github.com/klaytn/klaytn@v1.12.1/tests/tx_validation_test.go (about)

     1  // Copyright 2019 The klaytn Authors
     2  // This file is part of the klaytn library.
     3  //
     4  // The klaytn library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The klaytn library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the klaytn library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package tests
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"errors"
    22  	"fmt"
    23  	"math/big"
    24  	"testing"
    25  	"time"
    26  
    27  	"github.com/klaytn/klaytn/blockchain"
    28  	"github.com/klaytn/klaytn/blockchain/types"
    29  	"github.com/klaytn/klaytn/blockchain/types/accountkey"
    30  	"github.com/klaytn/klaytn/blockchain/vm"
    31  	"github.com/klaytn/klaytn/common"
    32  	"github.com/klaytn/klaytn/common/profile"
    33  	"github.com/klaytn/klaytn/crypto"
    34  	"github.com/klaytn/klaytn/kerrors"
    35  	"github.com/klaytn/klaytn/log"
    36  	"github.com/klaytn/klaytn/params"
    37  	"github.com/klaytn/klaytn/rlp"
    38  	"github.com/stretchr/testify/assert"
    39  )
    40  
    41  type txValueMap map[types.TxValueKeyType]interface{}
    42  
    43  type testTxType struct {
    44  	name   string
    45  	txType types.TxType
    46  }
    47  
    48  func toBasicType(txType types.TxType) types.TxType {
    49  	return txType &^ ((1 << types.SubTxTypeBits) - 1)
    50  }
    51  
    52  func genMapForTxTypes(from TestAccount, to TestAccount, txType types.TxType) (txValueMap, uint64) {
    53  	var valueMap txValueMap
    54  	gas := uint64(0)
    55  	gasPrice := big.NewInt(25 * params.Ston)
    56  	newAccount, err := createDefaultAccount(accountkey.AccountKeyTypePublic)
    57  	if err != nil {
    58  		return nil, 0
    59  	}
    60  
    61  	// switch to basic tx type representation and generate a map
    62  	switch toBasicType(txType) {
    63  	case types.TxTypeLegacyTransaction:
    64  		valueMap, gas = genMapForLegacyTransaction(from, to, gasPrice, txType)
    65  	case types.TxTypeValueTransfer:
    66  		valueMap, gas = genMapForValueTransfer(from, to, gasPrice, txType)
    67  	case types.TxTypeValueTransferMemo:
    68  		valueMap, gas = genMapForValueTransferWithMemo(from, to, gasPrice, txType)
    69  	case types.TxTypeAccountUpdate:
    70  		valueMap, gas = genMapForUpdate(from, to, gasPrice, newAccount.AccKey, txType)
    71  	case types.TxTypeSmartContractDeploy:
    72  		valueMap, gas = genMapForDeploy(from, nil, gasPrice, txType)
    73  	case types.TxTypeSmartContractExecution:
    74  		valueMap, gas = genMapForExecution(from, to, gasPrice, txType)
    75  	case types.TxTypeCancel:
    76  		valueMap, gas = genMapForCancel(from, gasPrice, txType)
    77  	case types.TxTypeChainDataAnchoring:
    78  		valueMap, gas = genMapForChainDataAnchoring(from, gasPrice, txType)
    79  	}
    80  
    81  	if txType.IsFeeDelegatedTransaction() {
    82  		valueMap[types.TxValueKeyFeePayer] = from.GetAddr()
    83  	}
    84  
    85  	if txType.IsFeeDelegatedWithRatioTransaction() {
    86  		valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(30)
    87  	}
    88  
    89  	if txType == types.TxTypeEthereumAccessList {
    90  		valueMap, gas = genMapForAccessListTransaction(from, to, gasPrice, txType)
    91  	}
    92  
    93  	if txType == types.TxTypeEthereumDynamicFee {
    94  		valueMap, gas = genMapForDynamicFeeTransaction(from, to, gasPrice, txType)
    95  	}
    96  
    97  	return valueMap, gas
    98  }
    99  
   100  // TestValidationPoolInsert generates invalid txs which will be invalidated during txPool insert process.
   101  func TestValidationPoolInsert(t *testing.T) {
   102  	log.EnableLogForTest(log.LvlCrit, log.LvlTrace)
   103  
   104  	testTxTypes := []testTxType{}
   105  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
   106  		if i == types.TxTypeKlaytnLast {
   107  			i = types.TxTypeEthereumAccessList
   108  		}
   109  
   110  		_, err := types.NewTxInternalData(i)
   111  		if err == nil {
   112  			testTxTypes = append(testTxTypes, testTxType{i.String(), i})
   113  		}
   114  	}
   115  
   116  	invalidCases := []struct {
   117  		Name string
   118  		fn   func(types.TxType, txValueMap, common.Address) (txValueMap, error)
   119  	}{
   120  		{"invalidNonce", decreaseNonce},
   121  		{"invalidGasPrice", decreaseGasPrice},
   122  		{"invalidTxSize", exceedSizeLimit},
   123  		{"invalidRecipientProgram", valueTransferToContract},
   124  		{"invalidRecipientNotProgram", executeToEOA},
   125  		{"invalidCodeFormat", invalidCodeFormat},
   126  	}
   127  
   128  	prof := profile.NewProfiler()
   129  
   130  	// Initialize blockchain
   131  	bcdata, err := NewBCData(6, 4)
   132  	if err != nil {
   133  		t.Fatal(err)
   134  	}
   135  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
   136  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
   137  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
   138  	defer bcdata.Shutdown()
   139  
   140  	// Initialize address-balance map for verification
   141  	accountMap := NewAccountMap()
   142  	if err := accountMap.Initialize(bcdata); err != nil {
   143  		t.Fatal(err)
   144  	}
   145  
   146  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
   147  
   148  	// reservoir account
   149  	reservoir := &TestAccountType{
   150  		Addr:  *bcdata.addrs[0],
   151  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
   152  		Nonce: uint64(0),
   153  	}
   154  
   155  	// for contract execution txs
   156  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
   157  	assert.Equal(t, nil, err)
   158  
   159  	// deploy a contract for contract execution tx type
   160  	{
   161  		var txs types.Transactions
   162  
   163  		values := map[types.TxValueKeyType]interface{}{
   164  			types.TxValueKeyNonce:         reservoir.GetNonce(),
   165  			types.TxValueKeyFrom:          reservoir.GetAddr(),
   166  			types.TxValueKeyTo:            (*common.Address)(nil),
   167  			types.TxValueKeyAmount:        big.NewInt(0),
   168  			types.TxValueKeyGasLimit:      gasLimit,
   169  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
   170  			types.TxValueKeyHumanReadable: false,
   171  			types.TxValueKeyData:          common.FromHex(code),
   172  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
   173  		}
   174  
   175  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
   176  		assert.Equal(t, nil, err)
   177  
   178  		err = tx.SignWithKeys(signer, reservoir.Keys)
   179  		assert.Equal(t, nil, err)
   180  
   181  		txs = append(txs, tx)
   182  
   183  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
   184  			t.Fatal(err)
   185  		}
   186  
   187  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
   188  
   189  		reservoir.AddNonce()
   190  	}
   191  
   192  	// make TxPool to test validation in 'TxPool add' process
   193  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
   194  
   195  	// test for all tx types
   196  	for _, testTxType := range testTxTypes {
   197  		txType := testTxType.txType
   198  
   199  		// generate invalid txs and check the return error
   200  		for _, invalidCase := range invalidCases {
   201  			to := reservoir
   202  			if toBasicType(testTxType.txType) == types.TxTypeSmartContractExecution {
   203  				to = contract
   204  			}
   205  
   206  			// generate a new tx and mutate it
   207  			valueMap, _ := genMapForTxTypes(reservoir, to, txType)
   208  			invalidMap, expectedErr := invalidCase.fn(txType, valueMap, contract.Addr)
   209  
   210  			tx, err := types.NewTransactionWithMap(txType, invalidMap)
   211  			assert.Equal(t, nil, err)
   212  
   213  			err = tx.SignWithKeys(signer, reservoir.Keys)
   214  			assert.Equal(t, nil, err)
   215  
   216  			if txType.IsFeeDelegatedTransaction() {
   217  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
   218  				assert.Equal(t, nil, err)
   219  			}
   220  
   221  			err = txpool.AddRemote(tx)
   222  			assert.Equal(t, expectedErr, err)
   223  			if expectedErr == nil {
   224  				reservoir.Nonce += 1
   225  			}
   226  		}
   227  	}
   228  }
   229  
   230  func TestValidationPoolInsertMagma(t *testing.T) {
   231  	log.EnableLogForTest(log.LvlCrit, log.LvlTrace)
   232  
   233  	testTxTypes := []testTxType{}
   234  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
   235  		if i == types.TxTypeKlaytnLast {
   236  			i = types.TxTypeEthereumAccessList
   237  		}
   238  
   239  		_, err := types.NewTxInternalData(i)
   240  		if err == nil {
   241  			testTxTypes = append(testTxTypes, testTxType{i.String(), i})
   242  		}
   243  	}
   244  
   245  	invalidCases := []struct {
   246  		Name string
   247  		fn   func(types.TxType, txValueMap, common.Address) (txValueMap, error)
   248  	}{
   249  		{"invalidGasPrice", decreaseGasPriceMagma},
   250  	}
   251  
   252  	// prof := profile.NewProfiler()
   253  
   254  	// Initialize blockchain
   255  	bcdata, err := NewBCData(6, 4)
   256  	if err != nil {
   257  		t.Fatal(err)
   258  	}
   259  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
   260  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
   261  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
   262  	bcdata.bc.Config().MagmaCompatibleBlock = big.NewInt(0)
   263  	defer bcdata.Shutdown()
   264  
   265  	// Initialize address-balance map for verification
   266  	accountMap := NewAccountMap()
   267  	if err := accountMap.Initialize(bcdata); err != nil {
   268  		t.Fatal(err)
   269  	}
   270  
   271  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
   272  
   273  	// reservoir account
   274  	reservoir := &TestAccountType{
   275  		Addr:  *bcdata.addrs[0],
   276  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
   277  		Nonce: uint64(0),
   278  	}
   279  
   280  	// for contract execution txs
   281  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
   282  	assert.Equal(t, nil, err)
   283  
   284  	// deploy a contract for contract execution tx type
   285  	{
   286  		var txs types.Transactions
   287  
   288  		values := map[types.TxValueKeyType]interface{}{
   289  			types.TxValueKeyNonce:         reservoir.GetNonce(),
   290  			types.TxValueKeyFrom:          reservoir.GetAddr(),
   291  			types.TxValueKeyTo:            (*common.Address)(nil),
   292  			types.TxValueKeyAmount:        big.NewInt(0),
   293  			types.TxValueKeyGasLimit:      gasLimit,
   294  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
   295  			types.TxValueKeyHumanReadable: false,
   296  			types.TxValueKeyData:          common.FromHex(code),
   297  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
   298  		}
   299  
   300  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
   301  		assert.Equal(t, nil, err)
   302  
   303  		err = tx.SignWithKeys(signer, reservoir.Keys)
   304  		assert.Equal(t, nil, err)
   305  
   306  		// TODO-Klaytn: fix GenABlockWithTransactions and related testcases
   307  		/*
   308  			if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
   309  				t.Fatal(err)
   310  			}
   311  		*/
   312  
   313  		txs = append(txs, tx)
   314  
   315  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
   316  
   317  		reservoir.AddNonce()
   318  	}
   319  
   320  	// make TxPool to test validation in 'TxPool add' process
   321  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
   322  
   323  	// test for all tx types
   324  	for _, testTxType := range testTxTypes {
   325  		txType := testTxType.txType
   326  
   327  		// generate invalid txs and check the return error
   328  		for _, invalidCase := range invalidCases {
   329  			to := reservoir
   330  			if toBasicType(testTxType.txType) == types.TxTypeSmartContractExecution {
   331  				to = contract
   332  			}
   333  
   334  			// generate a new tx and mutate it
   335  			valueMap, _ := genMapForTxTypes(reservoir, to, txType)
   336  			invalidMap, expectedErr := invalidCase.fn(txType, valueMap, contract.Addr)
   337  
   338  			tx, err := types.NewTransactionWithMap(txType, invalidMap)
   339  			assert.Equal(t, nil, err)
   340  
   341  			err = tx.SignWithKeys(signer, reservoir.Keys)
   342  			assert.Equal(t, nil, err)
   343  
   344  			if txType.IsFeeDelegatedTransaction() {
   345  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
   346  				assert.Equal(t, nil, err)
   347  			}
   348  
   349  			err = txpool.AddRemote(tx)
   350  			assert.Equal(t, expectedErr, err)
   351  			if expectedErr == nil {
   352  				reservoir.Nonce += 1
   353  			}
   354  		}
   355  	}
   356  }
   357  
   358  // TestValidationBlockTx generates invalid txs which will be invalidated during block insert process.
