github.com/klaytn/klaytn@v1.12.1/networks/p2p/rlpx/rlpx.go (about) 1 // Modifications Copyright 2018 The klaytn Authors 2 // Copyright 2015 The go-ethereum Authors 3 // This file is part of the go-ethereum library. 4 // 5 // The go-ethereum library is free software: you can redistribute it and/or modify 6 // it under the terms of the GNU Lesser General Public License as published by 7 // the Free Software Foundation, either version 3 of the License, or 8 // (at your option) any later version. 9 // 10 // The go-ethereum library is distributed in the hope that it will be useful, 11 // but WITHOUT ANY WARRANTY; without even the implied warranty of 12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 // GNU Lesser General Public License for more details. 14 // 15 // You should have received a copy of the GNU Lesser General Public License 16 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 17 // 18 // This file is derived from p2p/rlpx/rlpx.go (2018/06/04). 19 // Modified and improved for the klaytn development. 20 21 // Package rlpx implements the RLPx transport protocol. 22 package rlpx 23 24 import ( 25 "bufio" 26 "bytes" 27 "crypto/aes" 28 "crypto/cipher" 29 "crypto/ecdsa" 30 "crypto/elliptic" 31 "crypto/hmac" 32 "crypto/rand" 33 "encoding/binary" 34 "errors" 35 "fmt" 36 "hash" 37 "io" 38 mrand "math/rand" 39 "net" 40 "time" 41 42 "github.com/golang/snappy" 43 "github.com/klaytn/klaytn/common" 44 "github.com/klaytn/klaytn/crypto" 45 "github.com/klaytn/klaytn/crypto/ecies" 46 "github.com/klaytn/klaytn/crypto/secp256k1" 47 "github.com/klaytn/klaytn/crypto/sha3" 48 "github.com/klaytn/klaytn/networks/p2p/discover" 49 "github.com/klaytn/klaytn/rlp" 50 ) 51 52 // Conn is an RLPx network connection. It wraps a low-level network connection. The 53 // underlying connection should not be used for other activity when it is wrapped by Conn. 54 // 55 // Before sending messages, a handshake must be performed by calling the Handshake method. 56 // This type is not generally safe for concurrent use, but reading and writing of messages 57 // may happen concurrently after the handshake. 58 type Conn struct { 59 dialDest *ecdsa.PublicKey 60 conn net.Conn 61 session *sessionState 62 63 // These are the buffers for snappy compression. 64 // Compression is enabled if they are non-nil. 65 snappyReadBuffer []byte 66 snappyWriteBuffer []byte 67 } 68 69 // sessionState contains the session keys. 70 type sessionState struct { 71 enc cipher.Stream 72 dec cipher.Stream 73 74 egressMAC hashMAC 75 ingressMAC hashMAC 76 rbuf readBuffer 77 wbuf writeBuffer 78 } 79 80 // hashMAC holds the state of the RLPx v4 MAC contraption. 81 type hashMAC struct { 82 cipher cipher.Block 83 hash hash.Hash 84 aesBuffer [16]byte 85 hashBuffer [32]byte 86 seedBuffer [32]byte 87 } 88 89 func newHashMAC(cipher cipher.Block, h hash.Hash) hashMAC { 90 m := hashMAC{cipher: cipher, hash: h} 91 if cipher.BlockSize() != len(m.aesBuffer) { 92 panic(fmt.Errorf("invalid MAC cipher block size %d", cipher.BlockSize())) 93 } 94 if h.Size() != len(m.hashBuffer) { 95 panic(fmt.Errorf("invalid MAC digest size %d", h.Size())) 96 } 97 return m 98 } 99 100 // NewConn wraps the given network connection. If dialDest is non-nil, the connection 101 // behaves as the initiator during the handshake. 102 func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn { 103 return &Conn{ 104 dialDest: dialDest, 105 conn: conn, 106 } 107 } 108 109 // SetSnappy enables or disables snappy compression of messages. This is usually called 110 // after the devp2p Hello message exchange when the negotiated version indicates that 111 // compression is available on both ends of the connection. 