github.com/kunnos/engine@v1.13.1/man/docker-run.1.md (about) 1 % DOCKER(1) Docker User Manuals 2 % Docker Community 3 % JUNE 2014 4 # NAME 5 docker-run - Run a command in a new container 6 7 # SYNOPSIS 8 **docker run** 9 [**-a**|**--attach**[=*[]*]] 10 [**--add-host**[=*[]*]] 11 [**--blkio-weight**[=*[BLKIO-WEIGHT]*]] 12 [**--blkio-weight-device**[=*[]*]] 13 [**--cpu-shares**[=*0*]] 14 [**--cap-add**[=*[]*]] 15 [**--cap-drop**[=*[]*]] 16 [**--cgroup-parent**[=*CGROUP-PATH*]] 17 [**--cidfile**[=*CIDFILE*]] 18 [**--cpu-count**[=*0*]] 19 [**--cpu-percent**[=*0*]] 20 [**--cpu-period**[=*0*]] 21 [**--cpu-quota**[=*0*]] 22 [**--cpu-rt-period**[=*0*]] 23 [**--cpu-rt-runtime**[=*0*]] 24 [**--cpus**[=*0.0*]] 25 [**--cpuset-cpus**[=*CPUSET-CPUS*]] 26 [**--cpuset-mems**[=*CPUSET-MEMS*]] 27 [**-d**|**--detach**] 28 [**--detach-keys**[=*[]*]] 29 [**--device**[=*[]*]] 30 [**--device-read-bps**[=*[]*]] 31 [**--device-read-iops**[=*[]*]] 32 [**--device-write-bps**[=*[]*]] 33 [**--device-write-iops**[=*[]*]] 34 [**--dns**[=*[]*]] 35 [**--dns-option**[=*[]*]] 36 [**--dns-search**[=*[]*]] 37 [**-e**|**--env**[=*[]*]] 38 [**--entrypoint**[=*ENTRYPOINT*]] 39 [**--env-file**[=*[]*]] 40 [**--expose**[=*[]*]] 41 [**--group-add**[=*[]*]] 42 [**-h**|**--hostname**[=*HOSTNAME*]] 43 [**--help**] 44 [**--init**] 45 [**--init-path**[=*[]*]] 46 [**-i**|**--interactive**] 47 [**--ip**[=*IPv4-ADDRESS*]] 48 [**--ip6**[=*IPv6-ADDRESS*]] 49 [**--ipc**[=*IPC*]] 50 [**--isolation**[=*default*]] 51 [**--kernel-memory**[=*KERNEL-MEMORY*]] 52 [**-l**|**--label**[=*[]*]] 53 [**--label-file**[=*[]*]] 54 [**--link**[=*[]*]] 55 [**--link-local-ip**[=*[]*]] 56 [**--log-driver**[=*[]*]] 57 [**--log-opt**[=*[]*]] 58 [**-m**|**--memory**[=*MEMORY*]] 59 [**--mac-address**[=*MAC-ADDRESS*]] 60 [**--memory-reservation**[=*MEMORY-RESERVATION*]] 61 [**--memory-swap**[=*LIMIT*]] 62 [**--memory-swappiness**[=*MEMORY-SWAPPINESS*]] 63 [**--name**[=*NAME*]] 64 [**--network-alias**[=*[]*]] 65 [**--network**[=*"bridge"*]] 66 [**--oom-kill-disable**] 67 [**--oom-score-adj**[=*0*]] 68 [**-P**|**--publish-all**] 69 [**-p**|**--publish**[=*[]*]] 70 [**--pid**[=*[PID]*]] 71 [**--userns**[=*[]*]] 72 [**--pids-limit**[=*PIDS_LIMIT*]] 73 [**--privileged**] 74 [**--read-only**] 75 [**--restart**[=*RESTART*]] 76 [**--rm**] 77 [**--security-opt**[=*[]*]] 78 [**--storage-opt**[=*[]*]] 79 [**--stop-signal**[=*SIGNAL*]] 80 [**--stop-timeout**[=*TIMEOUT*]] 81 [**--shm-size**[=*[]*]] 82 [**--sig-proxy**[=*true*]] 83 [**--sysctl**[=*[]*]] 84 [**-t**|**--tty**] 85 [**--tmpfs**[=*[CONTAINER-DIR[:<OPTIONS>]*]] 86 [**-u**|**--user**[=*USER*]] 87 [**--ulimit**[=*[]*]] 88 [**--uts**[=*[]*]] 89 [**-v**|**--volume**[=*[[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]*]] 90 [**--volume-driver**[=*DRIVER*]] 91 [**--volumes-from**[=*[]*]] 92 [**-w**|**--workdir**[=*WORKDIR*]] 93 IMAGE [COMMAND] [ARG...] 94 95 # DESCRIPTION 96 97 Run a process in a new container. **docker run** starts a process with its own 98 file system, its own networking, and its own isolated process tree. The IMAGE 99 which starts the process may define defaults related to the process that will be 100 run in the container, the networking to expose, and more, but **docker run** 101 gives final control to the operator or administrator who starts the container 102 from the image. For that reason **docker run** has more options than any other 103 Docker command. 104 105 If the IMAGE is not already loaded then **docker run** will pull the IMAGE, and 106 all image dependencies, from the repository in the same way running **docker 107 pull** IMAGE, before it starts the container from that image. 108 109 # OPTIONS 110 **-a**, **--attach**=[] 111 Attach to STDIN, STDOUT or STDERR. 112 113 In foreground mode (the default when **-d** 114 is not specified), **docker run** can start the process in the container 115 and attach the console to the process's standard input, output, and standard 116 error. It can even pretend to be a TTY (this is what most commandline 117 executables expect) and pass along signals. The **-a** option can be set for 118 each of stdin, stdout, and stderr. 119 120 **--add-host**=[] 121 Add a custom host-to-IP mapping (host:ip) 122 123 Add a line to /etc/hosts. The format is hostname:ip. The **--add-host** 124 option can be set multiple times. 125 126 **--blkio-weight**=*0* 127 Block IO weight (relative weight) accepts a weight value between 10 and 1000. 128 129 **--blkio-weight-device**=[] 130 Block IO weight (relative device weight, format: `DEVICE_NAME:WEIGHT`). 131 132 **--cpu-shares**=*0* 133 CPU shares (relative weight) 134 135 By default, all containers get the same proportion of CPU cycles. This proportion 136 can be modified by changing the container's CPU share weighting relative 137 to the weighting of all other running containers. 