   359  func TestValidationBlockTx(t *testing.T) {
   360  	log.EnableLogForTest(log.LvlCrit, log.LvlTrace)
   361  
   362  	testTxTypes := []testTxType{}
   363  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
   364  		if i == types.TxTypeKlaytnLast {
   365  			i = types.TxTypeEthereumAccessList
   366  		}
   367  
   368  		_, err := types.NewTxInternalData(i)
   369  		if err == nil {
   370  			testTxTypes = append(testTxTypes, testTxType{i.String(), i})
   371  		}
   372  	}
   373  
   374  	invalidCases := []struct {
   375  		Name string
   376  		fn   func(types.TxType, txValueMap, common.Address) (txValueMap, error)
   377  	}{
   378  		{"invalidNonce", decreaseNonce},
   379  		{"invalidRecipientProgram", valueTransferToContract},
   380  		{"invalidRecipientNotProgram", executeToEOA},
   381  		{"invalidCodeFormat", invalidCodeFormat},
   382  	}
   383  
   384  	prof := profile.NewProfiler()
   385  
   386  	// Initialize blockchain
   387  	bcdata, err := NewBCData(6, 4)
   388  	if err != nil {
   389  		t.Fatal(err)
   390  	}
   391  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
   392  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
   393  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
   394  	defer bcdata.Shutdown()
   395  
   396  	// Initialize address-balance map for verification
   397  	accountMap := NewAccountMap()
   398  	if err := accountMap.Initialize(bcdata); err != nil {
   399  		t.Fatal(err)
   400  	}
   401  
   402  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
   403  
   404  	// reservoir account
   405  	reservoir := &TestAccountType{
   406  		Addr:  *bcdata.addrs[0],
   407  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
   408  		Nonce: uint64(0),
   409  	}
   410  
   411  	// for contract execution txs
   412  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
   413  	assert.Equal(t, nil, err)
   414  
   415  	// deploy a contract for contract execution tx type
   416  	{
   417  		var txs types.Transactions
   418  
   419  		values := map[types.TxValueKeyType]interface{}{
   420  			types.TxValueKeyNonce:         reservoir.GetNonce(),
   421  			types.TxValueKeyFrom:          reservoir.GetAddr(),
   422  			types.TxValueKeyTo:            (*common.Address)(nil),
   423  			types.TxValueKeyAmount:        big.NewInt(0),
   424  			types.TxValueKeyGasLimit:      gasLimit,
   425  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
   426  			types.TxValueKeyHumanReadable: false,
   427  			types.TxValueKeyData:          common.FromHex(code),
   428  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
   429  		}
   430  
   431  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
   432  		assert.Equal(t, nil, err)
   433  
   434  		err = tx.SignWithKeys(signer, reservoir.Keys)
   435  		assert.Equal(t, nil, err)
   436  
   437  		txs = append(txs, tx)
   438  
   439  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
   440  			t.Fatal(err)
   441  		}
   442  
   443  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
   444  
   445  		reservoir.AddNonce()
   446  	}
   447  
   448  	// test for all tx types
   449  	for _, testTxType := range testTxTypes {
   450  		txType := testTxType.txType
   451  
   452  		// generate invalid txs and check the return error
   453  		for _, invalidCase := range invalidCases {
   454  			to := reservoir
   455  			if toBasicType(testTxType.txType) == types.TxTypeSmartContractExecution {
   456  				to = contract
   457  			}
   458  			// generate a new tx and mutate it
   459  			valueMap, _ := genMapForTxTypes(reservoir, to, txType)
   460  			invalidMap, expectedErr := invalidCase.fn(txType, valueMap, contract.Addr)
   461  
   462  			tx, err := types.NewTransactionWithMap(txType, invalidMap)
   463  			assert.Equal(t, nil, err)
   464  
   465  			err = tx.SignWithKeys(signer, reservoir.Keys)
   466  			assert.Equal(t, nil, err)
   467  
   468  			if txType.IsFeeDelegatedTransaction() {
   469  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
   470  				assert.Equal(t, nil, err)
   471  			}
   472  
   473  			receipt, err := applyTransaction(t, bcdata, tx)
   474  			assert.Equal(t, expectedErr, err)
   475  			if expectedErr == nil {
   476  				assert.Equal(t, types.ReceiptStatusSuccessful, receipt.Status)
   477  			}
   478  		}
   479  	}
   480  }
   481  
   482  // decreaseNonce changes nonce to zero.
   483  func decreaseNonce(txType types.TxType, values txValueMap, contract common.Address) (txValueMap, error) {
   484  	values[types.TxValueKeyNonce] = uint64(0)
   485  
   486  	return values, blockchain.ErrNonceTooLow
   487  }
   488  
   489  // decreaseGasPrice changes gasPrice to 12345678
   490  func decreaseGasPrice(txType types.TxType, values txValueMap, contract common.Address) (txValueMap, error) {
   491  	var err error
   492  	if txType == types.TxTypeEthereumDynamicFee {
   493  		(*big.Int).SetUint64(values[types.TxValueKeyGasFeeCap].(*big.Int), 12345678)
   494  		(*big.Int).SetUint64(values[types.TxValueKeyGasTipCap].(*big.Int), 12345678)
   495  		err = blockchain.ErrInvalidGasTipCap
   496  	} else {
   497  		(*big.Int).SetUint64(values[types.TxValueKeyGasPrice].(*big.Int), 12345678)
   498  		err = blockchain.ErrInvalidUnitPrice
   499  
   500  	}
   501  
   502  	return values, err
   503  }
   504  
   505  // decreaseGasPrice changes gasPrice to 12345678 and return an error with magma policy
   506  func decreaseGasPriceMagma(txType types.TxType, values txValueMap, contract common.Address) (txValueMap, error) {
   507  	var err error
   508  	if txType == types.TxTypeEthereumDynamicFee {
   509  		(*big.Int).SetUint64(values[types.TxValueKeyGasFeeCap].(*big.Int), 12345678)
   510  		(*big.Int).SetUint64(values[types.TxValueKeyGasTipCap].(*big.Int), 12345678)
   511  		err = blockchain.ErrFeeCapBelowBaseFee
   512  	} else {
   513  		(*big.Int).SetUint64(values[types.TxValueKeyGasPrice].(*big.Int), 12345678)
   514  		err = blockchain.ErrGasPriceBelowBaseFee
   515  	}
   516  
   517  	return values, err
   518  }
   519  
   520  // exceedSizeLimit assigns tx data bigger than MaxTxDataSize.
   521  func exceedSizeLimit(txType types.TxType, values txValueMap, contract common.Address) (txValueMap, error) {
   522  	invalidData := make([]byte, blockchain.MaxTxDataSize+1)
   523  
   524  	if values[types.TxValueKeyData] != nil {
   525  		values[types.TxValueKeyData] = invalidData
   526  		return values, blockchain.ErrOversizedData
   527  	}
   528  
   529  	if values[types.TxValueKeyAnchoredData] != nil {
   530  		values[types.TxValueKeyAnchoredData] = invalidData
   531  		return values, blockchain.ErrOversizedData
   532  	}
   533  
   534  	return values, nil
   535  }
   536  
   537  // valueTransferToContract changes recipient address of value transfer txs to the contract address.
   538  func valueTransferToContract(txType types.TxType, values txValueMap, contract common.Address) (txValueMap, error) {
   539  	txType = toBasicType(txType)
   540  	if txType == types.TxTypeValueTransfer || txType == types.TxTypeValueTransferMemo {
   541  		values[types.TxValueKeyTo] = contract
   542  		return values, kerrors.ErrNotForProgramAccount
   543  	}
   544  
   545  	return values, nil
   546  }
   547  
   548  // executeToEOA changes the recipient of contract execution txs to an EOA address (the same with the sender).
   549  func executeToEOA(txType types.TxType, values txValueMap, contract common.Address) (txValueMap, error) {
   550  	if toBasicType(txType) == types.TxTypeSmartContractExecution {
   551  		values[types.TxValueKeyTo] = values[types.TxValueKeyFrom].(common.Address)
   552  		return values, kerrors.ErrNotProgramAccount
   553  	}
   554  
   555  	return values, nil
   556  }
   557  
   558  func invalidCodeFormat(txType types.TxType, values txValueMap, contract common.Address) (txValueMap, error) {
   559  	if txType.IsContractDeploy() {
   560  		values[types.TxValueKeyCodeFormat] = params.CodeFormatLast
   561  		return values, kerrors.ErrInvalidCodeFormat
   562  	}
   563  	return values, nil
   564  }
   565  
   566  // TestValidationInvalidSig generates txs signed by an invalid sender or a fee payer.
