github.com/klaytn/klaytn@v1.12.1/storage/statedb/stacktrie.go (about) 1 // Modifications Copyright 2021 The klaytn Authors 2 // Copyright 2020 The go-ethereum Authors 3 // This file is part of the go-ethereum library. 4 // 5 // The go-ethereum library is free software: you can redistribute it and/or modify 6 // it under the terms of the GNU Lesser General Public License as published by 7 // the Free Software Foundation, either version 3 of the License, or 8 // (at your option) any later version. 9 // 10 // The go-ethereum library is distributed in the hope that it will be useful, 11 // but WITHOUT ANY WARRANTY; without even the implied warranty of 12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 // GNU Lesser General Public License for more details. 14 // 15 // You should have received a copy of the GNU Lesser General Public License 16 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 17 // 18 // This file is derived from trie/stacktrie.go (2021/11/23). 19 // Modified and improved for the klaytn development. 20 21 package statedb 22 23 import ( 24 "bufio" 25 "bytes" 26 "encoding/gob" 27 "errors" 28 "fmt" 29 "io" 30 "sync" 31 32 "github.com/klaytn/klaytn/common" 33 "github.com/klaytn/klaytn/rlp" 34 "github.com/klaytn/klaytn/storage/database" 35 ) 36 37 var ErrCommitDisabled = errors.New("no database for committing") 38 39 var stPool = sync.Pool{ 40 New: func() interface{} { 41 return NewStackTrie(nil) 42 }, 43 } 44 45 func stackTrieFromPool(db database.DBManager) *StackTrie { 46 st := stPool.Get().(*StackTrie) 47 st.db = db 48 return st 49 } 50 51 func returnToPool(st *StackTrie) { 52 st.Reset() 53 stPool.Put(st) 54 } 55 56 // StackTrie is a trie implementation that expects keys to be inserted 57 // in order. Once it determines that a subtree will no longer be inserted 58 // into, it will hash it and free up the memory it uses. 59 type StackTrie struct { 60 nodeType uint8 // node type (as in branch, ext, leaf) 61 val []byte // value contained by this node if it's a leaf 62 key []byte // key chunk covered by this (full|ext) node 63 keyOffset int // offset of the key chunk inside a full key 64 children [16]*StackTrie // list of children (for fullnodes and exts) 65 db database.DBManager // Pointer to the commit db, can be nil 66 } 67 68 // NewStackTrie allocates and initializes an empty trie. 69 func NewStackTrie(db database.DBManager) *StackTrie { 70 return &StackTrie{ 71 nodeType: emptyNode, 72 db: db, 73 } 74 } 75 76 // NewFromBinary initialises a serialized stacktrie with the given db. 77 func NewFromBinary(data []byte, db database.DBManager) (*StackTrie, error) { 78 var st StackTrie 79 if err := st.UnmarshalBinary(data); err != nil { 80 return nil, err 81 } 82 // If a database is used, we need to recursively add it to every child 83 if db != nil { 84 st.setDb(db) 85 } 86 return &st, nil 87 } 88 89 // MarshalBinary implements encoding.BinaryMarshaler 90 func (st *StackTrie) MarshalBinary() (data []byte, err error) { 91 var ( 92 b bytes.Buffer 93 w = bufio.NewWriter(&b) 94 ) 95 if err := gob.NewEncoder(w).Encode(struct { 96 Nodetype uint8 97 KeyOffset uint8 98 Val []byte 99 Key []byte 100 }{ 101 st.nodeType, 102 uint8(st.keyOffset), 103 st.val, 104 st.key, 105 }); err != nil { 106 return nil, err 107 } 108 for _, child := range st.children { 109 if child == nil { 110 w.WriteByte(0) 111 continue 112 } 113 w.WriteByte(1) 114 if childData, err := child.MarshalBinary(); err != nil { 115 return nil, err 116 } else { 117 w.Write(childData) 118 } 119 } 120 w.Flush() 121 return b.Bytes(), nil 122 } 123 124 // UnmarshalBinary implements encoding.BinaryUnmarshaler 125 func (st *StackTrie) UnmarshalBinary(data []byte) error { 126 r := bytes.NewReader(data) 127 return st.unmarshalBinary(r) 128 } 129 130 func (st *StackTrie) unmarshalBinary(r io.Reader) error { 131 var dec struct { 132 Nodetype uint8 133 KeyOffset uint8 134 Val []byte 135 Key []byte 136 } 137 gob.NewDecoder(r).Decode(&dec) 138 st.nodeType = dec.Nodetype 139 st.val = dec.Val 140 st.key = dec.Key 141 st.keyOffset = int(dec.KeyOffset) 142 143 hasChild := make([]byte, 1) 144 for i := range st.children { 145 if _, err := r.Read(hasChild); err != nil { 146 return err 147 } else if hasChild[0] == 0 { 148 continue 149 } 150 var child StackTrie 151 child.unmarshalBinary(r) 152 st.children[i] = &child 153 } 154 return nil 155 } 156 157 func (st *StackTrie) setDb(db database.DBManager) { 158 st.db = db 159 for _, child := range st.children { 160 if child != nil { 161 child.setDb(db) 162 } 163 } 164 } 165 166 func newLeaf(ko int, key, val []byte, db database.DBManager) *StackTrie { 167 st := stackTrieFromPool(db) 168 st.nodeType = leafNode 169 st.keyOffset = ko 170 st.key = append(st.key, key[ko:]...) 171 st.val = val 172 return st 173 } 174 175 func newExt(ko int, key []byte, child *StackTrie, db database.DBManager) *StackTrie { 176 st := stackTrieFromPool(db) 177 st.nodeType = extNode 178 st.keyOffset = ko 179 st.key = append(st.key, key[ko:]...) 180 st.children[0] = child 181 return st 182 } 183 184 // List all values that StackTrie#nodeType can hold 185 const ( 186 emptyNode = iota 187 branchNode 188 extNode 189 leafNode 190 hashedNode 191 ) 192 193 // TryUpdate inserts a (key, value) pair into the stack trie 194 func (st *StackTrie) TryUpdate(key, value []byte) error { 195 k := keybytesToHex(key) 196 if len(value) == 0 { 197 panic("deletion not supported") 198 } 199 st.insert(k[:len(k)-1], value) 200 return nil 201 } 202 203 func (st *StackTrie) Update(key, value []byte) { 204 if err := st.TryUpdate(key, value); err != nil { 205 logger.Error(fmt.Sprintf("Unhandled trie error: %v", err)) 206 } 207 } 208 209 func (st *StackTrie) Reset() { 210 st.db = nil 211 st.key = st.key[:0] 212 st.val = nil 213 for i := range st.children { 214 st.children[i] = nil 215 } 216 st.nodeType = emptyNode 217 st.keyOffset = 0 218 } 219 220 // Helper function that, given a full key, determines the index 221 // at which the chunk pointed by st.keyOffset is different from 222 // the same chunk in the full key. 223 func (st *StackTrie) getDiffIndex(key []byte) int { 224 diffindex := 0 225 for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ { 226 } 227 return diffindex 228 } 229 230 // Helper function to that inserts a (key, value) pair into 231 // the trie. 232 func (st *StackTrie) insert(key, value []byte) { 233 switch st.nodeType { 234 case branchNode: /* Branch */ 235 idx := int(key[st.keyOffset]) 236 // Unresolve elder siblings 237 for i := idx - 1; i >= 0; i-- { 238 if st.children[i] != nil { 239 if st.children[i].nodeType != hashedNode { 240 st.children[i].hash() 241 } 242 break 243 } 244 } 245 // Add new child 246 if st.children[idx] == nil { 247 st.children[idx] = stackTrieFromPool(st.db) 248 st.children[idx].keyOffset = st.keyOffset + 1 249 } 250 st.children[idx].insert(key, value) 251 case extNode: /* Ext */ 252 // Compare both key chunks and see where they differ 253 diffidx := st.getDiffIndex(key) 254 255 // Check if chunks are identical. If so, recurse into 256 // the child node. Otherwise, the key has to be split 257 // into 1) an optional common prefix, 2) the fullnode 258 // representing the two differing path, and 3) a leaf 259 // for each of the differentiated subtrees. 260 if diffidx == len(st.key) { 261 // Ext key and key segment are identical, recurse into 262 // the child node. 263 st.children[0].insert(key, value) 264 return 265 } 266 // Save the original part. Depending if the break is 267 // at the extension's last byte or not, create an 268 // intermediate extension or use the extension's child 269 // node directly. 