138 139 To modify the proportion from the default of 1024, use the **--cpu-shares** 140 flag to set the weighting to 2 or higher. 141 142 The proportion will only apply when CPU-intensive processes are running. 143 When tasks in one container are idle, other containers can use the 144 left-over CPU time. The actual amount of CPU time will vary depending on 145 the number of containers running on the system. 146 147 For example, consider three containers, one has a cpu-share of 1024 and 148 two others have a cpu-share setting of 512. When processes in all three 149 containers attempt to use 100% of CPU, the first container would receive 150 50% of the total CPU time. If you add a fourth container with a cpu-share 151 of 1024, the first container only gets 33% of the CPU. The remaining containers 152 receive 16.5%, 16.5% and 33% of the CPU. 153 154 On a multi-core system, the shares of CPU time are distributed over all CPU 155 cores. Even if a container is limited to less than 100% of CPU time, it can 156 use 100% of each individual CPU core. 157 158 For example, consider a system with more than three cores. If you start one 159 container **{C0}** with **-c=512** running one process, and another container 160 **{C1}** with **-c=1024** running two processes, this can result in the following 161 division of CPU shares: 162 163 PID container CPU CPU share 164 100 {C0} 0 100% of CPU0 165 101 {C1} 1 100% of CPU1 166 102 {C1} 2 100% of CPU2 167 168 **--cap-add**=[] 169 Add Linux capabilities 170 171 **--cap-drop**=[] 172 Drop Linux capabilities 173 174 **--cgroup-parent**="" 175 Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist. 176 177 **--cidfile**="" 178 Write the container ID to the file 179 180 **--cpu-count**=*0* 181 Limit the number of CPUs available for execution by the container. 182 183 On Windows Server containers, this is approximated as a percentage of total CPU usage. 184 185 On Windows Server containers, the processor resource controls are mutually exclusive, the order of precedence is CPUCount first, then CPUShares, and CPUPercent last. 186 187 **--cpu-percent**=*0* 188 Limit the percentage of CPU available for execution by a container running on a Windows daemon. 189 190 On Windows Server containers, the processor resource controls are mutually exclusive, the order of precedence is CPUCount first, then CPUShares, and CPUPercent last. 191 192 **--cpu-period**=*0* 193 Limit the CPU CFS (Completely Fair Scheduler) period 194 195 Limit the container's CPU usage. This flag tell the kernel to restrict the container's CPU usage to the period you specify. 196 197 **--cpuset-cpus**="" 198 CPUs in which to allow execution (0-3, 0,1) 199 200 **--cpuset-mems**="" 201 Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems. 202 203 If you have four memory nodes on your system (0-3), use `--cpuset-mems=0,1` 204 then processes in your Docker container will only use memory from the first 205 two memory nodes. 206 207 **--cpu-quota**=*0* 208 Limit the CPU CFS (Completely Fair Scheduler) quota 209 210 Limit the container's CPU usage. By default, containers run with the full 211 CPU resource. This flag tell the kernel to restrict the container's CPU usage 212 to the quota you specify. 213 214 **--cpu-rt-period**=0 215 Limit the CPU real-time period in microseconds 216 217 Limit the container's Real Time CPU usage. This flag tell the kernel to restrict the container's Real Time CPU usage to the period you specify. 218 219 **--cpu-rt-runtime**=0 220 Limit the CPU real-time runtime in microseconds 221 222 Limit the containers Real Time CPU usage. This flag tells the kernel to limit the amount of time in a given CPU period Real Time tasks may consume. Ex: 223 Period of 1,000,000us and Runtime of 950,000us means that this container could consume 95% of available CPU and leave the remaining 5% to normal priority tasks. 224 225 The sum of all runtimes across containers cannot exceed the amount allotted to the parent cgroup. 226 227 **--cpus**=0.0 228 Number of CPUs. The default is *0.0* which means no limit. 229 230 **-d**, **--detach**=*true*|*false* 231 Detached mode: run the container in the background and print the new container ID. The default is *false*. 232 233 At any time you can run **docker ps** in 234 the other shell to view a list of the running containers. You can reattach to a 235 detached container with **docker attach**. If you choose to run a container in 236 the detached mode, then you cannot use the **-rm** option. 237 238 When attached in the tty mode, you can detach from the container (and leave it 239 running) using a configurable key sequence. The default sequence is `CTRL-p CTRL-q`. 240 You configure the key sequence using the **--detach-keys** option or a configuration file. 241 See **config-json(5)** for documentation on using a configuration file. 242 243 **--detach-keys**="" 244 Override the key sequence for detaching a container. Format is a single character `[a-Z]` or `ctrl-<value>` where `<value>` is one of: `a-z`, `@`, `^`, `[`, `,` or `_`. 