   567  func TestValidationInvalidSig(t *testing.T) {
   568  	testTxTypes := []testTxType{}
   569  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
   570  		if i == types.TxTypeKlaytnLast {
   571  			i = types.TxTypeEthereumAccessList
   572  		}
   573  
   574  		_, err := types.NewTxInternalData(i)
   575  		if err == nil {
   576  			testTxTypes = append(testTxTypes, testTxType{i.String(), i})
   577  		}
   578  	}
   579  
   580  	invalidCases := []struct {
   581  		Name string
   582  		fn   func(*testing.T, types.TxType, *TestAccountType, *TestAccountType, types.Signer) (*types.Transaction, error)
   583  	}{
   584  		{"invalidSender", testInvalidSenderSig},
   585  		{"invalidFeePayer", testInvalidFeePayerSig},
   586  	}
   587  
   588  	prof := profile.NewProfiler()
   589  
   590  	// Initialize blockchain
   591  	bcdata, err := NewBCData(6, 4)
   592  	if err != nil {
   593  		t.Fatal(err)
   594  	}
   595  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
   596  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
   597  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
   598  	defer bcdata.Shutdown()
   599  
   600  	// Initialize address-balance map for verification
   601  	accountMap := NewAccountMap()
   602  	if err := accountMap.Initialize(bcdata); err != nil {
   603  		t.Fatal(err)
   604  	}
   605  
   606  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
   607  
   608  	// reservoir account
   609  	reservoir := &TestAccountType{
   610  		Addr:  *bcdata.addrs[0],
   611  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
   612  		Nonce: uint64(0),
   613  	}
   614  
   615  	// for contract execution txs
   616  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
   617  	assert.Equal(t, nil, err)
   618  
   619  	// deploy a contract for contract execution tx type
   620  	{
   621  		var txs types.Transactions
   622  
   623  		values := map[types.TxValueKeyType]interface{}{
   624  			types.TxValueKeyNonce:         reservoir.GetNonce(),
   625  			types.TxValueKeyFrom:          reservoir.GetAddr(),
   626  			types.TxValueKeyTo:            (*common.Address)(nil),
   627  			types.TxValueKeyAmount:        big.NewInt(0),
   628  			types.TxValueKeyGasLimit:      gasLimit,
   629  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
   630  			types.TxValueKeyHumanReadable: false,
   631  			types.TxValueKeyData:          common.FromHex(code),
   632  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
   633  		}
   634  
   635  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
   636  		assert.Equal(t, nil, err)
   637  
   638  		err = tx.SignWithKeys(signer, reservoir.Keys)
   639  		assert.Equal(t, nil, err)
   640  
   641  		txs = append(txs, tx)
   642  
   643  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
   644  			t.Fatal(err)
   645  		}
   646  
   647  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
   648  
   649  		reservoir.AddNonce()
   650  	}
   651  
   652  	// make TxPool to test validation in 'TxPool add' process
   653  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
   654  
   655  	// test for all tx types
   656  	for _, testTxType := range testTxTypes {
   657  		txType := testTxType.txType
   658  
   659  		for _, invalidCase := range invalidCases {
   660  			tx, expectedErr := invalidCase.fn(t, txType, reservoir, contract, signer)
   661  
   662  			if tx != nil {
   663  				// For tx pool validation test
   664  				err = txpool.AddRemote(tx)
   665  				assert.Equal(t, expectedErr, err)
   666  
   667  				// For block tx validation test
   668  				if expectedErr == blockchain.ErrInvalidFeePayer {
   669  					expectedErr = types.ErrFeePayer(types.ErrInvalidAccountKey)
   670  				}
   671  				receipt, err := applyTransaction(t, bcdata, tx)
   672  				assert.Equal(t, expectedErr, err)
   673  				assert.Equal(t, (*types.Receipt)(nil), receipt)
   674  			}
   675  		}
   676  	}
   677  }
   678  
   679  // testInvalidSenderSig generates invalid txs signed by an invalid sender.
   680  func testInvalidSenderSig(t *testing.T, txType types.TxType, reservoir *TestAccountType, contract *TestAccountType, signer types.Signer) (*types.Transaction, error) {
   681  	if !txType.IsLegacyTransaction() && !txType.IsEthTypedTransaction() {
   682  		newAcc, err := createDefaultAccount(accountkey.AccountKeyTypePublic)
   683  		assert.Equal(t, nil, err)
   684  
   685  		to := reservoir
   686  		if toBasicType(txType) == types.TxTypeSmartContractExecution {
   687  			to = contract
   688  		}
   689  
   690  		valueMap, _ := genMapForTxTypes(reservoir, to, txType)
   691  		tx, err := types.NewTransactionWithMap(txType, valueMap)
   692  		assert.Equal(t, nil, err)
   693  
   694  		err = tx.SignWithKeys(signer, newAcc.Keys)
   695  		assert.Equal(t, nil, err)
   696  
   697  		if txType.IsFeeDelegatedTransaction() {
   698  			tx.SignFeePayerWithKeys(signer, reservoir.Keys)
   699  			assert.Equal(t, nil, err)
   700  		}
   701  		return tx, types.ErrSender(types.ErrInvalidAccountKey)
   702  	}
   703  	return nil, nil
   704  }
   705  
   706  // testInvalidFeePayerSig generates invalid txs signed by an invalid fee payer.
   707  func testInvalidFeePayerSig(t *testing.T, txType types.TxType, reservoir *TestAccountType, contract *TestAccountType, signer types.Signer) (*types.Transaction, error) {
   708  	if txType.IsFeeDelegatedTransaction() {
   709  		newAcc, err := createDefaultAccount(accountkey.AccountKeyTypePublic)
   710  		assert.Equal(t, nil, err)
   711  
   712  		to := reservoir
   713  		if toBasicType(txType) == types.TxTypeSmartContractExecution {
   714  			to = contract
   715  		}
   716  
   717  		valueMap, _ := genMapForTxTypes(reservoir, to, txType)
   718  		tx, err := types.NewTransactionWithMap(txType, valueMap)
   719  		assert.Equal(t, nil, err)
   720  
   721  		err = tx.SignWithKeys(signer, reservoir.Keys)
   722  		assert.Equal(t, nil, err)
   723  
   724  		tx.SignFeePayerWithKeys(signer, newAcc.Keys)
   725  		assert.Equal(t, nil, err)
   726  
   727  		// Look at the blockchain/types/transaction.go/ValidateFeePayer
   728  		// Testcases using this function should return invalid signature error
   729  		return tx, types.ErrFeePayer(types.ErrInvalidAccountKey)
   730  	}
   731  	return nil, nil
   732  }
   733  
   734  // TestLegacyTxFromNonLegacyAcc generates legacy tx from non-legacy account, and it will be invalidated during txPool insert process.
   735  func TestLegacyTxFromNonLegacyAcc(t *testing.T) {
   736  	prof := profile.NewProfiler()
   737  
   738  	// Initialize blockchain
   739  	bcdata, err := NewBCData(6, 4)
   740  	if err != nil {
   741  		t.Fatal(err)
   742  	}
   743  	defer bcdata.Shutdown()
   744  
   745  	// Initialize address-balance map for verification
   746  	accountMap := NewAccountMap()
   747  	if err := accountMap.Initialize(bcdata); err != nil {
   748  		t.Fatal(err)
   749  	}
   750  
   751  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
   752  
   753  	// reservoir account
   754  	reservoir := &TestAccountType{
   755  		Addr:  *bcdata.addrs[0],
   756  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
   757  		Nonce: uint64(0),
   758  	}
   759  
   760  	var txs types.Transactions
   761  	acc1, err := createDefaultAccount(accountkey.AccountKeyTypePublic)
   762  
   763  	valueMap, _ := genMapForTxTypes(reservoir, reservoir, types.TxTypeAccountUpdate)
   764  	valueMap[types.TxValueKeyAccountKey] = acc1.AccKey
   765  
   766  	tx, err := types.NewTransactionWithMap(types.TxTypeAccountUpdate, valueMap)
   767  	assert.Equal(t, nil, err)
   768  
   769  	err = tx.SignWithKeys(signer, reservoir.Keys)
   770  	assert.Equal(t, nil, err)
   771  
   772  	txs = append(txs, tx)
   773  
   774  	if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
   775  		t.Fatal(err)
   776  	}
   777  	reservoir.AddNonce()
   778  
   779  	// make TxPool to test validation in 'TxPool add' process
   780  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
   781  
   782  	valueMap, _ = genMapForTxTypes(reservoir, reservoir, types.TxTypeLegacyTransaction)
   783  	tx, err = types.NewTransactionWithMap(types.TxTypeLegacyTransaction, valueMap)
   784  	assert.Equal(t, nil, err)
   785  
   786  	err = tx.SignWithKeys(signer, reservoir.Keys)
   787  	assert.Equal(t, nil, err)
   788  
   789  	err = txpool.AddRemote(tx)
   790  	assert.Equal(t, types.ErrSender(kerrors.ErrLegacyTransactionMustBeWithLegacyKey), err)
   791  }
   792  
   793  // TestInvalidBalance generates invalid txs which don't have enough KLAY, and will be invalidated during txPool insert process.
