na_1,   WINDOW_A);
   318      bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
   319      VERIFY_CHECK(bits_na_1 <= 130);
   320      VERIFY_CHECK(bits_na_lam <= 130);
   321      bits = bits_na_1;
   322      if (bits_na_lam > bits) {
   323          bits = bits_na_lam;
   324      }
   325  #else
   326      /* build wnaf representation for na. */
   327      bits_na     = secp256k1_ecmult_wnaf(wnaf_na,     256, na,      WINDOW_A);
   328      bits = bits_na;
   329  #endif
   330  
   331      /* Calculate odd multiples of a.
   332       * All multiples are brought to the same Z 'denominator', which is stored
   333       * in Z. Due to secp256k1' isomorphism we can do all operations pretending
   334       * that the Z coordinate was 1, use affine addition formulae, and correct
   335       * the Z coordinate of the result once at the end.
   336       * The exception is the precomputed G table points, which are actually
   337       * affine. Compared to the base used for other points, they have a Z ratio
   338       * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
   339       * isomorphism to efficiently add with a known Z inverse.
   340       */
   341      secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
   342  
   343  #ifdef USE_ENDOMORPHISM
   344      for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
   345          secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
   346      }
   347  
   348      /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
   349      secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
   350  
   351      /* Build wnaf representation for ng_1 and ng_128 */
   352      bits_ng_1   = secp256k1_ecmult_wnaf(wnaf_ng_1,   129, &ng_1,   WINDOW_G);
   353      bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
   354      if (bits_ng_1 > bits) {
   355          bits = bits_ng_1;
   356      }
   357      if (bits_ng_128 > bits) {
   358          bits = bits_ng_128;
   359      }
   360  #else
   361      bits_ng     = secp256k1_ecmult_wnaf(wnaf_ng,     256, ng,      WINDOW_G);
   362      if (bits_ng > bits) {
   363          bits = bits_ng;
   364      }
   365  #endif
   366  
   367      secp256k1_gej_set_infinity(r);
   368  
   369      for (i = bits - 1; i >= 0; i--) {
   370          int n;
   371          secp256k1_gej_double_var(r, r, NULL);
   372  #ifdef USE_ENDOMORPHISM
   373          if (i < bits_na_1 && (n = wnaf_na_1[i])) {
   374              ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
   375              secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   376          }
   377          if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
   378              ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
   379              secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   380          }
   381          if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
   382              ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
   383              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   384          }
   385          if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
   386              ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
   387              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   388          }
   389  #else
   390          if (i < bits_na && (n = wnaf_na[i])) {
   391              ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
   392              secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
   393          }
   394          if (i < bits_ng && (n = wnaf_ng[i])) {
   395              ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
   396              secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
   397          }
   398  #endif
   399      }
   400  
   401      if (!r->infinity) {
   402          secp256k1_fe_mul(&r->z, &r->z, &Z);
   403      }
   404  }
   405  
   406  #endif