112 func (c *Conn) SetSnappy(snappy bool) { 113 if snappy { 114 c.snappyReadBuffer = []byte{} 115 c.snappyWriteBuffer = []byte{} 116 } else { 117 c.snappyReadBuffer = nil 118 c.snappyWriteBuffer = nil 119 } 120 } 121 122 // SetReadDeadline sets the deadline for all future read operations. 123 func (c *Conn) SetReadDeadline(time time.Time) error { 124 return c.conn.SetReadDeadline(time) 125 } 126 127 // SetWriteDeadline sets the deadline for all future write operations. 128 func (c *Conn) SetWriteDeadline(time time.Time) error { 129 return c.conn.SetWriteDeadline(time) 130 } 131 132 // SetDeadline sets the deadline for all future read and write operations. 133 func (c *Conn) SetDeadline(time time.Time) error { 134 return c.conn.SetDeadline(time) 135 } 136 137 // Read reads a message from the connection. 138 // The returned data buffer is valid until the next call to Read. 139 func (c *Conn) Read() (code uint64, data []byte, err error) { 140 if c.session == nil { 141 panic("can't ReadMsg before handshake") 142 } 143 144 frame, err := c.session.readFrame(c.conn) 145 if err != nil { 146 return 0, nil, err 147 } 148 code, data, err = rlp.SplitUint64(frame) 149 if err != nil { 150 return 0, nil, fmt.Errorf("invalid message code: %v", err) 151 } 152 153 // If snappy is enabled, verify and decompress message. 154 if c.snappyReadBuffer != nil { 155 var actualSize int 156 actualSize, err = snappy.DecodedLen(data) 157 if err != nil { 158 return code, nil, err 159 } 160 if actualSize > maxUint24 { 161 return code, nil, errPlainMessageTooLarge 162 } 163 c.snappyReadBuffer = growslice(c.snappyReadBuffer, actualSize) 164 data, err = snappy.Decode(c.snappyReadBuffer, data) 165 } 166 return code, data, err 167 } 168 169 func (h *sessionState) readFrame(conn io.Reader) ([]byte, error) { 170 h.rbuf.reset() 171 172 // Read the frame header. 173 header, err := h.rbuf.read(conn, 32) 174 if err != nil { 175 return nil, err 176 } 177 178 // Verify header MAC. 179 wantHeaderMAC := h.ingressMAC.computeHeader(header[:16]) 180 if !hmac.Equal(wantHeaderMAC, header[16:]) { 181 return nil, errors.New("bad header MAC") 182 } 183 184 // Decrypt the frame header to get the frame size. 185 h.dec.XORKeyStream(header[:16], header[:16]) 186 fsize := readUint24(header[:16]) 187 // Frame size rounded up to 16 byte boundary for padding. 188 rsize := fsize 189 if padding := fsize % 16; padding > 0 { 190 rsize += 16 - padding 191 } 192 // Read the frame content. 193 frame, err := h.rbuf.read(conn, int(rsize)) 194 if err != nil { 195 return nil, err 196 } 197 198 // Validate frame MAC. 199 frameMAC, err := h.rbuf.read(conn, 16) 200 if err != nil { 201 return nil, err 202 } 203 wantFrameMAC := h.ingressMAC.computeFrame(frame) 204 if !hmac.Equal(wantFrameMAC, frameMAC) { 205 return nil, errors.New("bad frame MAC") 206 } 207 208 // Decrypt the frame data. 209 h.dec.XORKeyStream(frame, frame) 210 return frame[:fsize], nil 211 } 212 213 // Write writes a message to the connection. 214 // 215 // Write returns the written size of the message data. This may be less than or equal to 216 // len(data) depending on whether snappy compression is enabled. 217 func (c *Conn) Write(code uint64, data []byte) error { 218 if c.session == nil { 219 panic("can't WriteMsg before handshake") 220 } 221 if len(data) > maxUint24 { 222 return errPlainMessageTooLarge 223 } 224 if c.snappyWriteBuffer != nil { 225 // Ensure the buffer has sufficient size. 226 // Package snappy will allocate its own buffer if the provided 227 // one is smaller than MaxEncodedLen. 