   794  func TestInvalidBalance(t *testing.T) {
   795  	testTxTypes := []testTxType{}
   796  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
   797  		if i == types.TxTypeKlaytnLast {
   798  			i = types.TxTypeEthereumAccessList
   799  		}
   800  
   801  		_, err := types.NewTxInternalData(i)
   802  		if err == nil {
   803  			testTxTypes = append(testTxTypes, testTxType{i.String(), i})
   804  		}
   805  	}
   806  
   807  	prof := profile.NewProfiler()
   808  
   809  	// Initialize blockchain
   810  	bcdata, err := NewBCData(6, 4)
   811  	if err != nil {
   812  		t.Fatal(err)
   813  	}
   814  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
   815  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
   816  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
   817  	defer bcdata.Shutdown()
   818  
   819  	// Initialize address-balance map for verification
   820  	accountMap := NewAccountMap()
   821  	if err := accountMap.Initialize(bcdata); err != nil {
   822  		t.Fatal(err)
   823  	}
   824  
   825  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
   826  
   827  	// reservoir account
   828  	reservoir := &TestAccountType{
   829  		Addr:  *bcdata.addrs[0],
   830  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
   831  		Nonce: uint64(0),
   832  	}
   833  
   834  	// for contract execution txs
   835  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
   836  	assert.Equal(t, nil, err)
   837  
   838  	// test account will be lack of KLAY
   839  	testAcc, err := createDefaultAccount(accountkey.AccountKeyTypeLegacy)
   840  	assert.Equal(t, nil, err)
   841  
   842  	gasLimit := uint64(100000000000)
   843  	gasPrice := big.NewInt(25 * params.Ston)
   844  	amount := uint64(25 * params.Ston)
   845  	cost := new(big.Int).Mul(new(big.Int).SetUint64(gasLimit), gasPrice)
   846  	cost.Add(cost, new(big.Int).SetUint64(amount))
   847  
   848  	// deploy a contract for contract execution tx type
   849  	{
   850  		var txs types.Transactions
   851  
   852  		values := map[types.TxValueKeyType]interface{}{
   853  			types.TxValueKeyNonce:         reservoir.GetNonce(),
   854  			types.TxValueKeyFrom:          reservoir.GetAddr(),
   855  			types.TxValueKeyTo:            (*common.Address)(nil),
   856  			types.TxValueKeyAmount:        big.NewInt(0),
   857  			types.TxValueKeyGasLimit:      gasLimit,
   858  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
   859  			types.TxValueKeyHumanReadable: false,
   860  			types.TxValueKeyData:          common.FromHex(code),
   861  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
   862  		}
   863  
   864  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
   865  		assert.Equal(t, nil, err)
   866  
   867  		err = tx.SignWithKeys(signer, reservoir.Keys)
   868  		assert.Equal(t, nil, err)
   869  
   870  		txs = append(txs, tx)
   871  
   872  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
   873  			t.Fatal(err)
   874  		}
   875  
   876  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
   877  
   878  		reservoir.AddNonce()
   879  	}
   880  
   881  	// generate a test account with a specific amount of KLAY
   882  	{
   883  		var txs types.Transactions
   884  
   885  		valueMapForCreation, _ := genMapForTxTypes(reservoir, testAcc, types.TxTypeValueTransfer)
   886  		valueMapForCreation[types.TxValueKeyAmount] = cost
   887  
   888  		tx, err := types.NewTransactionWithMap(types.TxTypeValueTransfer, valueMapForCreation)
   889  		assert.Equal(t, nil, err)
   890  
   891  		err = tx.SignWithKeys(signer, reservoir.Keys)
   892  		assert.Equal(t, nil, err)
   893  
   894  		txs = append(txs, tx)
   895  
   896  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
   897  			t.Fatal(err)
   898  		}
   899  		reservoir.AddNonce()
   900  	}
   901  
   902  	// make TxPool to test validation in 'TxPool add' process
   903  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
   904  
   905  	// test for all tx types
   906  	for _, testTxType := range testTxTypes {
   907  		txType := testTxType.txType
   908  
   909  		if !txType.IsFeeDelegatedTransaction() {
   910  			// tx with a specific amount or a gasLimit requiring more KLAY than the sender has.
   911  			{
   912  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
   913  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
   914  					valueMap[types.TxValueKeyTo] = contract.Addr
   915  				}
   916  				if valueMap[types.TxValueKeyAmount] != nil {
   917  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
   918  					valueMap[types.TxValueKeyGasLimit] = gasLimit + 1 // requires 1 more gas
   919  				} else {
   920  					valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64()) + 1 // requires 1 more gas
   921  				}
   922  
   923  				tx, err := types.NewTransactionWithMap(txType, valueMap)
   924  				assert.Equal(t, nil, err)
   925  
   926  				err = tx.SignWithKeys(signer, testAcc.Keys)
   927  				assert.Equal(t, nil, err)
   928  
   929  				err = txpool.AddRemote(tx)
   930  				assert.Equal(t, blockchain.ErrInsufficientFundsFrom, err)
   931  			}
   932  
   933  			// tx with a specific amount or a gasLimit requiring the exact KLAY the sender has.
   934  			{
   935  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
   936  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
   937  					valueMap[types.TxValueKeyTo] = contract.Addr
   938  				}
   939  				if valueMap[types.TxValueKeyAmount] != nil {
   940  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
   941  					valueMap[types.TxValueKeyGasLimit] = gasLimit
   942  				} else {
   943  					valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64())
   944  				}
   945  
   946  				tx, err := types.NewTransactionWithMap(txType, valueMap)
   947  				assert.Equal(t, nil, err)
   948  
   949  				err = tx.SignWithKeys(signer, testAcc.Keys)
   950  				assert.Equal(t, nil, err)
   951  
   952  				// Since `txpool.AddRemote` does not make a block,
   953  				// the sender can send txs to txpool in multiple times (by the for loop) with limited KLAY.
   954  				err = txpool.AddRemote(tx)
   955  				assert.Equal(t, nil, err)
   956  				testAcc.AddNonce()
   957  			}
   958  		}
   959  
   960  		if txType.IsFeeDelegatedTransaction() && !txType.IsFeeDelegatedWithRatioTransaction() {
   961  			// tx with a specific amount requiring more KLAY than the sender has.
   962  			{
   963  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
   964  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
   965  					valueMap[types.TxValueKeyTo] = contract.Addr
   966  				}
   967  				if valueMap[types.TxValueKeyAmount] != nil {
   968  					valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
   969  					valueMap[types.TxValueKeyAmount] = new(big.Int).Add(cost, new(big.Int).SetUint64(1)) // requires 1 more amount
   970  
   971  					tx, err := types.NewTransactionWithMap(txType, valueMap)
   972  					assert.Equal(t, nil, err)
   973  
   974  					err = tx.SignWithKeys(signer, testAcc.Keys)
   975  					assert.Equal(t, nil, err)
   976  
   977  					tx.SignFeePayerWithKeys(signer, reservoir.Keys)
   978  					assert.Equal(t, nil, err)
   979  
   980  					err = txpool.AddRemote(tx)
   981  					assert.Equal(t, blockchain.ErrInsufficientFundsFrom, err)
   982  				}
   983  			}
   984  
   985  			// tx with a specific gasLimit (or amount) requiring more KLAY than the feePayer has.
   986  			{
   987  				valueMap, _ := genMapForTxTypes(reservoir, testAcc, txType)
   988  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
   989  					valueMap[types.TxValueKeyTo] = contract.Addr
   990  				}
   991  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
   992  				valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64()) + 1 // requires 1 more gas
   993  
   994  				tx, err := types.NewTransactionWithMap(txType, valueMap)
   995  				assert.Equal(t, nil, err)
   996  
   997  				err = tx.SignWithKeys(signer, reservoir.Keys)
   998  				assert.Equal(t, nil, err)
   999  
  1000  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1001  				assert.Equal(t, nil, err)
  1002  
  1003  				err = txpool.AddRemote(tx)
  1004  				assert.Equal(t, blockchain.ErrInsufficientFundsFeePayer, err)
  1005  			}
  1006  
  1007  			// tx with a specific amount requiring the exact KLAY the sender has.
  1008  			{
  1009  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1010  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1011  					valueMap[types.TxValueKeyTo] = contract.Addr
  1012  				}
  1013  				if valueMap[types.TxValueKeyAmount] != nil {
  1014  					valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
  1015  					valueMap[types.TxValueKeyAmount] = cost
  1016  
  1017  					tx, err := types.NewTransactionWithMap(txType, valueMap)
  1018  					assert.Equal(t, nil, err)
  1019  
  1020  					err = tx.SignWithKeys(signer, testAcc.Keys)
  1021  					assert.Equal(t, nil, err)
  1022  
  1023  					tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1024  					assert.Equal(t, nil, err)
  1025  
  1026  					// Since `txpool.AddRemote` does not make a block,
  1027  					// the sender can send txs to txpool in multiple times (by the for loop) with limited KLAY.
  1028  					err = txpool.AddRemote(tx)
  1029  					assert.Equal(t, nil, err)
  1030  					testAcc.AddNonce()
  1031  				}
  1032  			}
  1033  
  1034  			// tx with a specific gasLimit (or amount) requiring the exact KLAY the feePayer has.
  1035  			{
  1036  				valueMap, _ := genMapForTxTypes(reservoir, testAcc, txType)
  1037  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1038  					valueMap[types.TxValueKeyTo] = contract.Addr
  1039  				}
  1040  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
  1041  				valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64())
  1042  
  1043  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1044  				assert.Equal(t, nil, err)
  1045  
  1046  				err = tx.SignWithKeys(signer, reservoir.Keys)
  1047  				assert.Equal(t, nil, err)
  1048  
  1049  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1050  				assert.Equal(t, nil, err)
  1051  
  1052  				// Since `txpool.AddRemote` does not make a block,
  1053  				// the sender can send txs to txpool in multiple times (by the for loop) with limited KLAY.
  1054  				err = txpool.AddRemote(tx)
  1055  				assert.Equal(t, nil, err)
  1056  				reservoir.AddNonce()
  1057  			}
  1058  		}
  1059  
  1060  		if txType.IsFeeDelegatedWithRatioTransaction() {
  1061  			// tx with a specific amount and a gasLimit requiring more KLAY than the sender has.
  1062  			{
  1063  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1064  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1065  					valueMap[types.TxValueKeyTo] = contract.Addr
  1066  				}
  1067  				valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
  1068  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(90)
  1069  				if valueMap[types.TxValueKeyAmount] != nil {
  1070  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
  1071  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1072  					// = (gasLimit + 1) * 10 * (100 - 90) * 0.01 = gasLimit + 1
  1073  					valueMap[types.TxValueKeyGasLimit] = (gasLimit + 1) * 10 // requires 1 more gas
  1074  				} else {
  1075  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1076  					// = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 * (100 - 90) * 0.01 = gasLimit + (amount / gasPrice.Uint64()) + 1
  1077  					valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 // requires 1 more gas
  1078  				}
  1079  
  1080  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1081  				assert.Equal(t, nil, err)
  1082  
  1083  				err = tx.SignWithKeys(signer, testAcc.Keys)
  1084  				assert.Equal(t, nil, err)
  1085  
  1086  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1087  				assert.Equal(t, nil, err)
  1088  
  1089  				err = txpool.AddRemote(tx)
  1090  				assert.Equal(t, blockchain.ErrInsufficientFundsFrom, err)
  1091  			}
  1092  
  1093  			// tx with a specific amount and a gasLimit requiring more KLAY than the feePayer has.
