github.com/klaytn/klaytn@v1.12.1/storage/statedb/proof.go (about)

     1  // Modifications Copyright 2018 The klaytn Authors
     2  // Copyright 2015 The go-ethereum Authors
     3  // This file is part of the go-ethereum library.
     4  //
     5  // The go-ethereum library is free software: you can redistribute it and/or modify
     6  // it under the terms of the GNU Lesser General Public License as published by
     7  // the Free Software Foundation, either version 3 of the License, or
     8  // (at your option) any later version.
     9  //
    10  // The go-ethereum library is distributed in the hope that it will be useful,
    11  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  // GNU Lesser General Public License for more details.
    14  //
    15  // You should have received a copy of the GNU Lesser General Public License
    16  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    17  //
    18  // This file is derived from trie/proof.go (2018/06/04).
    19  // Modified and improved for the klaytn development.
    20  
    21  package statedb
    22  
    23  import (
    24  	"bytes"
    25  	"errors"
    26  	"fmt"
    27  
    28  	"github.com/klaytn/klaytn/common"
    29  	"github.com/klaytn/klaytn/rlp"
    30  	"github.com/klaytn/klaytn/storage/database"
    31  )
    32  
    33  type ProofDBWriter interface {
    34  	WriteMerkleProof(key, value []byte)
    35  }
    36  
    37  type ProofDBReader interface {
    38  	ReadTrieNode(hash common.ExtHash) ([]byte, error)
    39  }
    40  
    41  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    42  // on the path to the value at key. The value itself is also included in the last
    43  // node and can be retrieved by verifying the proof.
    44  //
    45  // If the trie does not contain a value for key, the returned proof contains all
    46  // nodes of the longest existing prefix of the key (at least the root node), ending
    47  // with the node that proves the absence of the key.
    48  func (t *Trie) Prove(key []byte, fromLevel uint, proofDB ProofDBWriter) error {
    49  	// Collect all nodes on the path to key.
    50  	key = keybytesToHex(key)
    51  	nodes := []node{}
    52  	tn := t.root
    53  	for len(key) > 0 && tn != nil {
    54  		switch n := tn.(type) {
    55  		case *shortNode:
    56  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    57  				// The trie doesn't contain the key.
    58  				tn = nil
    59  			} else {
    60  				tn = n.Val
    61  				key = key[len(n.Key):]
    62  			}
    63  			nodes = append(nodes, n)
    64  		case *fullNode:
    65  			tn = n.Children[key[0]]
    66  			key = key[1:]
    67  			nodes = append(nodes, n)
    68  		case hashNode:
    69  			var err error
    70  			tn, err = t.resolveHash(n, nil)
    71  			if err != nil {
    72  				logger.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    73  				return err
    74  			}
    75  		default:
    76  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    77  		}
    78  	}
    79  	hasher := newHasher(nil)
    80  	defer returnHasherToPool(hasher)
    81  
    82  	for i, n := range nodes {
    83  		// Don't bother checking for errors here since hasher panics
    84  		// if encoding doesn't work and we're not writing to any database.
    85  		n, _ = hasher.hashChildren(n, nil, false)
    86  		hn, _ := hasher.store(n, nil, false, false)
    87  		if hash, ok := hn.(hashNode); ok || i == 0 {
    88  			// If the node's database encoding is a hash (or is the
    89  			// root node), it becomes a proof element.
    90  			if fromLevel > 0 {
    91  				fromLevel--
    92  			} else {
    93  				// hash is for the merkle proof. hash = Keccak(rlp.Encode(nodeForHashing(n)))
    94  				enc, _ := rlp.EncodeToBytes(hasher.nodeForHashing(n))
    95  				if !ok {
    96  					hash = hasher.hashData(enc, false)
    97  				}
    98  				dbKey := database.TrieNodeKey(common.BytesToExtHash(hash))
    99  				proofDB.WriteMerkleProof(dbKey, enc)
   100  			}
   101  		}
   102  	}
   103  	return nil
   104  }
   105  
   106  // NOTE-Klaytn-RemoveLater Below Prove is only used in tests, not in core codes.
   107  // Prove constructs a merkle proof for key. The result contains all encoded nodes
   108  // on the path to the value at key. The value itself is also included in the last
   109  // node and can be retrieved by verifying the proof.
   110  //
   111  // If the trie does not contain a value for key, the returned proof contains all
   112  // nodes of the longest existing prefix of the key (at least the root node), ending
   113  // with the node that proves the absence of the key.