228 c.snappyWriteBuffer = growslice(c.snappyWriteBuffer, snappy.MaxEncodedLen(len(data))) 229 data = snappy.Encode(c.snappyWriteBuffer, data) 230 } 231 232 return c.session.writeFrame(c.conn, code, data) 233 } 234 235 func (h *sessionState) writeFrame(conn io.Writer, code uint64, data []byte) error { 236 h.wbuf.reset() 237 238 // Write header. 239 fsize := rlp.IntSize(code) + len(data) 240 if fsize > maxUint24 { 241 return errPlainMessageTooLarge 242 } 243 header := h.wbuf.appendZero(16) 244 putUint24(uint32(fsize), header) 245 copy(header[3:], zeroHeader) 246 h.enc.XORKeyStream(header, header) 247 248 // Write header MAC. 249 h.wbuf.Write(h.egressMAC.computeHeader(header)) 250 251 // Encode and encrypt the frame data. 252 offset := len(h.wbuf.data) 253 h.wbuf.data = rlp.AppendUint64(h.wbuf.data, code) 254 h.wbuf.Write(data) 255 if padding := fsize % 16; padding > 0 { 256 h.wbuf.appendZero(16 - padding) 257 } 258 259 framedata := h.wbuf.data[offset:] 260 h.enc.XORKeyStream(framedata, framedata) 261 262 // Write frame MAC. 263 h.wbuf.Write(h.egressMAC.computeFrame(framedata)) 264 265 _, err := conn.Write(h.wbuf.data) 266 return err 267 } 268 269 // computeHeader computes the MAC of a frame header. 270 func (m *hashMAC) computeHeader(header []byte) []byte { 271 sum1 := m.hash.Sum(m.hashBuffer[:0]) 272 return m.compute(sum1, header) 273 } 274 275 // computeFrame computes the MAC of framedata. 276 func (m *hashMAC) computeFrame(framedata []byte) []byte { 277 m.hash.Write(framedata) 278 seed := m.hash.Sum(m.seedBuffer[:0]) 279 return m.compute(seed, seed[:16]) 280 } 281 282 // compute computes the MAC of a 16-byte 'seed'. 283 // 284 // To do this, it encrypts the current value of the hash state, then XORs the ciphertext 285 // with seed. The obtained value is written back into the hash state and hash output is 286 // taken again. The first 16 bytes of the resulting sum are the MAC value. 287 // 288 // This MAC construction is a horrible, legacy thing. 289 func (m *hashMAC) compute(sum1, seed []byte) []byte { 290 if len(seed) != len(m.aesBuffer) { 291 panic("invalid MAC seed") 292 } 293 294 m.cipher.Encrypt(m.aesBuffer[:], sum1) 295 for i := range m.aesBuffer { 296 m.aesBuffer[i] ^= seed[i] 297 } 298 m.hash.Write(m.aesBuffer[:]) 299 sum2 := m.hash.Sum(m.hashBuffer[:0]) 300 return sum2[:16] 301 } 302 303 func (c *Conn) ConnTypeHandshake(myConnType common.ConnType) (common.ConnType, error) { 304 // myConnType validation 305 werr := make(chan error, 1) 306 if !myConnType.Valid() { 307 return common.ConnTypeUndefined, errors.New("Connection Type is not valid") 308 } 309 310 // send myConnType 311 go func() { 312 _, err := c.conn.Write([]byte{byte(myConnType)}) 313 werr <- err 314 }() 315 316 // receive connType 317 byteVal, receiveErr := bufio.NewReader(c.conn).ReadByte() 318 319 // ensure sending is done 320 sendErr := <-werr 321 322 if receiveErr != nil { 323 return common.ConnTypeUndefined, receiveErr 324 } 325 if sendErr != nil { 326 return common.ConnTypeUndefined, sendErr 327 } 328 329 // received connType validation 330 conntype := common.ConnType(int(byteVal)) 331 if !conntype.Valid() { 332 return common.ConnTypeUndefined, fmt.Errorf("invalid connection type: %v", conntype) 333 } 334 return conntype, nil 335 } 336 337 // Handshake performs the handshake. This must be called before any data is written 338 // or read from the connection. 