github.com/kubeflow/training-operator@v1.7.0/sdk/python/test/e2e/test_e2e_paddlejob.py (about) 1 # Copyright 2022 kubeflow.org. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 import os 16 import logging 17 import pytest 18 19 from kubernetes.client import V1PodTemplateSpec 20 from kubernetes.client import V1ObjectMeta 21 from kubernetes.client import V1PodSpec 22 from kubernetes.client import V1Container 23 from kubernetes.client import V1ResourceRequirements 24 25 from kubeflow.training import TrainingClient 26 from kubeflow.training import KubeflowOrgV1ReplicaSpec 27 from kubeflow.training import KubeflowOrgV1PaddleJob 28 from kubeflow.training import KubeflowOrgV1PaddleJobSpec 29 from kubeflow.training import KubeflowOrgV1RunPolicy 30 from kubeflow.training import KubeflowOrgV1SchedulingPolicy 31 from kubeflow.training.constants import constants 32 33 from test.e2e.utils import verify_job_e2e, verify_unschedulable_job_e2e, get_pod_spec_scheduler_name 34 from test.e2e.constants import TEST_GANG_SCHEDULER_NAME_ENV_KEY 35 from test.e2e.constants import GANG_SCHEDULERS, NONE_GANG_SCHEDULERS 36 37 logging.basicConfig(format="%(message)s") 38 logging.getLogger().setLevel(logging.INFO) 39 40 TRAINING_CLIENT = TrainingClient() 41 JOB_NAME = "paddlejob-cpu-ci-test" 42 CONTAINER_NAME = "paddle" 43 GANG_SCHEDULER_NAME = os.getenv(TEST_GANG_SCHEDULER_NAME_ENV_KEY) 44 45 46 @pytest.mark.skipif( 47 GANG_SCHEDULER_NAME in NONE_GANG_SCHEDULERS, reason="For gang-scheduling", 48 ) 49 def test_sdk_e2e_with_gang_scheduling(job_namespace): 50 container = generate_container() 51 52 worker = KubeflowOrgV1ReplicaSpec( 53 replicas=2, 54 restart_policy="OnFailure", 55 template=V1PodTemplateSpec( 56 metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 57 spec=V1PodSpec( 58 scheduler_name=get_pod_spec_scheduler_name(GANG_SCHEDULER_NAME), 59 containers=[container], 60 ) 61 ), 62 ) 63 64 unschedulable_paddlejob = generate_paddlejob(worker, KubeflowOrgV1SchedulingPolicy(min_available=10), job_namespace) 65 schedulable_paddlejob = generate_paddlejob(worker, KubeflowOrgV1SchedulingPolicy(min_available=2), job_namespace) 66 67 TRAINING_CLIENT.create_paddlejob(unschedulable_paddlejob, job_namespace) 68 logging.info(f"List of created {constants.PADDLEJOB_KIND}s") 69 logging.info(TRAINING_CLIENT.list_paddlejobs(job_namespace)) 70 71 verify_unschedulable_job_e2e( 72 TRAINING_CLIENT, 73 JOB_NAME, 74 job_namespace, 75 constants.PADDLEJOB_KIND, 76 ) 77 78 TRAINING_CLIENT.patch_paddlejob(schedulable_paddlejob, JOB_NAME, job_namespace) 79 logging.info(f"List of patched {constants.PADDLEJOB_KIND}s") 80 logging.info(TRAINING_CLIENT.list_paddlejobs(job_namespace)) 81 82 verify_job_e2e( 83 TRAINING_CLIENT, 84 JOB_NAME, 85 job_namespace, 86 constants.PADDLEJOB_KIND, 87 CONTAINER_NAME, 88 ) 89 90 TRAINING_CLIENT.delete_paddlejob(JOB_NAME, job_namespace) 91 92 93 @pytest.mark.skipif( 94 GANG_SCHEDULER_NAME in GANG_SCHEDULERS, reason="For plain scheduling", 95 ) 96 def test_sdk_e2e(job_namespace): 97 container = generate_container() 98 99 worker = KubeflowOrgV1ReplicaSpec( 100 replicas=2, 101 restart_policy="OnFailure", 102 template=V1PodTemplateSpec(metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 103 spec=V1PodSpec(containers=[container])), 104 ) 105 106 paddlejob = generate_paddlejob(worker, job_namespace=job_namespace) 107 108 TRAINING_CLIENT.create_paddlejob(paddlejob, job_namespace) 109 logging.info(f"List of created {constants.PADDLEJOB_KIND}s") 110 logging.info(TRAINING_CLIENT.list_paddlejobs(job_namespace)) 111 112 verify_job_e2e( 113 TRAINING_CLIENT, 114 JOB_NAME, 115 job_namespace, 116 constants.PADDLEJOB_KIND, 117 CONTAINER_NAME, 118 ) 119 120 TRAINING_CLIENT.delete_paddlejob(JOB_NAME, job_namespace) 121 122 123 def generate_paddlejob( 124 worker: KubeflowOrgV1ReplicaSpec, 125 scheduling_policy: KubeflowOrgV1SchedulingPolicy = None, 126 job_namespace: str = "default", 127 ) -> KubeflowOrgV1PaddleJob: 128 return KubeflowOrgV1PaddleJob( 129 api_version="kubeflow.org/v1", 130 kind="PaddleJob", 131 metadata=V1ObjectMeta(name=JOB_NAME, namespace=job_namespace), 132 spec=KubeflowOrgV1PaddleJobSpec( 133 run_policy=KubeflowOrgV1RunPolicy( 134 scheduling_policy=scheduling_policy, 135 clean_pod_policy="None", 136 ), 137 paddle_replica_specs={"Worker": worker}, 138 ), 139 ) 140 141 142 def generate_container() -> V1Container: 143 return V1Container( 144 name=CONTAINER_NAME, 145 image="docker.io/paddlepaddle/paddle:2.4.0rc0-cpu", 146 command=["python"], 147 args=["-m", "paddle.distributed.launch", "run_check"], 148 resources=V1ResourceRequirements(limits={"memory": "1Gi", "cpu": "0.4"}), 149 )