245 246 **--device**=[] 247 Add a host device to the container (e.g. --device=/dev/sdc:/dev/xvdc:rwm) 248 249 **--device-read-bps**=[] 250 Limit read rate from a device (e.g. --device-read-bps=/dev/sda:1mb) 251 252 **--device-read-iops**=[] 253 Limit read rate from a device (e.g. --device-read-iops=/dev/sda:1000) 254 255 **--device-write-bps**=[] 256 Limit write rate to a device (e.g. --device-write-bps=/dev/sda:1mb) 257 258 **--device-write-iops**=[] 259 Limit write rate to a device (e.g. --device-write-iops=/dev/sda:1000) 260 261 **--dns-search**=[] 262 Set custom DNS search domains (Use --dns-search=. if you don't wish to set the search domain) 263 264 **--dns-option**=[] 265 Set custom DNS options 266 267 **--dns**=[] 268 Set custom DNS servers 269 270 This option can be used to override the DNS 271 configuration passed to the container. Typically this is necessary when the 272 host DNS configuration is invalid for the container (e.g., 127.0.0.1). When this 273 is the case the **--dns** flags is necessary for every run. 274 275 **-e**, **--env**=[] 276 Set environment variables 277 278 This option allows you to specify arbitrary 279 environment variables that are available for the process that will be launched 280 inside of the container. 281 282 **--entrypoint**="" 283 Overwrite the default ENTRYPOINT of the image 284 285 This option allows you to overwrite the default entrypoint of the image that 286 is set in the Dockerfile. The ENTRYPOINT of an image is similar to a COMMAND 287 because it specifies what executable to run when the container starts, but it is 288 (purposely) more difficult to override. The ENTRYPOINT gives a container its 289 default nature or behavior, so that when you set an ENTRYPOINT you can run the 290 container as if it were that binary, complete with default options, and you can 291 pass in more options via the COMMAND. But, sometimes an operator may want to run 292 something else inside the container, so you can override the default ENTRYPOINT 293 at runtime by using a **--entrypoint** and a string to specify the new 294 ENTRYPOINT. 295 296 **--env-file**=[] 297 Read in a line delimited file of environment variables 298 299 **--expose**=[] 300 Expose a port, or a range of ports (e.g. --expose=3300-3310) informs Docker 301 that the container listens on the specified network ports at runtime. Docker 302 uses this information to interconnect containers using links and to set up port 303 redirection on the host system. 304 305 **--group-add**=[] 306 Add additional groups to run as 307 308 **-h**, **--hostname**="" 309 Container host name 310 311 Sets the container host name that is available inside the container. 312 313 **--help** 314 Print usage statement 315 316 **--init** 317 Run an init inside the container that forwards signals and reaps processes 318 319 **--init-path**="" 320 Path to the docker-init binary 321 322 **-i**, **--interactive**=*true*|*false* 323 Keep STDIN open even if not attached. The default is *false*. 324 325 When set to true, keep stdin open even if not attached. The default is false. 326 327 **--ip**="" 328 Sets the container's interface IPv4 address (e.g. 172.23.0.9) 329 330 It can only be used in conjunction with **--network** for user-defined networks 331 332 **--ip6**="" 333 Sets the container's interface IPv6 address (e.g. 2001:db8::1b99) 334 335 It can only be used in conjunction with **--network** for user-defined networks 336 337 **--ipc**="" 338 Default is to create a private IPC namespace (POSIX SysV IPC) for the container 339 'container:<name|id>': reuses another container shared memory, semaphores and message queues 340 'host': use the host shared memory,semaphores and message queues inside the container. Note: the host mode gives the container full access to local shared memory and is therefore considered insecure. 341 342 **--isolation**="*default*" 343 Isolation specifies the type of isolation technology used by containers. Note 344 that the default on Windows server is `process`, and the default on Windows client 345 is `hyperv`. Linux only supports `default`. 346 347 **-l**, **--label**=[] 348 Set metadata on the container (e.g., --label com.example.key=value) 349 350 **--kernel-memory**="" 351 Kernel memory limit (format: `<number>[<unit>]`, where unit = b, k, m or g) 352 353 Constrains the kernel memory available to a container. If a limit of 0 354 is specified (not using `--kernel-memory`), the container's kernel memory 355 is not limited. If you specify a limit, it may be rounded up to a multiple 356 of the operating system's page size and the value can be very large, 357 millions of trillions. 