339 func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) { 340 var ( 341 sec Secrets 342 err error 343 h handshakeState 344 ) 345 if c.dialDest != nil { 346 sec, err = h.runInitiator(c.conn, prv, c.dialDest) 347 } else { 348 sec, err = h.runRecipient(c.conn, prv) 349 } 350 if err != nil { 351 return nil, err 352 } 353 354 c.InitWithSecrets(sec) 355 c.session.rbuf = h.rbuf 356 c.session.wbuf = h.wbuf 357 return sec.remote, err 358 } 359 360 // InitWithSecrets injects connection secrets as if a handshake had 361 // been performed. This cannot be called after the handshake. 362 func (c *Conn) InitWithSecrets(sec Secrets) { 363 if c.session != nil { 364 panic("can't handshake twice") 365 } 366 macc, err := aes.NewCipher(sec.MAC) 367 if err != nil { 368 panic("invalid MAC secret: " + err.Error()) 369 } 370 encc, err := aes.NewCipher(sec.AES) 371 if err != nil { 372 panic("invalid AES secret: " + err.Error()) 373 } 374 // we use an all-zeroes IV for AES because the key used 375 // for encryption is ephemeral. 376 iv := make([]byte, encc.BlockSize()) 377 c.session = &sessionState{ 378 enc: cipher.NewCTR(encc, iv), 379 dec: cipher.NewCTR(encc, iv), 380 egressMAC: newHashMAC(macc, sec.EgressMAC), 381 ingressMAC: newHashMAC(macc, sec.IngressMAC), 382 } 383 } 384 385 // Close closes the underlying network connection. 386 func (c *Conn) Close() error { 387 return c.conn.Close() 388 } 389 390 const ( 391 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 392 sigLen = crypto.SignatureLength // elliptic S256 393 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 394 shaLen = 32 // hash length (for nonce etc) 395 396 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 397 ) 398 399 var ( 400 // this is used in place of actual frame header data. 401 // TODO: replace this when Msg contains the protocol type code. 402 zeroHeader = []byte{0xC2, 0x80, 0x80} 403 404 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 405 // the allowed 24 bits (i.e. length >= 16MB). 406 errPlainMessageTooLarge = errors.New("message length >= 16MB") 407 ) 408 409 // Secrets represents the connection secrets which are negotiated during the handshake. 410 type Secrets struct { 411 AES, MAC []byte 412 EgressMAC, IngressMAC hash.Hash 413 remote *ecdsa.PublicKey 414 } 415 416 // encHandshake contains the state of the encryption handshake. 417 type handshakeState struct { 418 initiator bool 419 remote *ecies.PublicKey // remote-pubk 420 initNonce, respNonce []byte // nonce 421 randomPrivKey *ecies.PrivateKey // ecdhe-random 422 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 423 424 rbuf readBuffer 425 wbuf writeBuffer 426 } 427 428 // RLPx v4 handshake auth (defined in EIP-8). 429 type authMsgV4 struct { 430 Signature [sigLen]byte 431 InitiatorPubkey [pubLen]byte 432 Nonce [shaLen]byte 433 Version uint 434 435 // Ignore additional fields (forward-compatibility) 436 Rest []rlp.RawValue `rlp:"tail"` 437 } 438 439 // RLPx v4 handshake response (defined in EIP-8). 440 type authRespV4 struct { 441 RandomPubkey [pubLen]byte 442 Nonce [shaLen]byte 443 Version uint 444 445 // Ignore additional fields (forward-compatibility) 446 Rest []rlp.RawValue `rlp:"tail"` 447 } 448 449 // runRecipient negotiates a session token on conn. 450 // it should be called on the listening side of the connection. 451 // 452 // prv is the local client's private key. 453 func (h *handshakeState) runRecipient(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) { 454 authMsg := new(authMsgV4) 455 authPacket, err := h.readMsg(authMsg, prv, conn) 456 if err != nil { 457 return s, err 458 } 459 if err := h.handleAuthMsg(authMsg, prv); err != nil { 460 return s, err 461 } 462 463 authRespMsg, err := h.makeAuthResp() 464 if err != nil { 465 return s, err 466 } 467 authRespPacket, err := h.sealEIP8(authRespMsg) 468 if err != nil { 469 return s, err 470 } 471 if _, err = conn.Write(authRespPacket); err != nil { 472 return s, err 473 } 474 475 return h.secrets(authPacket, authRespPacket) 476 } 477 478 func (h *handshakeState) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 479 // Import the remote identity. 