github.com/klaytn/klaytn@v1.12.1/storage/statedb/encoding.go (about)

     1  // Modifications Copyright 2018 The klaytn Authors
     2  // Copyright 2015 The go-ethereum Authors
     3  // This file is part of the go-ethereum library.
     4  //
     5  // The go-ethereum library is free software: you can redistribute it and/or modify
     6  // it under the terms of the GNU Lesser General Public License as published by
     7  // the Free Software Foundation, either version 3 of the License, or
     8  // (at your option) any later version.
     9  //
    10  // The go-ethereum library is distributed in the hope that it will be useful,
    11  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  // GNU Lesser General Public License for more details.
    14  //
    15  // You should have received a copy of the GNU Lesser General Public License
    16  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    17  //
    18  // This file is derived from trie/encoding.go (2018/06/04).
    19  // Modified and improved for the klaytn development.
    20  
    21  package statedb
    22  
    23  import (
    24  	"github.com/klaytn/klaytn/common"
    25  )
    26  
    27  // Trie keys are dealt with in three distinct encodings:
    28  //
    29  // KEYBYTES encoding contains the actual key and nothing else. This encoding is the
    30  // input to most API functions.
    31  //
    32  // HEX encoding contains one byte for each nibble of the key and an optional trailing
    33  // 'terminator' byte of value 0x10 which indicates whether or not the node at the key
    34  // contains a value. Hex key encoding is used for nodes loaded in memory because it's
    35  // convenient to access.
    36  //
    37  // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix
    38  // encoding" there) and contains the bytes of the key and a flag. The high nibble of the
    39  // first byte contains the flag; the lowest bit encoding the oddness of the length and
    40  // the second-lowest encoding whether the node at the key is a value node. The low nibble
    41  // of the first byte is zero in the case of an even number of nibbles and the first nibble
    42  // in the case of an odd number. All remaining nibbles (now an even number) fit properly
    43  // into the remaining bytes. Compact encoding is used for nodes stored on disk.
    44  
    45  func hexToCompact(hex []byte) []byte {
    46  	terminator := byte(0)
    47  	if hasTerm(hex) {
    48  		terminator = 1
    49  		hex = hex[:len(hex)-1]
    50  	}
    51  	buf := make([]byte, len(hex)/2+1)
    52  	buf[0] = terminator << 5 // the flag byte
    53  	if len(hex)&1 == 1 {
    54  		buf[0] |= 1 << 4 // odd flag
    55  		buf[0] |= hex[0] // first nibble is contained in the first byte
    56  		hex = hex[1:]
    57  	}
    58  	decodeNibbles(hex, buf[1:])
    59  	return buf
    60  }
    61  
    62  // hexToCompactInPlace places the compact key in input buffer, returning the length
    63  // needed for the representation
    64  func hexToCompactInPlace(hex []byte) int {
    65  	var (
    66  		hexLen    = len(hex) // length of the hex input
    67  		firstByte = byte(0)
    68  	)
    69  	// Check if we have a terminator there
    70  	if hexLen > 0 && hex[hexLen-1] == 16 {
    71  		firstByte = 1 << 5
    72  		hexLen-- // last part was the terminator, ignore that
    73  	}
    74  	var (
    75  		binLen = hexLen/2 + 1
    76  		ni     = 0 // index in hex
    77  		bi     = 1 // index in bin (compact)
    78  	)
    79  	if hexLen&1 == 1 {
    80  		firstByte |= 1 << 4 // odd flag
    81  		firstByte |= hex[0] // first nibble is contained in the first byte
    82  		ni++
    83  	}
    84  	for ; ni < hexLen; bi, ni = bi+1, ni+2 {
    85  		hex[bi] = hex[ni]<<4 | hex[ni+1]
    86  	}
    87  	hex[0] = firstByte
    88  	return binLen
    89  }
    90  
    91  func compactToHex(compact []byte) []byte {
    92  	if len(compact) == 0 {
    93  		return compact
    94  	}
    95  	base := keybytesToHex(compact)
    96  	base = base[:len(base)-1]
    97  	// apply terminator flag
    98  	if base[0] >= 2 {
    99  		base = append(base, 16)
   100  	}
   101  	// apply odd flag
   102  	chop := 2 - base[0]&1
   103  	return base[chop:]
   104  }
   105  
   106  func keybytesToHex(str []byte) []byte {
   107  	l := len(str)*2 + 1
   108  	nibbles := make([]byte, l)
   109  	for i, b := range str {
   110  		nibbles[i*2] = b / 16
   111  		nibbles[i*2+1] = b % 16
   112  	}
   113  	nibbles[l-1] = 16
   114  	return nibbles
   115  }
   116  
   117  // hexToKeybytes turns hex nibbles into key bytes.
   118  // This can only be used for keys of even length.
   119  func hexToKeybytes(hex []byte) []byte {
   120  	if hasTerm(hex) {
   121  		hex = hex[:len(hex)-1]
   122  	}
   123  	if len(hex)&1 != 0 {
   124  		panic("can't convert hex key of odd length")
   125  	}
   126  	key := make([]byte, len(hex)/2)
   127  	decodeNibbles(hex, key)
   128  	return key
   129  }
   130  
   131  func decodeNibbles(nibbles []byte, bytes []byte) {
   132  	for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
   133  		bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
   134  	}
   135  }
   136  
   137  // prefixLen returns the length of the common prefix of a and b.
   138  func prefixLen(a, b []byte) int {
   139  	i, length := 0, len(a)
   140  	if len(b) < length {
   141  		length = len(b)
   142  	}
   143  	for ; i < length; i++ {
   144  		if a[i] != b[i] {
   145  			break
   146  		}
   147  	}
   148  	return i
   149  }
   150  
   151  // hasTerm returns whether a hex key has the terminator flag.
   152  func hasTerm(s []byte) bool {
   153  	return len(s) > 0 && s[len(s)-1] == 16
   154  }
   155  
   156  // HexPathToString turns hex nibbles of trie path key into string of the trie path key.
   157  func HexPathToString(path []byte) string {
   158  	if hasTerm(path) {
   159  		path = path[:len(path)-1]
   160  	}
   161  	byteKey := hexToKeybytes(common.RightPadBytes(path, 64))
   162  	rst := common.BytesToHash(byteKey).String()
   163  	return rst[:2+len(path)]
   164  }