   114  func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDB database.DBManager) error {
   115  	return t.trie.Prove(key, fromLevel, proofDB)
   116  }
   117  
   118  // VerifyProof checks merkle proofs. The given proof must contain the value for
   119  // key in a trie with the given root hash. VerifyProof returns an error if the
   120  // proof contains invalid trie nodes or the wrong value.
   121  func VerifyProof(rootHash common.Hash, key []byte, proofDB database.DBManager) (value []byte, err error, nodes int) {
   122  	key = keybytesToHex(key)
   123  	wantHash := rootHash
   124  	for i := 0; ; i++ {
   125  		buf, _ := proofDB.ReadTrieNode(wantHash.ExtendZero()) // only works with hash32
   126  		if buf == nil {
   127  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash), i
   128  		}
   129  		n, err := decodeNode(wantHash[:], buf)
   130  		if err != nil {
   131  			return nil, fmt.Errorf("bad proof node %d: %v", i, err), i
   132  		}
   133  		keyrest, cld := get(n, key, true)
   134  		switch cld := cld.(type) {
   135  		case nil:
   136  			// The trie doesn't contain the key.
   137  			return nil, nil, i
   138  		case hashNode:
   139  			key = keyrest
   140  			copy(wantHash[:], cld)
   141  		case valueNode:
   142  			return cld, nil, i + 1
   143  		}
   144  	}
   145  }
   146  
   147  // proofToPath converts a merkle proof to trie node path. The main purpose of
   148  // this function is recovering a node path from the merkle proof stream. All
   149  // necessary nodes will be resolved and leave the remaining as hashnode.
   150  //
   151  // The given edge proof is allowed to be an existent or non-existent proof.
   152  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ProofDBReader, allowNonExistent bool) (node, []byte, error) {
   153  	// resolveNode retrieves and resolves trie node from merkle proof stream
   154  	resolveNode := func(hash common.ExtHash) (node, error) {
   155  		buf, _ := proofDb.ReadTrieNode(hash) // only works with hash32
   156  		if buf == nil {
   157  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   158  		}
   159  		n, err := decodeNode(hash[:], buf)
   160  		if err != nil {
   161  			return nil, fmt.Errorf("bad proof node %v", err)
   162  		}
   163  		return n, err
   164  	}
   165  	// If the root node is empty, resolve it first.
   166  	// Root node must be included in the proof.
   167  	if root == nil {
   168  		n, err := resolveNode(rootHash.ExtendZero())
   169  		if err != nil {
   170  			return nil, nil, err
   171  		}
   172  		root = n
   173  	}
   174  	var (
   175  		err           error
   176  		child, parent node
   177  		keyrest       []byte
   178  		valnode       []byte
   179  	)
   180  	key, parent = keybytesToHex(key), root
   181  	for {
   182  		keyrest, child = get(parent, key, false)
   183  		switch cld := child.(type) {
   184  		case nil:
   185  			// The trie doesn't contain the key. It's possible
   186  			// the proof is a non-existing proof, but at least
   187  			// we can prove all resolved nodes are correct, it's
   188  			// enough for us to prove range.
   189  			if allowNonExistent {
   190  				return root, nil, nil
   191  			}
   192  			return nil, nil, errors.New("the node is not contained in trie")
   193  		case *shortNode:
   194  			key, parent = keyrest, child // Already resolved
   195  			continue
   196  		case *fullNode:
   197  			key, parent = keyrest, child // Already resolved
   198  			continue
   199  		case hashNode:
   200  			child, err = resolveNode(common.BytesToExtHash(cld))
   201  			if err != nil {
   202  				return nil, nil, err
   203  			}
   204  		case valueNode:
   205  			valnode = cld
   206  		}
   207  		// Link the parent and child.
   208  		switch pnode := parent.(type) {
   209  		case *shortNode:
   210  			pnode.Val = child
   211  		case *fullNode:
   212  			pnode.Children[key[0]] = child
   213  		default:
   214  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   215  		}
   216  		if len(valnode) > 0 {
   217  			return root, valnode, nil // The whole path is resolved
   218  		}
   219  		key, parent = keyrest, child
   220  	}
   221  }
   222  
   223  // unsetInternal removes all internal node references(hashnode, embedded node).
   224  // It should be called after a trie is constructed with two edge paths. Also
   225  // the given boundary keys must be the one used to construct the edge paths.