  1094  			{
  1095  				valueMap, _ := genMapForTxTypes(reservoir, testAcc, txType)
  1096  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1097  					valueMap[types.TxValueKeyTo] = contract.Addr
  1098  				}
  1099  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
  1100  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(10)
  1101  				// Gas testAcc will charge = tx gasLimit * fee-payer's feeRatio
  1102  				// = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 * 10 * 0.01 = gasLimit + (amount / gasPrice.Uint64()) + 1
  1103  				valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 // requires 1 more gas
  1104  
  1105  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1106  				assert.Equal(t, nil, err)
  1107  
  1108  				err = tx.SignWithKeys(signer, reservoir.Keys)
  1109  				assert.Equal(t, nil, err)
  1110  
  1111  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1112  				assert.Equal(t, nil, err)
  1113  
  1114  				err = txpool.AddRemote(tx)
  1115  				assert.Equal(t, blockchain.ErrInsufficientFundsFeePayer, err)
  1116  			}
  1117  
  1118  			// tx with a specific amount and a gasLimit requiring the exact KLAY the sender has.
  1119  			{
  1120  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1121  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1122  					valueMap[types.TxValueKeyTo] = contract.Addr
  1123  				}
  1124  				valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
  1125  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(90)
  1126  				if valueMap[types.TxValueKeyAmount] != nil {
  1127  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
  1128  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1129  					// = gasLimit * 10 * (100 - 90) * 0.01 = gasLimit
  1130  					valueMap[types.TxValueKeyGasLimit] = gasLimit * 10
  1131  				} else {
  1132  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1133  					// = (gasLimit + (amount / gasPrice.Uint64())) * 10 * (100 - 90) * 0.01 = gasLimit + (amount / gasPrice.Uint64())
  1134  					valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64())) * 10
  1135  				}
  1136  
  1137  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1138  				assert.Equal(t, nil, err)
  1139  
  1140  				err = tx.SignWithKeys(signer, testAcc.Keys)
  1141  				assert.Equal(t, nil, err)
  1142  
  1143  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1144  				assert.Equal(t, nil, err)
  1145  
  1146  				// Since `txpool.AddRemote` does not make a block,
  1147  				// the sender can send txs to txpool in multiple times (by the for loop) with limited KLAY.
  1148  				err = txpool.AddRemote(tx)
  1149  				assert.Equal(t, nil, err)
  1150  				testAcc.AddNonce()
  1151  			}
  1152  
  1153  			// tx with a specific amount and a gasLimit requiring the exact KLAY the feePayer has.
  1154  			{
  1155  				valueMap, _ := genMapForTxTypes(reservoir, testAcc, txType)
  1156  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1157  					valueMap[types.TxValueKeyTo] = contract.Addr
  1158  				}
  1159  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
  1160  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(10)
  1161  				// Gas testAcc will charge = tx gasLimit * fee-payer's feeRatio
  1162  				// = (gasLimit + (amount / gasPrice.Uint64())) * 10 * 10 * 0.01 = gasLimit + (amount / gasPrice.Uint64())
  1163  				valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64())) * 10
  1164  
  1165  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1166  				assert.Equal(t, nil, err)
  1167  
  1168  				err = tx.SignWithKeys(signer, reservoir.Keys)
  1169  				assert.Equal(t, nil, err)
  1170  
  1171  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1172  				assert.Equal(t, nil, err)
  1173  
  1174  				// Since `txpool.AddRemote` does not make a block,
  1175  				// the sender can send txs to txpool in multiple times (by the for loop) with limited KLAY.
  1176  				err = txpool.AddRemote(tx)
  1177  				assert.Equal(t, nil, err)
  1178  				reservoir.AddNonce()
  1179  			}
  1180  		}
  1181  	}
  1182  }
  1183  
  1184  // TestInvalidBalanceBlockTx generates invalid txs which don't have enough KLAY, and will be invalidated during block insert process.
  1185  func TestInvalidBalanceBlockTx(t *testing.T) {
  1186  	log.EnableLogForTest(log.LvlCrit, log.LvlTrace)
  1187  
  1188  	testTxTypes := []testTxType{}
  1189  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
  1190  		if i == types.TxTypeKlaytnLast {
  1191  			i = types.TxTypeEthereumAccessList
  1192  		}
  1193  
  1194  		_, err := types.NewTxInternalData(i)
  1195  		if err == nil {
  1196  			testTxTypes = append(testTxTypes, testTxType{i.String(), i})
  1197  		}
  1198  	}
  1199  
  1200  	// re-declare errors since those errors are private variables in 'blockchain' package.
  1201  	errInsufficientBalanceForGas := errors.New("insufficient balance of the sender to pay for gas")
  1202  	errInsufficientBalanceForGasFeePayer := errors.New("insufficient balance of the fee payer to pay for gas")
  1203  
  1204  	prof := profile.NewProfiler()
  1205  
  1206  	// Initialize blockchain
  1207  	bcdata, err := NewBCData(6, 4)
  1208  	if err != nil {
  1209  		t.Fatal(err)
  1210  	}
  1211  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
  1212  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
  1213  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
  1214  	defer bcdata.Shutdown()
  1215  
  1216  	// Initialize address-balance map for verification
  1217  	accountMap := NewAccountMap()
  1218  	if err := accountMap.Initialize(bcdata); err != nil {
  1219  		t.Fatal(err)
  1220  	}
  1221  
  1222  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
  1223  
  1224  	// reservoir account
  1225  	reservoir := &TestAccountType{
  1226  		Addr:  *bcdata.addrs[0],
  1227  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
  1228  		Nonce: uint64(0),
  1229  	}
  1230  
  1231  	// for contract execution txs
  1232  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
  1233  	assert.Equal(t, nil, err)
  1234  
  1235  	// test account will be lack of KLAY
  1236  	testAcc, err := createDefaultAccount(accountkey.AccountKeyTypeLegacy)
  1237  	assert.Equal(t, nil, err)
  1238  
  1239  	gasLimit := uint64(100000000000)
  1240  	gasPrice := big.NewInt(25 * params.Ston)
  1241  	amount := uint64(25 * params.Ston)
  1242  	cost := new(big.Int).Mul(new(big.Int).SetUint64(gasLimit), gasPrice)
  1243  	cost.Add(cost, new(big.Int).SetUint64(amount))
  1244  
  1245  	// deploy a contract for contract execution tx type
  1246  	{
  1247  		var txs types.Transactions
  1248  
  1249  		values := map[types.TxValueKeyType]interface{}{
  1250  			types.TxValueKeyNonce:         reservoir.GetNonce(),
  1251  			types.TxValueKeyFrom:          reservoir.GetAddr(),
  1252  			types.TxValueKeyTo:            (*common.Address)(nil),
  1253  			types.TxValueKeyAmount:        big.NewInt(0),
  1254  			types.TxValueKeyGasLimit:      gasLimit,
  1255  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
  1256  			types.TxValueKeyHumanReadable: false,
  1257  			types.TxValueKeyData:          common.FromHex(code),
  1258  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
  1259  		}
  1260  
  1261  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
  1262  		assert.Equal(t, nil, err)
  1263  
  1264  		err = tx.SignWithKeys(signer, reservoir.Keys)
  1265  		assert.Equal(t, nil, err)
  1266  
  1267  		txs = append(txs, tx)
  1268  
  1269  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  1270  			t.Fatal(err)
  1271  		}
  1272  
  1273  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
  1274  
  1275  		reservoir.AddNonce()
  1276  	}
  1277  
  1278  	// generate a test account with a specific amount of KLAY
  1279  	{
  1280  		var txs types.Transactions
  1281  
  1282  		valueMapForCreation, _ := genMapForTxTypes(reservoir, testAcc, types.TxTypeValueTransfer)
  1283  		valueMapForCreation[types.TxValueKeyAmount] = cost
  1284  
  1285  		tx, err := types.NewTransactionWithMap(types.TxTypeValueTransfer, valueMapForCreation)
  1286  		assert.Equal(t, nil, err)
  1287  
  1288  		err = tx.SignWithKeys(signer, reservoir.Keys)
  1289  		assert.Equal(t, nil, err)
  1290  
  1291  		txs = append(txs, tx)
  1292  
  1293  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  1294  			t.Fatal(err)
  1295  		}
  1296  		reservoir.AddNonce()
  1297  	}
  1298  
  1299  	// test for all tx types
  1300  	for _, testTxType := range testTxTypes {
  1301  		txType := testTxType.txType
  1302  
  1303  		if !txType.IsFeeDelegatedTransaction() {
  1304  			// tx with a specific amount or a gasLimit requiring more KLAY than the sender has.
  1305  			{
  1306  				var expectedErr error
  1307  
  1308  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1309  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1310  					valueMap[types.TxValueKeyTo] = contract.Addr
  1311  				}
  1312  				if valueMap[types.TxValueKeyAmount] != nil {
  1313  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
  1314  					valueMap[types.TxValueKeyGasLimit] = gasLimit + 1 // requires 1 more gas
  1315  					// The tx will be failed in vm since it can buy gas but cannot send enough value
  1316  					expectedErr = vm.ErrInsufficientBalance
  1317  				} else {
  1318  					valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64()) + 1 // requires 1 more gas
  1319  					// The tx will be failed in buyGas() since it cannot buy enough gas
  1320  					expectedErr = errInsufficientBalanceForGasFeePayer
  1321  				}
  1322  
  1323  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1324  				assert.Equal(t, nil, err)
  1325  
  1326  				err = tx.SignWithKeys(signer, testAcc.Keys)
  1327  				assert.Equal(t, nil, err)
  1328  
  1329  				receipt, err := applyTransaction(t, bcdata, tx)
  1330  				assert.Equal(t, expectedErr, err)
  1331  				assert.Equal(t, (*types.Receipt)(nil), receipt)
  1332  			}
  1333  
  1334  			// tx with a specific amount or a gasLimit requiring the exact KLAY the sender has.
  1335  			{
  1336  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1337  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1338  					valueMap[types.TxValueKeyTo] = contract.Addr
  1339  				}
  1340  				if valueMap[types.TxValueKeyAmount] != nil {
  1341  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
  1342  					valueMap[types.TxValueKeyGasLimit] = gasLimit
  1343  				} else {
  1344  					valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64())
  1345  				}
  1346  
  1347  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1348  				assert.Equal(t, nil, err)
  1349  
  1350  				err = tx.SignWithKeys(signer, testAcc.Keys)
  1351  				assert.Equal(t, nil, err)
  1352  
  1353  				receipt, err := applyTransaction(t, bcdata, tx)
  1354  				assert.Equal(t, nil, err)
  1355  				// contract deploy tx with non-zero value will be failed in vm because test functions do not support it.
