github.com/kubeflow/training-operator@v1.7.0/examples/pytorch/pytorch_cuda_docker/Dockerfile (about) 1 FROM nvidia/cuda:9.2-base-ubuntu16.04 2 3 # Install some basic utilities 4 RUN apt-get update && apt-get install -y \ 5 curl \ 6 ca-certificates \ 7 sudo \ 8 git \ 9 bzip2 \ 10 libx11-6 \ 11 && rm -rf /var/lib/apt/lists/* 12 13 # Create a working directory 14 RUN mkdir /app 15 WORKDIR /var 16 17 # Create a non-root user and switch to it 18 19 20 # All users can use /home/user as their home directory 21 ENV HOME=/var 22 RUN chmod 777 /var 23 24 # Install Miniconda 25 RUN curl -so ~/miniconda.sh https://repo.continuum.io/miniconda/Miniconda3-4.5.11-Linux-x86_64.sh \ 26 && chmod +x ~/miniconda.sh \ 27 && ~/miniconda.sh -b -p ~/miniconda \ 28 && rm ~/miniconda.sh 29 ENV PATH=/var/miniconda/bin:$PATH 30 ENV CONDA_AUTO_UPDATE_CONDA=false 31 32 # Create a Python 3.6 environment 33 RUN /var/miniconda/bin/conda create -y --name py36 python=3.6.9 \ 34 && /var/miniconda/bin/conda clean -ya 35 ENV CONDA_DEFAULT_ENV=py36 36 ENV CONDA_PREFIX=/var/miniconda/envs/$CONDA_DEFAULT_ENV 37 ENV PATH=$CONDA_PREFIX/bin:$PATH 38 RUN /var/miniconda/bin/conda install conda-build=3.18.9=py36_3 \ 39 && /var/miniconda/bin/conda clean -ya 40 41 # CUDA 9.2-specific steps 42 RUN conda install -y -c pytorch \ 43 cudatoolkit=9.2 \ 44 "pytorch=1.2.0=py3.6_cuda9.2.148_cudnn7.6.2_0" \ 45 "torchvision=0.4.0=py36_cu92" \ 46 && conda clean -ya 47 48 # Install HDF5 Python bindings 49 RUN conda install -y h5py=2.8.0 \ 50 && conda clean -ya 51 RUN pip install h5py-cache==1.0 52 53 # Install Torchnet, a high-level framework for PyTorch 54 RUN pip install torchnet==0.0.4