   226  //
   227  // It's the key step for range proof. All visited nodes should be marked dirty
   228  // since the node content might be modified. Besides it can happen that some
   229  // fullnodes only have one child which is disallowed. But if the proof is valid,
   230  // the missing children will be filled, otherwise it will be thrown anyway.
   231  //
   232  // Note we have the assumption here the given boundary keys are different
   233  // and right is larger than left.
   234  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   235  	left, right = keybytesToHex(left), keybytesToHex(right)
   236  
   237  	// Step down to the fork point. There are two scenarios can happen:
   238  	// - the fork point is a shortnode: either the key of left proof or
   239  	//   right proof doesn't match with shortnode's key.
   240  	// - the fork point is a fullnode: both two edge proofs are allowed
   241  	//   to point to a non-existent key.
   242  	var (
   243  		pos    = 0
   244  		parent node
   245  
   246  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   247  		shortForkLeft, shortForkRight int
   248  	)
   249  findFork:
   250  	for {
   251  		switch rn := (n).(type) {
   252  		case *shortNode:
   253  			rn.flags = nodeFlag{dirty: true}
   254  
   255  			// If either the key of left proof or right proof doesn't match with
   256  			// shortnode, stop here and the forkpoint is the shortnode.
   257  			if len(left)-pos < len(rn.Key) {
   258  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   259  			} else {
   260  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   261  			}
   262  			if len(right)-pos < len(rn.Key) {
   263  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   264  			} else {
   265  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   266  			}
   267  			if shortForkLeft != 0 || shortForkRight != 0 {
   268  				break findFork
   269  			}
   270  			parent = n
   271  			n, pos = rn.Val, pos+len(rn.Key)
   272  		case *fullNode:
   273  			rn.flags = nodeFlag{dirty: true}
   274  
   275  			// If either the node pointed by left proof or right proof is nil,
   276  			// stop here and the forkpoint is the fullnode.
   277  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   278  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   279  				break findFork
   280  			}
   281  			parent = n
   282  			n, pos = rn.Children[left[pos]], pos+1
   283  		default:
   284  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   285  		}
   286  	}
   287  	switch rn := n.(type) {
   288  	case *shortNode:
   289  		// There can have these five scenarios:
   290  		// - both proofs are less than the trie path => no valid range
   291  		// - both proofs are greater than the trie path => no valid range
   292  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   293  		// - left proof points to the shortnode, but right proof is greater
   294  		// - right proof points to the shortnode, but left proof is less
   295  		if shortForkLeft == -1 && shortForkRight == -1 {
   296  			return false, errors.New("empty range")
   297  		}
   298  		if shortForkLeft == 1 && shortForkRight == 1 {
   299  			return false, errors.New("empty range")
   300  		}
   301  		if shortForkLeft != 0 && shortForkRight != 0 {
   302  			// The fork point is root node, unset the entire trie
   303  			if parent == nil {
   304  				return true, nil
   305  			}
   306  			parent.(*fullNode).Children[left[pos-1]] = nil
   307  			return false, nil
   308  		}
   309  		// Only one proof points to non-existent key.
   310  		if shortForkRight != 0 {
   311  			if _, ok := rn.Val.(valueNode); ok {
   312  				// The fork point is root node, unset the entire trie
   313  				if parent == nil {
   314  					return true, nil
   315  				}
   316  				parent.(*fullNode).Children[left[pos-1]] = nil
   317  				return false, nil
   318  			}
   319  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   320  		}
   321  		if shortForkLeft != 0 {
   322  			if _, ok := rn.Val.(valueNode); ok {
   323  				// The fork point is root node, unset the entire trie
   324  				if parent == nil {
   325  					return true, nil
   326  				}
   327  				parent.(*fullNode).Children[right[pos-1]] = nil
   328  				return false, nil
   329  			}
   330  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   331  		}
   332  		return false, nil
   333  	case *fullNode:
   334  		// unset all internal nodes in the forkpoint
   335  		for i := left[pos] + 1; i < right[pos]; i++ {
   336  			rn.Children[i] = nil
   337  		}
   338  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   339  			return false, err
   340  		}
   341  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   342  			return false, err
   343  		}
   344  		return false, nil
   345  	default:
   346  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   347  	}
   348  }
   349  
   350  // unset removes all internal node references either the left most or right most.
   351  // It can meet these scenarios:
   352  //
   353  // - The given path is existent in the trie, unset the associated nodes with the
   354  //   specific direction
   355  // - The given path is non-existent in the trie
   356  //   - the fork point is a fullnode, the corresponding child pointed by path
   357  //     is nil, return
   358  //   - the fork point is a shortnode, the shortnode is included in the range,
   359  //     keep the entire branch and return.