  1356  				if txType.IsContractDeploy() {
  1357  					assert.Equal(t, types.ReceiptStatusErrExecutionReverted, receipt.Status)
  1358  				} else {
  1359  					assert.Equal(t, types.ReceiptStatusSuccessful, receipt.Status)
  1360  				}
  1361  			}
  1362  		}
  1363  
  1364  		if txType.IsFeeDelegatedTransaction() && !txType.IsFeeDelegatedWithRatioTransaction() {
  1365  			// tx with a specific amount requiring more KLAY than the sender has.
  1366  			{
  1367  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1368  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1369  					valueMap[types.TxValueKeyTo] = contract.Addr
  1370  				}
  1371  				if valueMap[types.TxValueKeyAmount] != nil {
  1372  					valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
  1373  					valueMap[types.TxValueKeyAmount] = new(big.Int).Add(cost, new(big.Int).SetUint64(1)) // requires 1 more amount
  1374  
  1375  					tx, err := types.NewTransactionWithMap(txType, valueMap)
  1376  					assert.Equal(t, nil, err)
  1377  
  1378  					err = tx.SignWithKeys(signer, testAcc.Keys)
  1379  					assert.Equal(t, nil, err)
  1380  
  1381  					tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1382  					assert.Equal(t, nil, err)
  1383  
  1384  					receipt, err := applyTransaction(t, bcdata, tx)
  1385  					assert.Equal(t, vm.ErrInsufficientBalance, err)
  1386  					assert.Equal(t, (*types.Receipt)(nil), receipt)
  1387  				}
  1388  			}
  1389  
  1390  			// tx with a specific gasLimit (or amount) requiring more KLAY than the feePayer has.
  1391  			{
  1392  				valueMap, _ := genMapForTxTypes(reservoir, reservoir, txType)
  1393  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1394  					valueMap[types.TxValueKeyTo] = contract.Addr
  1395  				}
  1396  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
  1397  				valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64()) + 1 // requires 1 more gas
  1398  
  1399  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1400  				assert.Equal(t, nil, err)
  1401  
  1402  				err = tx.SignWithKeys(signer, reservoir.Keys)
  1403  				assert.Equal(t, nil, err)
  1404  
  1405  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1406  				assert.Equal(t, nil, err)
  1407  
  1408  				receipt, err := applyTransaction(t, bcdata, tx)
  1409  				assert.Equal(t, errInsufficientBalanceForGasFeePayer, err)
  1410  				assert.Equal(t, (*types.Receipt)(nil), receipt)
  1411  			}
  1412  
  1413  			// tx with a specific amount requiring the exact KLAY the sender has.
  1414  			{
  1415  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1416  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1417  					valueMap[types.TxValueKeyTo] = contract.Addr
  1418  				}
  1419  				if valueMap[types.TxValueKeyAmount] != nil {
  1420  					valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
  1421  					valueMap[types.TxValueKeyAmount] = cost
  1422  
  1423  					tx, err := types.NewTransactionWithMap(txType, valueMap)
  1424  					assert.Equal(t, nil, err)
  1425  
  1426  					err = tx.SignWithKeys(signer, testAcc.Keys)
  1427  					assert.Equal(t, nil, err)
  1428  
  1429  					tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1430  					assert.Equal(t, nil, err)
  1431  
  1432  					receipt, err := applyTransaction(t, bcdata, tx)
  1433  					assert.Equal(t, nil, err)
  1434  					// contract deploy tx with non-zero value will be failed in vm because test functions do not support it.
  1435  					if txType.IsContractDeploy() {
  1436  						assert.Equal(t, types.ReceiptStatusErrExecutionReverted, receipt.Status)
  1437  					} else {
  1438  						assert.Equal(t, types.ReceiptStatusSuccessful, receipt.Status)
  1439  					}
  1440  				}
  1441  			}
  1442  
  1443  			// tx with a specific gasLimit (or amount) requiring the exact KLAY the feePayer has.
  1444  			{
  1445  				valueMap, _ := genMapForTxTypes(reservoir, reservoir, txType)
  1446  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1447  					valueMap[types.TxValueKeyTo] = contract.Addr
  1448  				}
  1449  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
  1450  				valueMap[types.TxValueKeyGasLimit] = gasLimit + (amount / gasPrice.Uint64())
  1451  
  1452  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1453  				assert.Equal(t, nil, err)
  1454  
  1455  				err = tx.SignWithKeys(signer, reservoir.Keys)
  1456  				assert.Equal(t, nil, err)
  1457  
  1458  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1459  				assert.Equal(t, nil, err)
  1460  
  1461  				receipt, err := applyTransaction(t, bcdata, tx)
  1462  				assert.Equal(t, nil, err)
  1463  				assert.Equal(t, types.ReceiptStatusSuccessful, receipt.Status)
  1464  			}
  1465  		}
  1466  
  1467  		if txType.IsFeeDelegatedWithRatioTransaction() {
  1468  			// tx with a specific amount and a gasLimit requiring more KLAY than the sender has.
  1469  			{
  1470  				var expectedErr error
  1471  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1472  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1473  					valueMap[types.TxValueKeyTo] = contract.Addr
  1474  				}
  1475  				valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
  1476  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(90)
  1477  				if valueMap[types.TxValueKeyAmount] != nil {
  1478  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
  1479  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1480  					// = (gasLimit + 1) * 10 * (100 - 90) * 0.01 = gasLimit + 1
  1481  					valueMap[types.TxValueKeyGasLimit] = (gasLimit + 1) * 10 // requires 1 more gas
  1482  					// The tx will be failed in vm since it can buy gas but cannot send enough value
  1483  					expectedErr = vm.ErrInsufficientBalance
  1484  				} else {
  1485  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1486  					// = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 * (100 - 90) * 0.01 = gasLimit + (amount / gasPrice.Uint64()) + 1
  1487  					valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 // requires 1 more gas
  1488  					// The tx will be failed in buyGas() since it cannot buy enough gas
  1489  					expectedErr = errInsufficientBalanceForGas
  1490  				}
  1491  
  1492  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1493  				assert.Equal(t, nil, err)
  1494  
  1495  				err = tx.SignWithKeys(signer, testAcc.Keys)
  1496  				assert.Equal(t, nil, err)
  1497  
  1498  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1499  				assert.Equal(t, nil, err)
  1500  
  1501  				receipt, err := applyTransaction(t, bcdata, tx)
  1502  				assert.Equal(t, expectedErr, err)
  1503  				assert.Equal(t, (*types.Receipt)(nil), receipt)
  1504  			}
  1505  
  1506  			// tx with a specific amount and a gasLimit requiring more KLAY than the feePayer has.
  1507  			{
  1508  				valueMap, _ := genMapForTxTypes(reservoir, reservoir, txType)
  1509  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1510  					valueMap[types.TxValueKeyTo] = contract.Addr
  1511  				}
  1512  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
  1513  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(10)
  1514  				// Gas testAcc will charge = tx gasLimit * fee-payer's feeRatio
  1515  				// = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 * 10 * 0.01 = gasLimit + (amount / gasPrice.Uint64()) + 1
  1516  				valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64()) + 1) * 10 // requires 1 more gas
  1517  
  1518  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1519  				assert.Equal(t, nil, err)
  1520  
  1521  				err = tx.SignWithKeys(signer, reservoir.Keys)
  1522  				assert.Equal(t, nil, err)
  1523  
  1524  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1525  				assert.Equal(t, nil, err)
  1526  
  1527  				receipt, err := applyTransaction(t, bcdata, tx)
  1528  				assert.Equal(t, errInsufficientBalanceForGasFeePayer, err)
  1529  				assert.Equal(t, (*types.Receipt)(nil), receipt)
  1530  			}
  1531  
  1532  			// tx with a specific amount and a gasLimit requiring the exact KLAY the sender has.
  1533  			{
  1534  				valueMap, _ := genMapForTxTypes(testAcc, reservoir, txType)
  1535  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1536  					valueMap[types.TxValueKeyTo] = contract.Addr
  1537  				}
  1538  				valueMap[types.TxValueKeyFeePayer] = reservoir.Addr
  1539  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(90)
  1540  				if valueMap[types.TxValueKeyAmount] != nil {
  1541  					valueMap[types.TxValueKeyAmount] = new(big.Int).SetUint64(amount)
  1542  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1543  					// = gasLimit * 10 * (100 - 90) * 0.01 = gasLimit
  1544  					valueMap[types.TxValueKeyGasLimit] = gasLimit * 10
  1545  				} else {
  1546  					// Gas testAcc will charge = tx gasLimit * sender's feeRatio
  1547  					// = (gasLimit + (amount / gasPrice.Uint64())) * 10 * (100 - 90) * 0.01 = gasLimit + (amount / gasPrice.Uint64())
  1548  					valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64())) * 10
  1549  				}
  1550  
  1551  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1552  				assert.Equal(t, nil, err)
  1553  
  1554  				err = tx.SignWithKeys(signer, testAcc.Keys)
  1555  				assert.Equal(t, nil, err)
  1556  
  1557  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1558  				assert.Equal(t, nil, err)
  1559  
  1560  				receipt, err := applyTransaction(t, bcdata, tx)
  1561  				assert.Equal(t, nil, err)
  1562  				// contract deploy tx with non-zero value will be failed in vm because test functions do not support it.
  1563  				if txType.IsContractDeploy() {
  1564  					assert.Equal(t, types.ReceiptStatusErrExecutionReverted, receipt.Status)
  1565  				} else {
  1566  					assert.Equal(t, types.ReceiptStatusSuccessful, receipt.Status)
  1567  				}
  1568  			}
  1569  
  1570  			// tx with a specific amount and a gasLimit requiring the exact KLAY the feePayer has.