358 359 **--label-file**=[] 360 Read in a line delimited file of labels 361 362 **--link**=[] 363 Add link to another container in the form of <name or id>:alias or just <name or id> 364 in which case the alias will match the name 365 366 If the operator 367 uses **--link** when starting the new client container, then the client 368 container can access the exposed port via a private networking interface. Docker 369 will set some environment variables in the client container to help indicate 370 which interface and port to use. 371 372 **--link-local-ip**=[] 373 Add one or more link-local IPv4/IPv6 addresses to the container's interface 374 375 **--log-driver**="*json-file*|*syslog*|*journald*|*gelf*|*fluentd*|*awslogs*|*splunk*|*etwlogs*|*gcplogs*|*none*" 376 Logging driver for the container. Default is defined by daemon `--log-driver` flag. 377 **Warning**: the `docker logs` command works only for the `json-file` and 378 `journald` logging drivers. 379 380 **--log-opt**=[] 381 Logging driver specific options. 382 383 **-m**, **--memory**="" 384 Memory limit (format: <number>[<unit>], where unit = b, k, m or g) 385 386 Allows you to constrain the memory available to a container. If the host 387 supports swap memory, then the **-m** memory setting can be larger than physical 388 RAM. If a limit of 0 is specified (not using **-m**), the container's memory is 389 not limited. The actual limit may be rounded up to a multiple of the operating 390 system's page size (the value would be very large, that's millions of trillions). 391 392 **--memory-reservation**="" 393 Memory soft limit (format: <number>[<unit>], where unit = b, k, m or g) 394 395 After setting memory reservation, when the system detects memory contention 396 or low memory, containers are forced to restrict their consumption to their 397 reservation. So you should always set the value below **--memory**, otherwise the 398 hard limit will take precedence. By default, memory reservation will be the same 399 as memory limit. 400 401 **--memory-swap**="LIMIT" 402 A limit value equal to memory plus swap. Must be used with the **-m** 403 (**--memory**) flag. The swap `LIMIT` should always be larger than **-m** 404 (**--memory**) value. By default, the swap `LIMIT` will be set to double 405 the value of --memory. 406 407 The format of `LIMIT` is `<number>[<unit>]`. Unit can be `b` (bytes), 408 `k` (kilobytes), `m` (megabytes), or `g` (gigabytes). If you don't specify a 409 unit, `b` is used. Set LIMIT to `-1` to enable unlimited swap. 410 411 **--mac-address**="" 412 Container MAC address (e.g. 92:d0:c6:0a:29:33) 413 414 Remember that the MAC address in an Ethernet network must be unique. 415 The IPv6 link-local address will be based on the device's MAC address 416 according to RFC4862. 417 418 **--name**="" 419 Assign a name to the container 420 421 The operator can identify a container in three ways: 422 UUID long identifier (“f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778”) 423 UUID short identifier (“f78375b1c487”) 424 Name (“jonah”) 425 426 The UUID identifiers come from the Docker daemon, and if a name is not assigned 427 to the container with **--name** then the daemon will also generate a random 428 string name. The name is useful when defining links (see **--link**) (or any 429 other place you need to identify a container). This works for both background 430 and foreground Docker containers. 431 432 **--network**="*bridge*" 433 Set the Network mode for the container 434 'bridge': create a network stack on the default Docker bridge 435 'none': no networking 436 'container:<name|id>': reuse another container's network stack 437 'host': use the Docker host network stack. Note: the host mode gives the container full access to local system services such as D-bus and is therefore considered insecure. 438 '<network-name>|<network-id>': connect to a user-defined network 439 440 **--network-alias**=[] 441 Add network-scoped alias for the container 442 443 **--oom-kill-disable**=*true*|*false* 444 Whether to disable OOM Killer for the container or not. 445 446 **--oom-score-adj**="" 447 Tune the host's OOM preferences for containers (accepts -1000 to 1000) 448 449 **-P**, **--publish-all**=*true*|*false* 450 Publish all exposed ports to random ports on the host interfaces. The default is *false*. 451 452 When set to true publish all exposed ports to the host interfaces. The 453 default is false. If the operator uses -P (or -p) then Docker will make the 454 exposed port accessible on the host and the ports will be available to any 455 client that can reach the host. When using -P, Docker will bind any exposed 456 port to a random port on the host within an *ephemeral port range* defined by 457 `/proc/sys/net/ipv4/ip_local_port_range`. To find the mapping between the host 458 ports and the exposed ports, use `docker port`. 459 460 **-p**, **--publish**=[] 461 Publish a container's port, or range of ports, to the host. 462 463 Format: `ip:hostPort:containerPort | ip::containerPort | hostPort:containerPort | containerPort` 464 Both hostPort and containerPort can be specified as a range of ports. 