480 rpub, err := discover.NodeID(msg.InitiatorPubkey).Pubkey() 481 if err != nil { 482 return fmt.Errorf("bad remoteID: %#v", err) 483 } 484 h.initNonce = msg.Nonce[:] 485 h.remote = ecies.ImportECDSAPublic(rpub) 486 487 // Generate random keypair for ECDH. 488 // If a private key is already set, use it instead of generating one (for testing). 489 if h.randomPrivKey == nil { 490 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 491 if err != nil { 492 return err 493 } 494 } 495 496 // Check the signature. 497 token, err := h.staticSharedSecret(prv) 498 if err != nil { 499 return err 500 } 501 signedMsg := xor(token, h.initNonce) 502 remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:]) 503 if err != nil { 504 return err 505 } 506 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 507 return nil 508 } 509 510 // secrets are called after the handshake is completed. 511 // It extracts the connection secrets from the handshake values. 512 func (h *handshakeState) secrets(auth, authResp []byte) (Secrets, error) { 513 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 514 if err != nil { 515 return Secrets{}, err 516 } 517 518 // derive base secrets from ephemeral key agreement 519 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 520 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 521 s := Secrets{ 522 remote: h.remote.ExportECDSA(), 523 AES: aesSecret, 524 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 525 } 526 527 // setup sha3 instances for the MACs 528 mac1 := sha3.NewKeccak256() 529 mac1.Write(xor(s.MAC, h.respNonce)) 530 mac1.Write(auth) 531 mac2 := sha3.NewKeccak256() 532 mac2.Write(xor(s.MAC, h.initNonce)) 533 mac2.Write(authResp) 534 if h.initiator { 535 s.EgressMAC, s.IngressMAC = mac1, mac2 536 } else { 537 s.EgressMAC, s.IngressMAC = mac2, mac1 538 } 539 540 return s, nil 541 } 542 543 // staticSharedSecret returns the static shared secret, the result 544 // of key agreement between the local and remote static node key. 545 func (h *handshakeState) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 546 return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) 547 } 548 549 // runInitiator negotiates a session token on conn. 550 // it should be called on the dialing side of the connection. 551 // 552 // prv is the local client's private key. 553 func (h *handshakeState) runInitiator(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) { 554 h.initiator = true 555 h.remote = ecies.ImportECDSAPublic(remote) 556 authMsg, err := h.makeAuthMsg(prv) 557 if err != nil { 558 return s, err 559 } 560 authPacket, err := h.sealEIP8(authMsg) 561 if err != nil { 562 return s, err 563 } 564 565 if _, err = conn.Write(authPacket); err != nil { 566 return s, err 567 } 568 569 authRespMsg := new(authRespV4) 570 authRespPacket, err := h.readMsg(authRespMsg, prv, conn) 571 if err != nil { 572 return s, err 573 } 574 if err := h.handleAuthResp(authRespMsg); err != nil { 575 return s, err 576 } 577 578 return h.secrets(authPacket, authRespPacket) 579 } 580 581 // makeAuthMsg creates the initiator handshake message. 582 func (h *handshakeState) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { 583 // Generate random initiator nonce. 