270 var n *StackTrie 271 if diffidx < len(st.key)-1 { 272 n = newExt(diffidx+1, st.key, st.children[0], st.db) 273 } else { 274 // Break on the last byte, no need to insert 275 // an extension node: reuse the current node 276 n = st.children[0] 277 } 278 // Convert to hash 279 n.hash() 280 var p *StackTrie 281 if diffidx == 0 { 282 // the break is on the first byte, so 283 // the current node is converted into 284 // a branch node. 285 st.children[0] = nil 286 p = st 287 st.nodeType = branchNode 288 } else { 289 // the common prefix is at least one byte 290 // long, insert a new intermediate branch 291 // node. 292 st.children[0] = stackTrieFromPool(st.db) 293 st.children[0].nodeType = branchNode 294 st.children[0].keyOffset = st.keyOffset + diffidx 295 p = st.children[0] 296 } 297 // Create a leaf for the inserted part 298 o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db) 299 300 // Insert both child leaves where they belong: 301 origIdx := st.key[diffidx] 302 newIdx := key[diffidx+st.keyOffset] 303 p.children[origIdx] = n 304 p.children[newIdx] = o 305 st.key = st.key[:diffidx] 306 307 case leafNode: /* Leaf */ 308 // Compare both key chunks and see where they differ 309 diffidx := st.getDiffIndex(key) 310 311 // Overwriting a key isn't supported, which means that 312 // the current leaf is expected to be split into 1) an 313 // optional extension for the common prefix of these 2 314 // keys, 2) a fullnode selecting the path on which the 315 // keys differ, and 3) one leaf for the differentiated 316 // component of each key. 317 if diffidx >= len(st.key) { 318 panic("Trying to insert into existing key") 319 } 320 321 // Check if the split occurs at the first nibble of the 322 // chunk. In that case, no prefix extnode is necessary. 323 // Otherwise, create that 324 var p *StackTrie 325 if diffidx == 0 { 326 // Convert current leaf into a branch 327 st.nodeType = branchNode 328 p = st 329 st.children[0] = nil 330 } else { 331 // Convert current node into an ext, 332 // and insert a child branch node. 333 st.nodeType = extNode 334 st.children[0] = NewStackTrie(st.db) 335 st.children[0].nodeType = branchNode 336 st.children[0].keyOffset = st.keyOffset + diffidx 337 p = st.children[0] 338 } 339 340 // Create the two child leaves: the one containing the 341 // original value and the one containing the new value 342 // The child leave will be hashed directly in order to 343 // free up some memory. 344 origIdx := st.key[diffidx] 345 p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db) 346 p.children[origIdx].hash() 347 348 newIdx := key[diffidx+st.keyOffset] 349 p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db) 350 351 // Finally, cut off the key part that has been passed 352 // over to the children. 353 st.key = st.key[:diffidx] 354 st.val = nil 355 case emptyNode: /* Empty */ 356 st.nodeType = leafNode 357 st.key = key[st.keyOffset:] 358 st.val = value 359 case hashedNode: 360 panic("trying to insert into hash") 361 default: 362 panic("invalid type") 363 } 364 } 365 366 // hash() hashes the node 'st' and converts it into 'hashedNode', if possible. 367 // Possible outcomes: 368 // 1. The rlp-encoded value was >= 32 bytes: 369 // - Then the 32-byte `hash` will be accessible in `st.val`. 370 // - And the 'st.type' will be 'hashedNode' 371 // 2. The rlp-encoded value was < 32 bytes 372 // - Then the <32 byte rlp-encoded value will be accessible in 'st.val'. 