github.com/kubeflow/training-operator@v1.7.0/examples/xgboost/lightgbm-dist/Dockerfile (about) 1 FROM ubuntu:16.04 2 3 ARG CONDA_DIR=/opt/conda 4 ENV PATH $CONDA_DIR/bin:$PATH 5 6 RUN apt-get update && \ 7 apt-get install -y --no-install-recommends \ 8 ca-certificates \ 9 cmake \ 10 build-essential \ 11 gcc \ 12 g++ \ 13 git \ 14 curl && \ 15 # python environment 16 curl -sL https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -o conda.sh && \ 17 /bin/bash conda.sh -f -b -p $CONDA_DIR && \ 18 export PATH="$CONDA_DIR/bin:$PATH" && \ 19 conda config --set always_yes yes --set changeps1 no && \ 20 # lightgbm 21 conda install -q -y numpy==1.20.3 scipy==1.6.2 scikit-learn==0.24.2 pandas==1.3.0 && \ 22 git clone --recursive --branch stable --depth 1 https://github.com/Microsoft/LightGBM && \ 23 mkdir LightGBM/build && \ 24 cd LightGBM/build && \ 25 cmake .. && \ 26 make -j4 && \ 27 make install && \ 28 cd ../python-package && \ 29 python setup.py install_lib && \ 30 # clean 31 apt-get autoremove -y && apt-get clean && \ 32 conda clean -a -y && \ 33 rm -rf /usr/local/src/* && \ 34 rm -rf /LightGBM 35 36 WORKDIR /app 37 38 # Download the example data 39 RUN mkdir data 40 ADD https://raw.githubusercontent.com/microsoft/LightGBM/stable/examples/parallel_learning/binary.train data/. 41 ADD https://raw.githubusercontent.com/microsoft/LightGBM/stable/examples/parallel_learning/binary.test data/. 42 COPY *.py ./ 43 44 ENTRYPOINT [ "python", "/app/main.py" ]