465 When specifying ranges for both, the number of container ports in the range must match the number of host ports in the range. 466 (e.g., `docker run -p 1234-1236:1222-1224 --name thisWorks -t busybox` 467 but not `docker run -p 1230-1236:1230-1240 --name RangeContainerPortsBiggerThanRangeHostPorts -t busybox`) 468 With ip: `docker run -p 127.0.0.1:$HOSTPORT:$CONTAINERPORT --name CONTAINER -t someimage` 469 Use `docker port` to see the actual mapping: `docker port CONTAINER $CONTAINERPORT` 470 471 **--pid**="" 472 Set the PID mode for the container 473 Default is to create a private PID namespace for the container 474 'container:<name|id>': join another container's PID namespace 475 'host': use the host's PID namespace for the container. Note: the host mode gives the container full access to local PID and is therefore considered insecure. 476 477 **--userns**="" 478 Set the usernamespace mode for the container when `userns-remap` option is enabled. 479 **host**: use the host usernamespace and enable all privileged options (e.g., `pid=host` or `--privileged`). 480 481 **--pids-limit**="" 482 Tune the container's pids limit. Set `-1` to have unlimited pids for the container. 483 484 **--uts**=*host* 485 Set the UTS mode for the container 486 **host**: use the host's UTS namespace inside the container. 487 Note: the host mode gives the container access to changing the host's hostname and is therefore considered insecure. 488 489 **--privileged**=*true*|*false* 490 Give extended privileges to this container. The default is *false*. 491 492 By default, Docker containers are 493 “unprivileged” (=false) and cannot, for example, run a Docker daemon inside the 494 Docker container. This is because by default a container is not allowed to 495 access any devices. A “privileged” container is given access to all devices. 496 497 When the operator executes **docker run --privileged**, Docker will enable access 498 to all devices on the host as well as set some configuration in AppArmor to 499 allow the container nearly all the same access to the host as processes running 500 outside of a container on the host. 501 502 **--read-only**=*true*|*false* 503 Mount the container's root filesystem as read only. 504 505 By default a container will have its root filesystem writable allowing processes 506 to write files anywhere. By specifying the `--read-only` flag the container will have 507 its root filesystem mounted as read only prohibiting any writes. 508 509 **--restart**="*no*" 510 Restart policy to apply when a container exits (no, on-failure[:max-retry], always, unless-stopped). 511 512 **--rm**=*true*|*false* 513 Automatically remove the container when it exits. The default is *false*. 514 `--rm` flag can work together with `-d`, and auto-removal will be done on daemon side. Note that it's 515 incompatible with any restart policy other than `none`. 516 517 **--security-opt**=[] 518 Security Options 519 520 "label=user:USER" : Set the label user for the container 521 "label=role:ROLE" : Set the label role for the container 522 "label=type:TYPE" : Set the label type for the container 523 "label=level:LEVEL" : Set the label level for the container 524 "label=disable" : Turn off label confinement for the container 525 "no-new-privileges" : Disable container processes from gaining additional privileges 526 527 "seccomp=unconfined" : Turn off seccomp confinement for the container 528 "seccomp=profile.json : White listed syscalls seccomp Json file to be used as a seccomp filter 529 530 "apparmor=unconfined" : Turn off apparmor confinement for the container 531 "apparmor=your-profile" : Set the apparmor confinement profile for the container 532 533 **--storage-opt**=[] 534 Storage driver options per container 535 536 $ docker run -it --storage-opt size=120G fedora /bin/bash 537 538 This (size) will allow to set the container rootfs size to 120G at creation time. 539 This option is only available for the `devicemapper`, `btrfs`, `overlay2` and `zfs` graph drivers. 540 For the `devicemapper`, `btrfs` and `zfs` storage drivers, user cannot pass a size less than the Default BaseFS Size. 541 For the `overlay2` storage driver, the size option is only available if the backing fs is `xfs` and mounted with the `pquota` mount option. 542 Under these conditions, user can pass any size less then the backing fs size. 543 544 **--stop-signal**=*SIGTERM* 545 Signal to stop a container. Default is SIGTERM. 546 547 **--stop-timeout**=*10* 548 Timeout (in seconds) to stop a container. Default is 10. 549 550 **--shm-size**="" 551 Size of `/dev/shm`. The format is `<number><unit>`. 552 `number` must be greater than `0`. Unit is optional and can be `b` (bytes), `k` (kilobytes), `m`(megabytes), or `g` (gigabytes). 