github.com/kubeflow/training-operator@v1.7.0/sdk/python/test/e2e/test_e2e_tfjob.py (about) 1 # Copyright 2021 kubeflow.org. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 import os 16 import logging 17 import pytest 18 19 from kubernetes.client import V1PodTemplateSpec 20 from kubernetes.client import V1ObjectMeta 21 from kubernetes.client import V1PodSpec 22 from kubernetes.client import V1Container 23 from kubernetes.client import V1ResourceRequirements 24 25 from kubeflow.training import TrainingClient 26 from kubeflow.training import KubeflowOrgV1ReplicaSpec 27 from kubeflow.training import KubeflowOrgV1RunPolicy 28 from kubeflow.training import KubeflowOrgV1TFJob 29 from kubeflow.training import KubeflowOrgV1TFJobSpec 30 from kubeflow.training import KubeflowOrgV1SchedulingPolicy 31 from kubeflow.training.constants import constants 32 33 from test.e2e.utils import verify_job_e2e, verify_unschedulable_job_e2e, get_pod_spec_scheduler_name 34 from test.e2e.constants import TEST_GANG_SCHEDULER_NAME_ENV_KEY 35 from test.e2e.constants import GANG_SCHEDULERS, NONE_GANG_SCHEDULERS 36 37 logging.basicConfig(format="%(message)s") 38 logging.getLogger().setLevel(logging.INFO) 39 40 TRAINING_CLIENT = TrainingClient() 41 JOB_NAME = "tfjob-mnist-ci-test" 42 CONTAINER_NAME = "tensorflow" 43 GANG_SCHEDULER_NAME = os.getenv(TEST_GANG_SCHEDULER_NAME_ENV_KEY) 44 45 46 @pytest.mark.skipif( 47 GANG_SCHEDULER_NAME in NONE_GANG_SCHEDULERS, reason="For gang-scheduling", 48 ) 49 def test_sdk_e2e_with_gang_scheduling(job_namespace): 50 container = generate_container() 51 52 worker = KubeflowOrgV1ReplicaSpec( 53 replicas=1, 54 restart_policy="Never", 55 template=V1PodTemplateSpec( 56 metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 57 spec=V1PodSpec( 58 containers=[container], 59 scheduler_name=get_pod_spec_scheduler_name(GANG_SCHEDULER_NAME), 60 ) 61 ), 62 ) 63 64 unschedulable_tfjob = generate_tfjob(worker, KubeflowOrgV1SchedulingPolicy(min_available=10), job_namespace) 65 schedulable_tfjob = generate_tfjob(worker, KubeflowOrgV1SchedulingPolicy(min_available=1), job_namespace) 66 67 TRAINING_CLIENT.create_tfjob(unschedulable_tfjob, job_namespace) 68 logging.info(f"List of created {constants.TFJOB_KIND}s") 69 logging.info(TRAINING_CLIENT.list_tfjobs(job_namespace)) 70 71 verify_unschedulable_job_e2e( 72 TRAINING_CLIENT, 73 JOB_NAME, 74 job_namespace, 75 constants.TFJOB_KIND, 76 ) 77 78 TRAINING_CLIENT.patch_tfjob(schedulable_tfjob, JOB_NAME, job_namespace) 79 logging.info(f"List of patched {constants.TFJOB_KIND}s") 80 logging.info(TRAINING_CLIENT.list_tfjobs(job_namespace)) 81 82 verify_job_e2e( 83 TRAINING_CLIENT, 84 JOB_NAME, 85 job_namespace, 86 constants.TFJOB_KIND, 87 CONTAINER_NAME, 88 ) 89 90 TRAINING_CLIENT.delete_tfjob(JOB_NAME, job_namespace) 91 92 93 @pytest.mark.skipif( 94 GANG_SCHEDULER_NAME in GANG_SCHEDULERS, reason="For plain scheduling", 95 ) 96 def test_sdk_e2e(job_namespace): 97 container = generate_container() 98 99 worker = KubeflowOrgV1ReplicaSpec( 100 replicas=1, 101 restart_policy="Never", 102 template=V1PodTemplateSpec(metadata=V1ObjectMeta(annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}), 103 spec=V1PodSpec(containers=[container])), 104 ) 105 106 tfjob = generate_tfjob(worker, job_namespace=job_namespace) 107 108 TRAINING_CLIENT.create_tfjob(tfjob, job_namespace) 109 logging.info(f"List of created {constants.TFJOB_KIND}s") 110 logging.info(TRAINING_CLIENT.list_tfjobs(job_namespace)) 111 112 verify_job_e2e( 113 TRAINING_CLIENT, JOB_NAME, job_namespace, constants.TFJOB_KIND, CONTAINER_NAME, 114 ) 115 116 TRAINING_CLIENT.delete_tfjob(JOB_NAME, job_namespace) 117 118 119 def generate_tfjob( 120 worker: KubeflowOrgV1ReplicaSpec, 121 scheduling_policy: KubeflowOrgV1SchedulingPolicy = None, 122 job_namespace: str = "default", 123 ) -> KubeflowOrgV1TFJob: 124 return KubeflowOrgV1TFJob( 125 api_version="kubeflow.org/v1", 126 kind="TFJob", 127 metadata=V1ObjectMeta(name=JOB_NAME, namespace=job_namespace), 128 spec=KubeflowOrgV1TFJobSpec( 129 run_policy=KubeflowOrgV1RunPolicy( 130 clean_pod_policy="None", 131 scheduling_policy=scheduling_policy, 132 ), 133 tf_replica_specs={"Worker": worker}, 134 ), 135 ) 136 137 138 def generate_container() -> V1Container: 139 return V1Container( 140 name=CONTAINER_NAME, 141 image="gcr.io/kubeflow-ci/tf-mnist-with-summaries:1.0", 142 command=[ 143 "python", 144 "/var/tf_mnist/mnist_with_summaries.py", 145 "--log_dir=/train/logs", 146 "--learning_rate=0.01", 147 "--batch_size=150", 148 ], 149 resources=V1ResourceRequirements(limits={"memory": "2Gi", "cpu": "0.75"}), 150 )