584 h.initNonce = make([]byte, shaLen) 585 _, err := rand.Read(h.initNonce) 586 if err != nil { 587 return nil, err 588 } 589 // Generate random keypair to for ECDH. 590 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 591 if err != nil { 592 return nil, err 593 } 594 595 // Sign known message: static-shared-secret ^ nonce 596 token, err := h.staticSharedSecret(prv) 597 if err != nil { 598 return nil, err 599 } 600 signed := xor(token, h.initNonce) 601 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 602 if err != nil { 603 return nil, err 604 } 605 606 msg := new(authMsgV4) 607 copy(msg.Signature[:], signature) 608 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 609 copy(msg.Nonce[:], h.initNonce) 610 msg.Version = 4 611 return msg, nil 612 } 613 614 func (h *handshakeState) handleAuthResp(msg *authRespV4) (err error) { 615 h.respNonce = msg.Nonce[:] 616 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 617 return err 618 } 619 620 func (h *handshakeState) makeAuthResp() (msg *authRespV4, err error) { 621 // Generate random nonce. 622 h.respNonce = make([]byte, shaLen) 623 if _, err = rand.Read(h.respNonce); err != nil { 624 return nil, err 625 } 626 627 msg = new(authRespV4) 628 copy(msg.Nonce[:], h.respNonce) 629 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 630 msg.Version = 4 631 return msg, nil 632 } 633 634 // readMsg reads an encrypted handshake message, decoding it into msg. 635 func (h *handshakeState) readMsg(msg interface{}, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 636 h.rbuf.reset() 637 h.rbuf.grow(512) 638 639 // Read the size prefix. 640 prefix, err := h.rbuf.read(r, 2) 641 if err != nil { 642 return nil, err 643 } 644 size := binary.BigEndian.Uint16(prefix) 645 646 // Read the handshake packet. 647 packet, err := h.rbuf.read(r, int(size)) 648 if err != nil { 649 return nil, err 650 } 651 dec, err := ecies.ImportECDSA(prv).Decrypt(packet, nil, prefix) 652 if err != nil { 653 return nil, err 654 } 655 // Can't use rlp.DecodeBytes here because it rejects 656 // trailing data (forward-compatibility). 657 s := rlp.NewStream(bytes.NewReader(dec), 0) 658 err = s.Decode(msg) 659 return h.rbuf.data[:len(prefix)+len(packet)], err 660 } 661 662 // sealEIP8 encrypts a handshake message. 663 func (h *handshakeState) sealEIP8(msg interface{}) ([]byte, error) { 664 h.wbuf.reset() 665 666 // Write the message plaintext. 667 if err := rlp.Encode(&h.wbuf, msg); err != nil { 668 return nil, err 669 } 670 // Pad with random amount of data. the amount needs to be at least 100 bytes to make 671 // the message distinguishable from pre-EIP-8 handshakes. 672 h.wbuf.appendZero(mrand.Intn(100) + 100) 673 674 prefix := make([]byte, 2) 675 binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead)) 676 677 enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix) 678 return append(prefix, enc...), err 679 } 680 681 // importPublicKey unmarshals 512 bit public keys. 682 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 683 var pubKey65 []byte 684 switch len(pubKey) { 685 case 64: 686 // add 'uncompressed key' flag 687 pubKey65 = append([]byte{0x04}, pubKey...) 688 case 65: 689 pubKey65 = pubKey 690 default: 691 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 692 } 693 // TODO: fewer pointless conversions 694 pub, err := crypto.UnmarshalPubkey(pubKey65) 695 if err != nil { 696 return nil, err 697 } 698 return ecies.ImportECDSAPublic(pub), nil 699 } 700 701 func exportPubkey(pub *ecies.PublicKey) []byte { 702 if pub == nil { 703 panic("nil pubkey") 704 } 705 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 706 } 707 708 func xor(one, other []byte) (xor []byte) { 709 xor = make([]byte, len(one)) 710 for i := 0; i < len(one); i++ { 711 xor[i] = one[i] ^ other[i] 712 } 713 return xor 714 }