553 If you omit the unit, the system uses bytes. If you omit the size entirely, the system uses `64m`. 554 555 **--sysctl**=SYSCTL 556 Configure namespaced kernel parameters at runtime 557 558 IPC Namespace - current sysctls allowed: 559 560 kernel.msgmax, kernel.msgmnb, kernel.msgmni, kernel.sem, kernel.shmall, kernel.shmmax, kernel.shmmni, kernel.shm_rmid_forced 561 Sysctls beginning with fs.mqueue.* 562 563 If you use the `--ipc=host` option these sysctls will not be allowed. 564 565 Network Namespace - current sysctls allowed: 566 Sysctls beginning with net.* 567 568 If you use the `--network=host` option these sysctls will not be allowed. 569 570 **--sig-proxy**=*true*|*false* 571 Proxy received signals to the process (non-TTY mode only). SIGCHLD, SIGSTOP, and SIGKILL are not proxied. The default is *true*. 572 573 **--memory-swappiness**="" 574 Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100. 575 576 **-t**, **--tty**=*true*|*false* 577 Allocate a pseudo-TTY. The default is *false*. 578 579 When set to true Docker can allocate a pseudo-tty and attach to the standard 580 input of any container. This can be used, for example, to run a throwaway 581 interactive shell. The default is false. 582 583 The **-t** option is incompatible with a redirection of the docker client 584 standard input. 585 586 **--tmpfs**=[] Create a tmpfs mount 587 588 Mount a temporary filesystem (`tmpfs`) mount into a container, for example: 589 590 $ docker run -d --tmpfs /tmp:rw,size=787448k,mode=1777 my_image 591 592 This command mounts a `tmpfs` at `/tmp` within the container. The supported mount 593 options are the same as the Linux default `mount` flags. If you do not specify 594 any options, the systems uses the following options: 595 `rw,noexec,nosuid,nodev,size=65536k`. 596 597 **-u**, **--user**="" 598 Sets the username or UID used and optionally the groupname or GID for the specified command. 599 600 The followings examples are all valid: 601 --user [user | user:group | uid | uid:gid | user:gid | uid:group ] 602 603 Without this argument the command will be run as root in the container. 604 605 **--ulimit**=[] 606 Ulimit options 607 608 **-v**|**--volume**[=*[[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]*] 609 Create a bind mount. If you specify, ` -v /HOST-DIR:/CONTAINER-DIR`, Docker 610 bind mounts `/HOST-DIR` in the host to `/CONTAINER-DIR` in the Docker 611 container. If 'HOST-DIR' is omitted, Docker automatically creates the new 612 volume on the host. The `OPTIONS` are a comma delimited list and can be: 613 614 * [rw|ro] 615 * [z|Z] 616 * [`[r]shared`|`[r]slave`|`[r]private`] 617 * [nocopy] 618 619 The `CONTAINER-DIR` must be an absolute path such as `/src/docs`. The `HOST-DIR` 620 can be an absolute path or a `name` value. A `name` value must start with an 621 alphanumeric character, followed by `a-z0-9`, `_` (underscore), `.` (period) or 622 `-` (hyphen). An absolute path starts with a `/` (forward slash). 623 624 If you supply a `HOST-DIR` that is an absolute path, Docker bind-mounts to the 625 path you specify. If you supply a `name`, Docker creates a named volume by that 626 `name`. For example, you can specify either `/foo` or `foo` for a `HOST-DIR` 627 value. If you supply the `/foo` value, Docker creates a bind-mount. If you 628 supply the `foo` specification, Docker creates a named volume. 629 630 You can specify multiple **-v** options to mount one or more mounts to a 631 container. To use these same mounts in other containers, specify the 632 **--volumes-from** option also. 633 634 You can add `:ro` or `:rw` suffix to a volume to mount it read-only or 635 read-write mode, respectively. By default, the volumes are mounted read-write. 636 See examples. 637 638 Labeling systems like SELinux require that proper labels are placed on volume 639 content mounted into a container. Without a label, the security system might 640 prevent the processes running inside the container from using the content. By 641 default, Docker does not change the labels set by the OS. 642 643 To change a label in the container context, you can add either of two suffixes 644 `:z` or `:Z` to the volume mount. These suffixes tell Docker to relabel file 645 objects on the shared volumes. The `z` option tells Docker that two containers 646 share the volume content. As a result, Docker labels the content with a shared 647 content label. Shared volume labels allow all containers to read/write content. 648 The `Z` option tells Docker to label the content with a private unshared label. 649 Only the current container can use a private volume. 650 651 By default bind mounted volumes are `private`. That means any mounts done 652 inside container will not be visible on host and vice-a-versa. One can change 653 this behavior by specifying a volume mount propagation property. Making a 654 volume `shared` mounts done under that volume inside container will be 655 visible on host and vice-a-versa. Making a volume `slave` enables only one 656 way mount propagation and that is mounts done on host under that volume 657 will be visible inside container but not the other way around. 