github.com/kubeflow/training-operator@v1.7.0/examples/pytorch/mnist/mnist.py (about) 1 from __future__ import print_function 2 3 import argparse 4 import os 5 6 from tensorboardX import SummaryWriter 7 from torchvision import datasets, transforms 8 import torch 9 import torch.distributed as dist 10 import torch.nn as nn 11 import torch.nn.functional as F 12 import torch.optim as optim 13 14 WORLD_SIZE = int(os.environ.get('WORLD_SIZE', 1)) 15 16 17 class Net(nn.Module): 18 def __init__(self): 19 super(Net, self).__init__() 20 self.conv1 = nn.Conv2d(1, 20, 5, 1) 21 self.conv2 = nn.Conv2d(20, 50, 5, 1) 22 self.fc1 = nn.Linear(4*4*50, 500) 23 self.fc2 = nn.Linear(500, 10) 24 25 def forward(self, x): 26 x = F.relu(self.conv1(x)) 27 x = F.max_pool2d(x, 2, 2) 28 x = F.relu(self.conv2(x)) 29 x = F.max_pool2d(x, 2, 2) 30 x = x.view(-1, 4*4*50) 31 x = F.relu(self.fc1(x)) 32 x = self.fc2(x) 33 return F.log_softmax(x, dim=1) 34 35 def train(args, model, device, train_loader, optimizer, epoch, writer): 36 model.train() 37 for batch_idx, (data, target) in enumerate(train_loader): 38 data, target = data.to(device), target.to(device) 39 optimizer.zero_grad() 40 output = model(data) 41 loss = F.nll_loss(output, target) 42 loss.backward() 43 optimizer.step() 44 if batch_idx % args.log_interval == 0: 45 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format( 46 epoch, batch_idx * len(data), len(train_loader.dataset), 47 100. * batch_idx / len(train_loader), loss.item())) 48 niter = epoch * len(train_loader) + batch_idx 49 writer.add_scalar('loss', loss.item(), niter) 50 51 def test(args, model, device, test_loader, writer, epoch): 52 model.eval() 53 test_loss = 0 54 correct = 0 55 with torch.no_grad(): 56 for data, target in test_loader: 57 data, target = data.to(device), target.to(device) 58 output = model(data) 59 test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss 60 pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability 61 correct += pred.eq(target.view_as(pred)).sum().item() 62 63 test_loss /= len(test_loader.dataset) 64 print('\naccuracy={:.4f}\n'.format(float(correct) / len(test_loader.dataset))) 65 writer.add_scalar('accuracy', float(correct) / len(test_loader.dataset), epoch) 66 67 68 def should_distribute(): 69 return dist.is_available() and WORLD_SIZE > 1 70 71 72 def is_distributed(): 73 return dist.is_available() and dist.is_initialized() 74 75 76 def main(): 77 # Training settings 78 parser = argparse.ArgumentParser(description='PyTorch MNIST Example') 79 parser.add_argument('--batch-size', type=int, default=64, metavar='N', 80 help='input batch size for training (default: 64)') 81 parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', 82 help='input batch size for testing (default: 1000)') 83 parser.add_argument('--epochs', type=int, default=1, metavar='N', 84 help='number of epochs to train (default: 10)') 85 parser.add_argument('--lr', type=float, default=0.01, metavar='LR', 86 help='learning rate (default: 0.01)') 87 parser.add_argument('--momentum', type=float, default=0.5, metavar='M', 88 help='SGD momentum (default: 0.5)') 89 parser.add_argument('--no-cuda', action='store_true', default=False, 90 help='disables CUDA training') 91 parser.add_argument('--seed', type=int, default=1, metavar='S', 92 help='random seed (default: 1)') 93 parser.add_argument('--log-interval', type=int, default=10, metavar='N', 94 help='how many batches to wait before logging training status') 95 parser.add_argument('--save-model', action='store_true', default=False, 96 help='For Saving the current Model') 97 parser.add_argument('--dir', default='logs', metavar='L', 98 help='directory where summary logs are stored') 99 if dist.is_available(): 100 parser.add_argument('--backend', type=str, help='Distributed backend', 101 choices=[dist.Backend.GLOO, dist.Backend.NCCL, dist.Backend.MPI], 102 default=dist.Backend.GLOO) 103 args = parser.parse_args() 104 use_cuda = not args.no_cuda and torch.cuda.is_available() 105 if use_cuda: 106 print('Using CUDA') 107 108 writer = SummaryWriter(args.dir) 109 110 torch.manual_seed(args.seed) 111 112 device = torch.device("cuda" if use_cuda else "cpu") 113 114 if should_distribute(): 115 print('Using distributed PyTorch with {} backend'.format(args.backend)) 116 dist.init_process_group(backend=args.backend) 117 118 kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} 119 train_loader = torch.utils.data.DataLoader( 120 datasets.FashionMNIST('../data', train=True, download=True, 121 transform=transforms.Compose([ 122 transforms.ToTensor(), 123 transforms.Normalize((0.1307,), (0.3081,)) 124 ])), 125 batch_size=args.batch_size, shuffle=True, **kwargs) 126 test_loader = torch.utils.data.DataLoader( 127 datasets.FashionMNIST('../data', train=False, transform=transforms.Compose([ 128 transforms.ToTensor(), 129 transforms.Normalize((0.1307,), (0.3081,)) 130 ])), 131 batch_size=args.test_batch_size, shuffle=False, **kwargs) 132 133 model = Net().to(device) 134 135 if is_distributed(): 136 Distributor = nn.parallel.DistributedDataParallel if use_cuda \ 137 else nn.parallel.DistributedDataParallelCPU 138 model = Distributor(model) 139 140 optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) 141 142 for epoch in range(1, args.epochs + 1): 143 train(args, model, device, train_loader, optimizer, epoch, writer) 144 test(args, model, device, test_loader, writer, epoch) 145 146 if (args.save_model): 147 torch.save(model.state_dict(),"mnist_cnn.pt") 148 149 if __name__ == '__main__': 150 main()