github.com/kubeflow/training-operator@v1.7.0/sdk/python/test/e2e/test_e2e_pytorchjob.py (about) 1 # Copyright 2021 kubeflow.org. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 import os 16 import logging 17 import pytest 18 19 from kubernetes.client import V1PodTemplateSpec 20 from kubernetes.client import V1ObjectMeta 21 from kubernetes.client import V1PodSpec 22 from kubernetes.client import V1Container 23 from kubernetes.client import V1ResourceRequirements 24 25 from kubeflow.training import TrainingClient 26 from kubeflow.training import KubeflowOrgV1ReplicaSpec 27 from kubeflow.training import KubeflowOrgV1PyTorchJob 28 from kubeflow.training import KubeflowOrgV1PyTorchJobSpec 29 from kubeflow.training import KubeflowOrgV1RunPolicy 30 from kubeflow.training import KubeflowOrgV1SchedulingPolicy 31 from kubeflow.training.constants import constants 32 33 from test.e2e.utils import verify_job_e2e, verify_unschedulable_job_e2e, get_pod_spec_scheduler_name 34 from test.e2e.constants import TEST_GANG_SCHEDULER_NAME_ENV_KEY 35 from test.e2e.constants import GANG_SCHEDULERS, NONE_GANG_SCHEDULERS 36 37 logging.basicConfig(format="%(message)s") 38 logging.getLogger().setLevel(logging.INFO) 39 40 TRAINING_CLIENT = TrainingClient() 41 JOB_NAME = "pytorchjob-mnist-ci-test" 42 CONTAINER_NAME = "pytorch" 43 GANG_SCHEDULER_NAME = os.getenv(TEST_GANG_SCHEDULER_NAME_ENV_KEY) 44 45 46 @pytest.mark.skipif( 47 GANG_SCHEDULER_NAME in NONE_GANG_SCHEDULERS, reason="For gang-scheduling", 48 ) 49 def test_sdk_e2e_with_gang_scheduling(job_namespace): 50 container = generate_container() 51 52 master = KubeflowOrgV1ReplicaSpec( 53 replicas=1, 54 restart_policy="OnFailure", 55 template=V1PodTemplateSpec( 56 metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 57 spec=V1PodSpec( 58 scheduler_name=get_pod_spec_scheduler_name(GANG_SCHEDULER_NAME), 59 containers=[container], 60 ) 61 ), 62 ) 63 64 worker = KubeflowOrgV1ReplicaSpec( 65 replicas=1, 66 restart_policy="OnFailure", 67 template=V1PodTemplateSpec( 68 metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 69 spec=V1PodSpec( 70 scheduler_name=get_pod_spec_scheduler_name(GANG_SCHEDULER_NAME), 71 containers=[container], 72 ) 73 ), 74 ) 75 76 unschedulable_pytorchjob = generate_pytorchjob(master, worker, KubeflowOrgV1SchedulingPolicy(min_available=10), job_namespace) 77 schedulable_pytorchjob = generate_pytorchjob(master, worker, KubeflowOrgV1SchedulingPolicy(min_available=2), job_namespace) 78 79 TRAINING_CLIENT.create_pytorchjob(unschedulable_pytorchjob, job_namespace) 80 logging.info(f"List of created {constants.PYTORCHJOB_KIND}s") 81 logging.info(TRAINING_CLIENT.list_pytorchjobs(job_namespace)) 82 83 verify_unschedulable_job_e2e( 84 TRAINING_CLIENT, 85 JOB_NAME, 86 job_namespace, 87 constants.PYTORCHJOB_KIND, 88 ) 89 90 TRAINING_CLIENT.patch_pytorchjob(schedulable_pytorchjob, JOB_NAME, job_namespace) 91 logging.info(f"List of patched {constants.PYTORCHJOB_KIND}s") 92 logging.info(TRAINING_CLIENT.list_pytorchjobs(job_namespace)) 93 94 verify_job_e2e( 95 TRAINING_CLIENT, 96 JOB_NAME, 97 job_namespace, 98 constants.PYTORCHJOB_KIND, 99 CONTAINER_NAME, 100 timeout=900, 101 ) 102 103 TRAINING_CLIENT.delete_pytorchjob(JOB_NAME, job_namespace) 104 105 106 @pytest.mark.skipif( 107 GANG_SCHEDULER_NAME in GANG_SCHEDULERS, reason="For plain scheduling", 108 ) 109 def test_sdk_e2e(job_namespace): 110 container = generate_container() 111 112 master = KubeflowOrgV1ReplicaSpec( 113 replicas=1, 114 restart_policy="OnFailure", 115 template=V1PodTemplateSpec(metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 116 spec=V1PodSpec(containers=[container])), 117 ) 118 119 worker = KubeflowOrgV1ReplicaSpec( 120 replicas=1, 121 restart_policy="OnFailure", 122 template=V1PodTemplateSpec(metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 123 spec=V1PodSpec(containers=[container])), 124 ) 125 126 pytorchjob = generate_pytorchjob(master, worker, job_namespace=job_namespace) 127 128 TRAINING_CLIENT.create_pytorchjob(pytorchjob, job_namespace) 129 logging.info(f"List of created {constants.PYTORCHJOB_KIND}s") 130 logging.info(TRAINING_CLIENT.list_pytorchjobs(job_namespace)) 131 132 verify_job_e2e( 133 TRAINING_CLIENT, 134 JOB_NAME, 135 job_namespace, 136 constants.PYTORCHJOB_KIND, 137 CONTAINER_NAME, 138 timeout=900, 139 ) 140 141 TRAINING_CLIENT.delete_pytorchjob(JOB_NAME, job_namespace) 142 143 144 def generate_pytorchjob( 145 master: KubeflowOrgV1ReplicaSpec, 146 worker: KubeflowOrgV1ReplicaSpec, 147 scheduling_policy: KubeflowOrgV1SchedulingPolicy = None, 148 job_namespace: str = "default", 149 ) -> KubeflowOrgV1PyTorchJob: 150 return KubeflowOrgV1PyTorchJob( 151 api_version="kubeflow.org/v1", 152 kind="PyTorchJob", 153 metadata=V1ObjectMeta(name=JOB_NAME, namespace=job_namespace), 154 spec=KubeflowOrgV1PyTorchJobSpec( 155 run_policy=KubeflowOrgV1RunPolicy( 156 clean_pod_policy="None", 157 scheduling_policy=scheduling_policy, 158 ), 159 pytorch_replica_specs={"Master": master, "Worker": worker}, 160 ), 161 ) 162 163 164 def generate_container() -> V1Container: 165 return V1Container( 166 name=CONTAINER_NAME, 167 image="gcr.io/kubeflow-ci/pytorch-dist-mnist-test:v1.0", 168 args=["--backend", "gloo"], 169 resources=V1ResourceRequirements(limits={"memory": "1Gi", "cpu": "0.4"}), 170 )