658 659 To control mount propagation property of volume one can use `:[r]shared`, 660 `:[r]slave` or `:[r]private` propagation flag. Propagation property can 661 be specified only for bind mounted volumes and not for internal volumes or 662 named volumes. For mount propagation to work source mount point (mount point 663 where source dir is mounted on) has to have right propagation properties. For 664 shared volumes, source mount point has to be shared. And for slave volumes, 665 source mount has to be either shared or slave. 666 667 Use `df <source-dir>` to figure out the source mount and then use 668 `findmnt -o TARGET,PROPAGATION <source-mount-dir>` to figure out propagation 669 properties of source mount. If `findmnt` utility is not available, then one 670 can look at mount entry for source mount point in `/proc/self/mountinfo`. Look 671 at `optional fields` and see if any propagaion properties are specified. 672 `shared:X` means mount is `shared`, `master:X` means mount is `slave` and if 673 nothing is there that means mount is `private`. 674 675 To change propagation properties of a mount point use `mount` command. For 676 example, if one wants to bind mount source directory `/foo` one can do 677 `mount --bind /foo /foo` and `mount --make-private --make-shared /foo`. This 678 will convert /foo into a `shared` mount point. Alternatively one can directly 679 change propagation properties of source mount. Say `/` is source mount for 680 `/foo`, then use `mount --make-shared /` to convert `/` into a `shared` mount. 681 682 > **Note**: 683 > When using systemd to manage the Docker daemon's start and stop, in the systemd 684 > unit file there is an option to control mount propagation for the Docker daemon 685 > itself, called `MountFlags`. The value of this setting may cause Docker to not 686 > see mount propagation changes made on the mount point. For example, if this value 687 > is `slave`, you may not be able to use the `shared` or `rshared` propagation on 688 > a volume. 689 690 To disable automatic copying of data from the container path to the volume, use 691 the `nocopy` flag. The `nocopy` flag can be set on bind mounts and named volumes. 692 693 **--volume-driver**="" 694 Container's volume driver. This driver creates volumes specified either from 695 a Dockerfile's `VOLUME` instruction or from the `docker run -v` flag. 696 See **docker-volume-create(1)** for full details. 697 698 **--volumes-from**=[] 699 Mount volumes from the specified container(s) 700 701 Mounts already mounted volumes from a source container onto another 702 container. You must supply the source's container-id. To share 703 a volume, use the **--volumes-from** option when running 704 the target container. You can share volumes even if the source container 705 is not running. 706 707 By default, Docker mounts the volumes in the same mode (read-write or 708 read-only) as it is mounted in the source container. Optionally, you 709 can change this by suffixing the container-id with either the `:ro` or 710 `:rw ` keyword. 711 712 If the location of the volume from the source container overlaps with 713 data residing on a target container, then the volume hides 714 that data on the target. 715 716 **-w**, **--workdir**="" 717 Working directory inside the container 718 719 The default working directory for 720 running binaries within a container is the root directory (/). The developer can 721 set a different default with the Dockerfile WORKDIR instruction. The operator 722 can override the working directory by using the **-w** option. 723 724 # Exit Status 725 726 The exit code from `docker run` gives information about why the container 727 failed to run or why it exited. When `docker run` exits with a non-zero code, 728 the exit codes follow the `chroot` standard, see below: 729 730 **_125_** if the error is with Docker daemon **_itself_** 731 732 $ docker run --foo busybox; echo $? 733 # flag provided but not defined: --foo 734 See 'docker run --help'. 735 125 736 737 **_126_** if the **_contained command_** cannot be invoked 738 739 $ docker run busybox /etc; echo $? 740 # exec: "/etc": permission denied 741 docker: Error response from daemon: Contained command could not be invoked 742 126 743 744 **_127_** if the **_contained command_** cannot be found 745 746 $ docker run busybox foo; echo $? 