373 // - And the 'st.type' will be 'hashedNode' AGAIN 374 // 375 // This method will also: 376 // set 'st.type' to hashedNode 377 // clear 'st.key' 378 func (st *StackTrie) hash() { 379 /* Shortcut if node is already hashed */ 380 if st.nodeType == hashedNode { 381 return 382 } 383 // The 'hasher' is taken from a pool, but we don't actually 384 // claim an instance until all children are done with their hashing, 385 // and we actually need one 386 var h *hasher 387 388 switch st.nodeType { 389 case branchNode: 390 var nodes [17]node 391 for i, child := range st.children { 392 if child == nil { 393 nodes[i] = nilValueNode 394 continue 395 } 396 child.hash() 397 if len(child.val) < 32 { 398 nodes[i] = rawNode(child.val) 399 } else { 400 nodes[i] = hashNode(child.val) 401 } 402 st.children[i] = nil // Reclaim mem from subtree 403 returnToPool(child) 404 } 405 nodes[16] = nilValueNode 406 h = newHasher(nil) 407 defer returnHasherToPool(h) 408 h.tmp.Reset() 409 if err := rlp.Encode(&h.tmp, nodes); err != nil { 410 panic(err) 411 } 412 case extNode: 413 st.children[0].hash() 414 h = newHasher(nil) 415 defer returnHasherToPool(h) 416 h.tmp.Reset() 417 var valuenode node 418 if len(st.children[0].val) < 32 { 419 valuenode = rawNode(st.children[0].val) 420 } else { 421 valuenode = hashNode(st.children[0].val) 422 } 423 n := struct { 424 Key []byte 425 Val node 426 }{ 427 Key: hexToCompact(st.key), 428 Val: valuenode, 429 } 430 if err := rlp.Encode(&h.tmp, n); err != nil { 431 panic(err) 432 } 433 returnToPool(st.children[0]) 434 st.children[0] = nil // Reclaim mem from subtree 435 case leafNode: 436 h = newHasher(nil) 437 defer returnHasherToPool(h) 438 h.tmp.Reset() 439 st.key = append(st.key, byte(16)) 440 sz := hexToCompactInPlace(st.key) 441 n := [][]byte{st.key[:sz], st.val} 442 if err := rlp.Encode(&h.tmp, n); err != nil { 443 panic(err) 444 } 445 case emptyNode: 446 st.val = emptyRoot.Bytes() 447 st.key = st.key[:0] 448 st.nodeType = hashedNode 449 return 450 default: 451 panic("Invalid node type") 452 } 453 st.key = st.key[:0] 454 st.nodeType = hashedNode 455 if len(h.tmp) < 32 { 456 st.val = common.CopyBytes(h.tmp) 457 return 458 } 459 // Write the hash to the 'val'. We allocate a new val here to not mutate 460 // input values 461 st.val = make([]byte, 32) 462 h.sha.Reset() 463 h.sha.Write(h.tmp) 464 h.sha.Read(st.val) 465 if st.db != nil { 466 st.db.WriteTrieNode(common.BytesToExtHash(st.val), h.tmp) 467 } 468 } 469 470 // Hash returns the hash of the current node 471 func (st *StackTrie) Hash() (h common.Hash) { 472 st.hash() 473 if len(st.val) != 32 { 474 // If the node's RLP isn't 32 bytes long, the node will not 475 // be hashed, and instead contain the rlp-encoding of the 476 // node. For the top level node, we need to force the hashing. 477 ret := make([]byte, 32) 478 h := newHasher(nil) 479 defer returnHasherToPool(h) 480 h.sha.Reset() 481 h.sha.Write(st.val) 482 h.sha.Read(ret) 483 return common.BytesToHash(ret) 484 } 485 return common.BytesToHash(st.val) 486 } 487 488 // Commit will firstly hash the entrie trie if it's still not hashed 489 // and then commit all nodes to the associated database. Actually most 490 // of the trie nodes MAY have been committed already. The main purpose 491 // here is to commit the root node. 492 // 493 // The associated database is expected, otherwise the whole commit 494 // functionality should be disabled. 495 func (st *StackTrie) Commit() (common.Hash, error) { 496 if st.db == nil { 497 return common.Hash{}, ErrCommitDisabled 498 } 499 st.hash() 500 if len(st.val) != 32 { 501 // If the node's RLP isn't 32 bytes long, the node will not 502 // be hashed (and committed), and instead contain the rlp-encoding of the 503 // node. For the top level node, we need to force the hashing+commit. 504 ret := make([]byte, 32) 505 h := newHasher(nil) 506 defer returnHasherToPool(h) 507 h.sha.Reset() 508 h.sha.Write(st.val) 509 h.sha.Read(ret) 510 st.db.WriteTrieNode(common.BytesToExtHash(ret), st.val) 511 return common.BytesToHash(ret), nil 512 } 513 return common.BytesToHash(st.val), nil 514 }