  1571  			{
  1572  				valueMap, _ := genMapForTxTypes(reservoir, reservoir, txType)
  1573  				if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1574  					valueMap[types.TxValueKeyTo] = contract.Addr
  1575  				}
  1576  				valueMap[types.TxValueKeyFeePayer] = testAcc.Addr
  1577  				valueMap[types.TxValueKeyFeeRatioOfFeePayer] = types.FeeRatio(10)
  1578  				// Gas testAcc will charge = tx gasLimit * fee-payer's feeRatio
  1579  				// = (gasLimit + (amount / gasPrice.Uint64())) * 10 * 10 * 0.01 = gasLimit + (amount / gasPrice.Uint64())
  1580  				valueMap[types.TxValueKeyGasLimit] = (gasLimit + (amount / gasPrice.Uint64())) * 10
  1581  
  1582  				tx, err := types.NewTransactionWithMap(txType, valueMap)
  1583  				assert.Equal(t, nil, err)
  1584  
  1585  				err = tx.SignWithKeys(signer, reservoir.Keys)
  1586  				assert.Equal(t, nil, err)
  1587  
  1588  				tx.SignFeePayerWithKeys(signer, testAcc.Keys)
  1589  				assert.Equal(t, nil, err)
  1590  
  1591  				receipt, err := applyTransaction(t, bcdata, tx)
  1592  				assert.Equal(t, nil, err)
  1593  				assert.Equal(t, types.ReceiptStatusSuccessful, receipt.Status)
  1594  			}
  1595  		}
  1596  	}
  1597  }
  1598  
  1599  // TestValidationTxSizeAfterRLP tests tx size validation during txPool insert process.
  1600  // Since the size is RLP encoded tx size, the test also includes RLP encoding/decoding process which may raise an issue.
  1601  func TestValidationTxSizeAfterRLP(t *testing.T) {
  1602  	testTxTypes := []types.TxType{}
  1603  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
  1604  		if i == types.TxTypeKlaytnLast {
  1605  			i = types.TxTypeEthereumAccessList
  1606  		}
  1607  
  1608  		tx, err := types.NewTxInternalData(i)
  1609  		if err == nil {
  1610  			// Since this test is for payload size, tx types without payload field will not be tested.
  1611  			if _, ok := tx.(types.TxInternalDataPayload); ok {
  1612  				testTxTypes = append(testTxTypes, i)
  1613  			}
  1614  		}
  1615  	}
  1616  
  1617  	prof := profile.NewProfiler()
  1618  
  1619  	// Initialize blockchain
  1620  	bcdata, err := NewBCData(6, 4)
  1621  	if err != nil {
  1622  		t.Fatal(err)
  1623  	}
  1624  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
  1625  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
  1626  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
  1627  	defer bcdata.Shutdown()
  1628  
  1629  	// Initialize address-balance map for verification
  1630  	accountMap := NewAccountMap()
  1631  	if err := accountMap.Initialize(bcdata); err != nil {
  1632  		t.Fatal(err)
  1633  	}
  1634  
  1635  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
  1636  
  1637  	// reservoir account
  1638  	reservoir := &TestAccountType{
  1639  		Addr:  *bcdata.addrs[0],
  1640  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
  1641  		Nonce: uint64(0),
  1642  	}
  1643  
  1644  	// for contract execution txs
  1645  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
  1646  	assert.Equal(t, nil, err)
  1647  
  1648  	// deploy a contract for contract execution tx type
  1649  	{
  1650  		var txs types.Transactions
  1651  
  1652  		values := map[types.TxValueKeyType]interface{}{
  1653  			types.TxValueKeyNonce:         reservoir.GetNonce(),
  1654  			types.TxValueKeyFrom:          reservoir.GetAddr(),
  1655  			types.TxValueKeyTo:            (*common.Address)(nil),
  1656  			types.TxValueKeyAmount:        big.NewInt(0),
  1657  			types.TxValueKeyGasLimit:      gasLimit,
  1658  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
  1659  			types.TxValueKeyHumanReadable: false,
  1660  			types.TxValueKeyData:          common.FromHex(code),
  1661  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
  1662  		}
  1663  
  1664  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
  1665  		assert.Equal(t, nil, err)
  1666  
  1667  		err = tx.SignWithKeys(signer, reservoir.Keys)
  1668  		assert.Equal(t, nil, err)
  1669  
  1670  		txs = append(txs, tx)
  1671  
  1672  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  1673  			t.Fatal(err)
  1674  		}
  1675  
  1676  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
  1677  
  1678  		reservoir.AddNonce()
  1679  	}
  1680  
  1681  	// make TxPool to test validation in 'TxPool add' process
  1682  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
  1683  
  1684  	// test for all tx types
  1685  	for _, txType := range testTxTypes {
  1686  		// test for invalid tx size
  1687  		{
  1688  			// generate invalid txs which size is around (32 * 1024) ~ (33 * 1024)
  1689  			valueMap, _ := genMapForTxTypes(reservoir, reservoir, txType)
  1690  			valueMap, _ = exceedSizeLimit(txType, valueMap, contract.Addr)
  1691  
  1692  			tx, err := types.NewTransactionWithMap(txType, valueMap)
  1693  			assert.Equal(t, nil, err)
  1694  
  1695  			err = tx.SignWithKeys(signer, reservoir.Keys)
  1696  			assert.Equal(t, nil, err)
  1697  
  1698  			if txType.IsFeeDelegatedTransaction() {
  1699  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1700  				assert.Equal(t, nil, err)
  1701  			}
  1702  
  1703  			// check the rlp encoded tx size
  1704  			encodedTx, err := rlp.EncodeToBytes(tx)
  1705  			if len(encodedTx) < blockchain.MaxTxDataSize {
  1706  				t.Fatalf("test data size is smaller than MaxTxDataSize")
  1707  			}
  1708  
  1709  			// RLP decode and re-generate the tx
  1710  			newTx := &types.Transaction{}
  1711  			err = rlp.DecodeBytes(encodedTx, newTx)
  1712  
  1713  			// test for tx pool insert validation
  1714  			err = txpool.AddRemote(newTx)
  1715  			assert.Equal(t, blockchain.ErrOversizedData, err)
  1716  		}
  1717  
  1718  		// test for valid tx size
  1719  		{
  1720  			// generate valid txs which size is around (31 * 1024) ~ (32 * 1024)
  1721  			to := reservoir
  1722  			if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1723  				to = contract
  1724  			}
  1725  			valueMap, _ := genMapForTxTypes(reservoir, to, txType)
  1726  			validData := make([]byte, blockchain.MaxTxDataSize-1024)
  1727  
  1728  			if valueMap[types.TxValueKeyData] != nil {
  1729  				valueMap[types.TxValueKeyData] = validData
  1730  			}
  1731  
  1732  			if valueMap[types.TxValueKeyAnchoredData] != nil {
  1733  				valueMap[types.TxValueKeyAnchoredData] = validData
  1734  			}
  1735  
  1736  			tx, err := types.NewTransactionWithMap(txType, valueMap)
  1737  			assert.Equal(t, nil, err)
  1738  
  1739  			err = tx.SignWithKeys(signer, reservoir.Keys)
  1740  			assert.Equal(t, nil, err)
  1741  
  1742  			if txType.IsFeeDelegatedTransaction() {
  1743  				tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1744  				assert.Equal(t, nil, err)
  1745  			}
  1746  
  1747  			// check the rlp encoded tx size
  1748  			encodedTx, err := rlp.EncodeToBytes(tx)
  1749  			if len(encodedTx) > blockchain.MaxTxDataSize {
  1750  				t.Fatalf("test data size is bigger than MaxTxDataSize")
  1751  			}
  1752  
  1753  			// RLP decode and re-generate the tx
  1754  			newTx := &types.Transaction{}
  1755  			err = rlp.DecodeBytes(encodedTx, newTx)
  1756  
  1757  			// test for tx pool insert validation
  1758  			err = txpool.AddRemote(newTx)
  1759  			assert.Equal(t, nil, err)
  1760  			reservoir.AddNonce()
  1761  		}
  1762  	}
  1763  }
  1764  
  1765  // TestValidationPoolResetAfterSenderKeyChange puts txs in the pending pool and generates a block only with the first tx.
  1766  // Since the tx changes the sender's account key, all rest txs should drop from the pending pool.
  1767  func TestValidationPoolResetAfterSenderKeyChange(t *testing.T) {
  1768  	txTypes := []types.TxType{}
  1769  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
  1770  		if i == types.TxTypeKlaytnLast {
  1771  			i = types.TxTypeEthereumAccessList
  1772  		}
  1773  
  1774  		_, err := types.NewTxInternalData(i)
  1775  		if err == nil {
  1776  			txTypes = append(txTypes, i)
  1777  		}
  1778  	}
  1779  
  1780  	prof := profile.NewProfiler()
  1781  
  1782  	// Initialize blockchain
  1783  	bcdata, err := NewBCData(6, 4)
  1784  	if err != nil {
  1785  		t.Fatal(err)
  1786  	}
  1787  	bcdata.bc.Config().IstanbulCompatibleBlock = big.NewInt(0)
  1788  	bcdata.bc.Config().LondonCompatibleBlock = big.NewInt(0)
  1789  	bcdata.bc.Config().EthTxTypeCompatibleBlock = big.NewInt(0)
  1790  	defer bcdata.Shutdown()
  1791  
  1792  	// Initialize address-balance map for verification
  1793  	accountMap := NewAccountMap()
  1794  	if err := accountMap.Initialize(bcdata); err != nil {
  1795  		t.Fatal(err)
  1796  	}
  1797  
  1798  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
  1799  
  1800  	// reservoir account
  1801  	reservoir := &TestAccountType{
  1802  		Addr:  *bcdata.addrs[0],
  1803  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
  1804  		Nonce: uint64(0),
  1805  	}
  1806  
  1807  	// for contract execution txs
  1808  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
  1809  	assert.Equal(t, nil, err)
  1810  
  1811  	// deploy a contract for contract execution tx type
  1812  	{
  1813  		var txs types.Transactions
  1814  
  1815  		values := map[types.TxValueKeyType]interface{}{
  1816  			types.TxValueKeyNonce:         reservoir.GetNonce(),
  1817  			types.TxValueKeyFrom:          reservoir.GetAddr(),
  1818  			types.TxValueKeyTo:            (*common.Address)(nil),
  1819  			types.TxValueKeyAmount:        big.NewInt(0),
  1820  			types.TxValueKeyGasLimit:      gasLimit,
  1821  			types.TxValueKeyGasPrice:      big.NewInt(0),
  1822  			types.TxValueKeyHumanReadable: false,
  1823  			types.TxValueKeyData:          common.FromHex(code),
  1824  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
  1825  		}
  1826  
  1827  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
  1828  		assert.Equal(t, nil, err)
  1829  
  1830  		err = tx.SignWithKeys(signer, reservoir.Keys)
  1831  		assert.Equal(t, nil, err)
  1832  
  1833  		txs = append(txs, tx)
  1834  
  1835  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  1836  			t.Fatal(err)
  1837  		}
  1838  
  1839  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
  1840  
  1841  		reservoir.AddNonce()
  1842  	}
  1843  
  1844  	// make TxPool to test validation in 'TxPool add' process
  1845  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
  1846  
  1847  	// state changing tx which will invalidate other txs when it is contained in a block.