   360  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   361  //     unset the entire branch.
   362  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   363  	switch cld := child.(type) {
   364  	case *fullNode:
   365  		if removeLeft {
   366  			for i := 0; i < int(key[pos]); i++ {
   367  				cld.Children[i] = nil
   368  			}
   369  			cld.flags = nodeFlag{dirty: true}
   370  		} else {
   371  			for i := key[pos] + 1; i < 16; i++ {
   372  				cld.Children[i] = nil
   373  			}
   374  			cld.flags = nodeFlag{dirty: true}
   375  		}
   376  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   377  	case *shortNode:
   378  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   379  			// Find the fork point, it's an non-existent branch.
   380  			if removeLeft {
   381  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   382  					// The key of fork shortnode is less than the path
   383  					// (it belongs to the range), unset the entrie
   384  					// branch. The parent must be a fullnode.
   385  					fn := parent.(*fullNode)
   386  					fn.Children[key[pos-1]] = nil
   387  				} else {
   388  					// The key of fork shortnode is greater than the
   389  					// path(it doesn't belong to the range), keep
   390  					// it with the cached hash available.
   391  				}
   392  			} else {
   393  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   394  					// The key of fork shortnode is greater than the
   395  					// path(it belongs to the range), unset the entrie
   396  					// branch. The parent must be a fullnode.
   397  					fn := parent.(*fullNode)
   398  					fn.Children[key[pos-1]] = nil
   399  				} else {
   400  					// The key of fork shortnode is less than the
   401  					// path(it doesn't belong to the range), keep
   402  					// it with the cached hash available.
   403  				}
   404  			}
   405  			return nil
   406  		}
   407  		if _, ok := cld.Val.(valueNode); ok {
   408  			fn := parent.(*fullNode)
   409  			fn.Children[key[pos-1]] = nil
   410  			return nil
   411  		}
   412  		cld.flags = nodeFlag{dirty: true}
   413  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   414  	case nil:
   415  		// If the node is nil, then it's a child of the fork point
   416  		// fullnode(it's a non-existent branch).
   417  		return nil
   418  	default:
   419  		panic("it shouldn't happen") // hashNode, valueNode
   420  	}
   421  }
   422  
   423  // hasRightElement returns the indicator whether there exists more elements
   424  // in the right side of the given path. The given path can point to an existent
   425  // key or a non-existent one. This function has the assumption that the whole
   426  // path should already be resolved.
   427  func hasRightElement(node node, key []byte) bool {
   428  	pos, key := 0, keybytesToHex(key)
   429  	for node != nil {
   430  		switch rn := node.(type) {
   431  		case *fullNode:
   432  			for i := key[pos] + 1; i < 16; i++ {
   433  				if rn.Children[i] != nil {
   434  					return true
   435  				}
   436  			}
   437  			node, pos = rn.Children[key[pos]], pos+1
   438  		case *shortNode:
   439  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   440  				return bytes.Compare(rn.Key, key[pos:]) > 0
   441  			}
   442  			node, pos = rn.Val, pos+len(rn.Key)
   443  		case valueNode:
   444  			return false // We have resolved the whole path
   445  		default:
   446  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   447  		}
   448  	}
   449  	return false
   450  }
   451  
   452  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   453  // can prove the given trie leaves range is matched with the specific root.
   454  // Besides, the range should be consecutive (no gap inside) and monotonic
   455  // increasing.
   456  //
   457  // Note the given proof actually contains two edge proofs. Both of them can
   458  // be non-existent proofs. For example the first proof is for a non-existent
   459  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   460  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   461  // batch is valid.
   462  //
   463  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   464  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   465  // are paired.
   466  //
   467  // Expect the normal case, this function can also be used to verify the following
   468  // range proofs:
   469  //
   470  // - All elements proof. In this case the proof can be nil, but the range should
   471  //   be all the leaves in the trie.
   472  //
   473  // - One element proof. In this case no matter the edge proof is a non-existent
   474  //   proof or not, we can always verify the correctness of the proof.
   475  //
   476  // - Zero element proof. In this case a single non-existent proof is enough to prove.
   477  //   Besides, if there are still some other leaves available on the right side, then
   478  //   an error will be returned.
   479  //
   480  // Except returning the error to indicate the proof is valid or not, the function will
   481  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   482  //
   483  // Note: This method does not verify that the proof is of minimal form. If the input
   484  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   485  // data, then the proof will still be accepted.