  1848  	var txs types.Transactions
  1849  	{
  1850  		valueMap, _ := genMapForTxTypes(reservoir, reservoir, types.TxTypeAccountUpdate)
  1851  		tx, err := types.NewTransactionWithMap(types.TxTypeAccountUpdate, valueMap)
  1852  
  1853  		assert.Equal(t, nil, err)
  1854  
  1855  		err = tx.SignWithKeys(signer, reservoir.Keys)
  1856  		assert.Equal(t, nil, err)
  1857  
  1858  		txs = append(txs, tx)
  1859  
  1860  		err = txpool.AddRemote(tx)
  1861  		assert.Equal(t, nil, err)
  1862  		reservoir.AddNonce()
  1863  	}
  1864  
  1865  	// generate valid txs with all tx types.
  1866  	for _, txType := range txTypes {
  1867  		to := reservoir
  1868  		if toBasicType(txType) == types.TxTypeSmartContractExecution {
  1869  			to = contract
  1870  		}
  1871  		valueMap, _ := genMapForTxTypes(reservoir, to, txType)
  1872  		tx, err := types.NewTransactionWithMap(txType, valueMap)
  1873  		assert.Equal(t, nil, err)
  1874  
  1875  		err = tx.SignWithKeys(signer, reservoir.Keys)
  1876  		assert.Equal(t, nil, err)
  1877  
  1878  		if txType.IsFeeDelegatedTransaction() {
  1879  			tx.SignFeePayerWithKeys(signer, reservoir.Keys)
  1880  			assert.Equal(t, nil, err)
  1881  		}
  1882  
  1883  		err = txpool.AddRemote(tx)
  1884  		if err != nil {
  1885  			fmt.Println(tx)
  1886  			statedb, _ := bcdata.bc.State()
  1887  			fmt.Println(statedb.GetCode(tx.ValidatedSender()))
  1888  		}
  1889  		assert.Equal(t, nil, err)
  1890  		reservoir.AddNonce()
  1891  	}
  1892  
  1893  	// check pending whether it contains all txs
  1894  	pendingLen, _ := txpool.Stats()
  1895  	assert.Equal(t, len(txTypes)+1, pendingLen)
  1896  
  1897  	// generate a block with a state changing tx
  1898  	if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  1899  		t.Fatal(err)
  1900  	}
  1901  
  1902  	// Wait 1 second until txpool.reset() is called.
  1903  	time.Sleep(1 * time.Second)
  1904  
  1905  	// check pending whether it contains zero tx
  1906  	pendingLen, _ = txpool.Stats()
  1907  	assert.Equal(t, 0, pendingLen)
  1908  }
  1909  
  1910  // TestValidationPoolResetAfterFeePayerKeyChange puts txs in the pending pool and generates a block only with the first tx.
  1911  // Since the tx changes the fee payer's account key, all rest txs should drop from the pending pool.
  1912  func TestValidationPoolResetAfterFeePayerKeyChange(t *testing.T) {
  1913  	txTypes := []types.TxType{}
  1914  	for i := types.TxTypeLegacyTransaction; i < types.TxTypeEthereumLast; i++ {
  1915  		if i == types.TxTypeKlaytnLast {
  1916  			i = types.TxTypeEthereumAccessList
  1917  		}
  1918  
  1919  		_, err := types.NewTxInternalData(i)
  1920  		if err == nil {
  1921  			// This test is only for fee-delegated tx types
  1922  			if i.IsFeeDelegatedTransaction() {
  1923  				txTypes = append(txTypes, i)
  1924  			}
  1925  		}
  1926  	}
  1927  
  1928  	prof := profile.NewProfiler()
  1929  
  1930  	// Initialize blockchain
  1931  	bcdata, err := NewBCData(6, 4)
  1932  	if err != nil {
  1933  		t.Fatal(err)
  1934  	}
  1935  	defer bcdata.Shutdown()
  1936  
  1937  	// Initialize address-balance map for verification
  1938  	accountMap := NewAccountMap()
  1939  	if err := accountMap.Initialize(bcdata); err != nil {
  1940  		t.Fatal(err)
  1941  	}
  1942  
  1943  	signer := types.LatestSignerForChainID(bcdata.bc.Config().ChainID)
  1944  
  1945  	// reservoir account
  1946  	reservoir := &TestAccountType{
  1947  		Addr:  *bcdata.addrs[0],
  1948  		Keys:  []*ecdsa.PrivateKey{bcdata.privKeys[0]},
  1949  		Nonce: uint64(0),
  1950  	}
  1951  
  1952  	// for contract execution txs
  1953  	contract, err := createAnonymousAccount("a5c9a50938a089618167c9d67dbebc0deaffc3c76ddc6b40c2777ae59438e989")
  1954  	assert.Equal(t, nil, err)
  1955  
  1956  	// fee payer account
  1957  	feePayer, err := createDefaultAccount(accountkey.AccountKeyTypeLegacy)
  1958  	assert.Equal(t, nil, err)
  1959  
  1960  	// deploy a contract for contract execution tx type
  1961  	{
  1962  		var txs types.Transactions
  1963  
  1964  		values := map[types.TxValueKeyType]interface{}{
  1965  			types.TxValueKeyNonce:         reservoir.GetNonce(),
  1966  			types.TxValueKeyFrom:          reservoir.GetAddr(),
  1967  			types.TxValueKeyTo:            (*common.Address)(nil),
  1968  			types.TxValueKeyAmount:        big.NewInt(0),
  1969  			types.TxValueKeyGasLimit:      gasLimit,
  1970  			types.TxValueKeyGasPrice:      big.NewInt(25 * params.Ston),
  1971  			types.TxValueKeyHumanReadable: false,
  1972  			types.TxValueKeyData:          common.FromHex(code),
  1973  			types.TxValueKeyCodeFormat:    params.CodeFormatEVM,
  1974  		}
  1975  
  1976  		tx, err := types.NewTransactionWithMap(types.TxTypeSmartContractDeploy, values)
  1977  		assert.Equal(t, nil, err)
  1978  
  1979  		err = tx.SignWithKeys(signer, reservoir.Keys)
  1980  		assert.Equal(t, nil, err)
  1981  
  1982  		txs = append(txs, tx)
  1983  
  1984  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  1985  			t.Fatal(err)
  1986  		}
  1987  
  1988  		contract.Addr = crypto.CreateAddress(reservoir.Addr, reservoir.Nonce)
  1989  
  1990  		reservoir.AddNonce()
  1991  	}
  1992  
  1993  	// transfer KLAY to fee payer
  1994  	{
  1995  		var txs types.Transactions
  1996  
  1997  		values := map[types.TxValueKeyType]interface{}{
  1998  			types.TxValueKeyNonce:    reservoir.GetNonce(),
  1999  			types.TxValueKeyFrom:     reservoir.GetAddr(),
  2000  			types.TxValueKeyTo:       feePayer.Addr,
  2001  			types.TxValueKeyAmount:   new(big.Int).Mul(big.NewInt(params.KLAY), big.NewInt(100000)),
  2002  			types.TxValueKeyGasLimit: gasLimit,
  2003  			types.TxValueKeyGasPrice: big.NewInt(25 * params.Ston),
  2004  		}
  2005  
  2006  		tx, err := types.NewTransactionWithMap(types.TxTypeValueTransfer, values)
  2007  		assert.Equal(t, nil, err)
  2008  
  2009  		err = tx.SignWithKeys(signer, reservoir.Keys)
  2010  		assert.Equal(t, nil, err)
  2011  
  2012  		txs = append(txs, tx)
  2013  
  2014  		if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  2015  			t.Fatal(err)
  2016  		}
  2017  		reservoir.AddNonce()
  2018  	}
  2019  
  2020  	// make TxPool to test validation in 'TxPool add' process
  2021  	txpool := blockchain.NewTxPool(blockchain.DefaultTxPoolConfig, bcdata.bc.Config(), bcdata.bc)
  2022  
  2023  	// state changing tx which will invalidate other txs when it is contained in a block.
  2024  	var txs types.Transactions
  2025  	{
  2026  		valueMap, _ := genMapForTxTypes(feePayer, feePayer, types.TxTypeAccountUpdate)
  2027  		tx, err := types.NewTransactionWithMap(types.TxTypeAccountUpdate, valueMap)
  2028  
  2029  		assert.Equal(t, nil, err)
  2030  
  2031  		err = tx.SignWithKeys(signer, feePayer.Keys)
  2032  		assert.Equal(t, nil, err)
  2033  
  2034  		txs = append(txs, tx)
  2035  
  2036  		err = txpool.AddRemote(tx)
  2037  		assert.Equal(t, nil, err)
  2038  		feePayer.AddNonce()
  2039  	}
  2040  
  2041  	// generate valid txs with all tx fee delegation types.
  2042  	for _, txType := range txTypes {
  2043  		to := reservoir
  2044  		if toBasicType(txType) == types.TxTypeSmartContractExecution {
  2045  			to = contract
  2046  		}
  2047  
  2048  		valueMap, _ := genMapForTxTypes(reservoir, to, txType)
  2049  		valueMap[types.TxValueKeyFeePayer] = feePayer.Addr
  2050  
  2051  		tx, err := types.NewTransactionWithMap(txType, valueMap)
  2052  		assert.Equal(t, nil, err)
  2053  
  2054  		err = tx.SignWithKeys(signer, reservoir.Keys)
  2055  		assert.Equal(t, nil, err)
  2056  
  2057  		tx.SignFeePayerWithKeys(signer, feePayer.Keys)
  2058  		assert.Equal(t, nil, err)
  2059  
  2060  		err = txpool.AddRemote(tx)
  2061  		assert.Equal(t, nil, err)
  2062  		reservoir.AddNonce()
  2063  	}
  2064  
  2065  	// check pending whether it contains all txs
  2066  	pendingLen, _ := txpool.Stats()
  2067  	assert.Equal(t, len(txTypes)+1, pendingLen)
  2068  
  2069  	// generate a block with a state changing tx
  2070  	if err := bcdata.GenABlockWithTransactions(accountMap, txs, prof); err != nil {
  2071  		t.Fatal(err)
  2072  	}
  2073  
  2074  	// Wait 1 second until txpool.reset() is called.
  2075  	time.Sleep(1 * time.Second)
  2076  
  2077  	// check pending whether it contains zero tx
  2078  	pendingLen, _ = txpool.Stats()
  2079  	assert.Equal(t, 0, pendingLen)
  2080  }