   486  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ProofDBReader) (bool, error) {
   487  	if len(keys) != len(values) {
   488  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   489  	}
   490  	// Ensure the received batch is monotonic increasing.
   491  	for i := 0; i < len(keys)-1; i++ {
   492  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   493  			return false, errors.New("range is not monotonically increasing")
   494  		}
   495  	}
   496  	// Special case, there is no edge proof at all. The given range is expected
   497  	// to be the whole leaf-set in the trie.
   498  	if proof == nil {
   499  		tr, _ := NewTrie(common.Hash{}, NewDatabase(database.NewMemoryDBManager()), nil)
   500  		for index, key := range keys {
   501  			tr.TryUpdate(key, values[index])
   502  		}
   503  		if have, want := tr.Hash(), rootHash; have != want {
   504  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   505  		}
   506  		return false, nil // No more elements
   507  	}
   508  	// Special case, there is a provided edge proof but zero key/value
   509  	// pairs, ensure there are no more accounts / slots in the trie.
   510  	if len(keys) == 0 {
   511  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   512  		if err != nil {
   513  			return false, err
   514  		}
   515  		if val != nil || hasRightElement(root, firstKey) {
   516  			return false, errors.New("more entries available")
   517  		}
   518  		return hasRightElement(root, firstKey), nil
   519  	}
   520  	// Special case, there is only one element and two edge keys are same.
   521  	// In this case, we can't construct two edge paths. So handle it here.
   522  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   523  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   524  		if err != nil {
   525  			return false, err
   526  		}
   527  		if !bytes.Equal(firstKey, keys[0]) {
   528  			return false, errors.New("correct proof but invalid key")
   529  		}
   530  		if !bytes.Equal(val, values[0]) {
   531  			return false, errors.New("correct proof but invalid data")
   532  		}
   533  		return hasRightElement(root, firstKey), nil
   534  	}
   535  	// Ok, in all other cases, we require two edge paths available.
   536  	// First check the validity of edge keys.
   537  	if bytes.Compare(firstKey, lastKey) >= 0 {
   538  		return false, errors.New("invalid edge keys")
   539  	}
   540  	// todo(rjl493456442) different length edge keys should be supported
   541  	if len(firstKey) != len(lastKey) {
   542  		return false, errors.New("inconsistent edge keys")
   543  	}
   544  	// Convert the edge proofs to edge trie paths. Then we can
   545  	// have the same tree architecture with the original one.
   546  	// For the first edge proof, non-existent proof is allowed.
   547  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   548  	if err != nil {
   549  		return false, err
   550  	}
   551  	// Pass the root node here, the second path will be merged
   552  	// with the first one. For the last edge proof, non-existent
   553  	// proof is also allowed.
   554  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   555  	if err != nil {
   556  		return false, err
   557  	}
   558  	// Remove all internal references. All the removed parts should
   559  	// be re-filled(or re-constructed) by the given leaves range.
   560  	empty, err := unsetInternal(root, firstKey, lastKey)
   561  	if err != nil {
   562  		return false, err
   563  	}
   564  	// Rebuild the trie with the leaf stream, the shape of trie
   565  	// should be same with the original one.
   566  	tr := &Trie{root: root, db: NewDatabase(database.NewMemoryDBManager())}
   567  	if empty {
   568  		tr.root = nil
   569  	}
   570  	for index, key := range keys {
   571  		tr.TryUpdate(key, values[index])
   572  	}
   573  	if tr.Hash() != rootHash {
   574  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   575  	}
   576  	return hasRightElement(root, keys[len(keys)-1]), nil
   577  }
   578  
   579  // get returns the child of the given node. Return nil if the
   580  // node with specified key doesn't exist at all.
   581  //
   582  // There is an additional flag `skipResolved`. If it's set then
   583  // all resolved nodes won't be returned.
   584  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   585  	for {
   586  		switch n := tn.(type) {
   587  		case *shortNode:
   588  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   589  				return nil, nil
   590  			}
   591  			tn = n.Val
   592  			key = key[len(n.Key):]
   593  			if !skipResolved {
   594  				return key, tn
   595  			}
   596  		case *fullNode:
   597  			tn = n.Children[key[0]]
   598  			key = key[1:]
   599  			if !skipResolved {
   600  				return key, tn
   601  			}
   602  		case hashNode:
   603  			return key, n
   604  		case nil:
   605  			return key, nil
   606  		case valueNode:
   607  			return nil, n
   608  		default:
   609  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   610  		}
   611  	}
   612  }