747 # exec: "foo": executable file not found in $PATH 748 docker: Error response from daemon: Contained command not found or does not exist 749 127 750 751 **_Exit code_** of **_contained command_** otherwise 752 753 $ docker run busybox /bin/sh -c 'exit 3' 754 # 3 755 756 # EXAMPLES 757 758 ## Running container in read-only mode 759 760 During container image development, containers often need to write to the image 761 content. Installing packages into /usr, for example. In production, 762 applications seldom need to write to the image. Container applications write 763 to volumes if they need to write to file systems at all. Applications can be 764 made more secure by running them in read-only mode using the --read-only switch. 765 This protects the containers image from modification. Read only containers may 766 still need to write temporary data. The best way to handle this is to mount 767 tmpfs directories on /run and /tmp. 768 769 # docker run --read-only --tmpfs /run --tmpfs /tmp -i -t fedora /bin/bash 770 771 ## Exposing log messages from the container to the host's log 772 773 If you want messages that are logged in your container to show up in the host's 774 syslog/journal then you should bind mount the /dev/log directory as follows. 775 776 # docker run -v /dev/log:/dev/log -i -t fedora /bin/bash 777 778 From inside the container you can test this by sending a message to the log. 779 780 (bash)# logger "Hello from my container" 781 782 Then exit and check the journal. 783 784 # exit 785 786 # journalctl -b | grep Hello 787 788 This should list the message sent to logger. 789 790 ## Attaching to one or more from STDIN, STDOUT, STDERR 791 792 If you do not specify -a then Docker will attach everything (stdin,stdout,stderr) 793 . You can specify to which of the three standard streams (stdin, stdout, stderr) 794 you'd like to connect instead, as in: 795 796 # docker run -a stdin -a stdout -i -t fedora /bin/bash 797 798 ## Sharing IPC between containers 799 800 Using shm_server.c available here: https://www.cs.cf.ac.uk/Dave/C/node27.html 801 802 Testing `--ipc=host` mode: 803 804 Host shows a shared memory segment with 7 pids attached, happens to be from httpd: 805 806 ``` 807 $ sudo ipcs -m 808 809 ------ Shared Memory Segments -------- 810 key shmid owner perms bytes nattch status 811 0x01128e25 0 root 600 1000 7 812 ``` 813 814 Now run a regular container, and it correctly does NOT see the shared memory segment from the host: 815 816 ``` 817 $ docker run -it shm ipcs -m 818 819 ------ Shared Memory Segments -------- 820 key shmid owner perms bytes nattch status 821 ``` 822 823 Run a container with the new `--ipc=host` option, and it now sees the shared memory segment from the host httpd: 824 825 ``` 826 $ docker run -it --ipc=host shm ipcs -m 827 828 ------ Shared Memory Segments -------- 829 key shmid owner perms bytes nattch status 830 0x01128e25 0 root 600 1000 7 831 ``` 832 Testing `--ipc=container:CONTAINERID` mode: 833 834 Start a container with a program to create a shared memory segment: 835 ``` 836 $ docker run -it shm bash 837 $ sudo shm/shm_server & 838 $ sudo ipcs -m 839 840 ------ Shared Memory Segments -------- 841 key shmid owner perms bytes nattch status 842 0x0000162e 0 root 666 27 1 843 ``` 844 Create a 2nd container correctly shows no shared memory segment from 1st container: 845 ``` 846 $ docker run shm ipcs -m 847 848 ------ Shared Memory Segments -------- 849 key shmid owner perms bytes nattch status 850 ``` 851 852 Create a 3rd container using the new --ipc=container:CONTAINERID option, now it shows the shared memory segment from the first: 853 854 ``` 855 $ docker run -it --ipc=container:ed735b2264ac shm ipcs -m 856 $ sudo ipcs -m 857 858 ------ Shared Memory Segments -------- 859 key shmid owner perms bytes nattch status 860 0x0000162e 0 root 666 27 1 861 ``` 862 863 ## Linking Containers 864 865 > **Note**: This section describes linking between containers on the 866 > default (bridge) network, also known as "legacy links". Using `--link` 867 > on user-defined networks uses the DNS-based discovery, which does not add 868 > entries to `/etc/hosts`, and does not set environment variables for 869 > discovery. 870 871 The link feature allows multiple containers to communicate with each other. For 872 example, a container whose Dockerfile has exposed port 80 can be run and named 873 as follows: 874 875 # docker run --name=link-test -d -i -t fedora/httpd 876 877 A second container, in this case called linker, can communicate with the httpd 878 container, named link-test, by running with the **--link=<name>:<alias>** 879 880 # docker run -t -i --link=link-test:lt --name=linker fedora /bin/bash 881 882 Now the container linker is linked to container link-test with the alias lt. 883 Running the **env** command in the linker container shows environment variables 884 with the LT (alias) context (**LT_**) 885 886 # env 887 HOSTNAME=668231cb0978 888 TERM=xterm 889 LT_PORT_80_TCP=tcp://172.17.0.3:80 890 LT_PORT_80_TCP_PORT=80 891 LT_PORT_80_TCP_PROTO=tcp 892 LT_PORT=tcp://172.17.0.3:80 893 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 894 PWD=/ 895 LT_NAME=/linker/lt 896 SHLVL=1 897 HOME=/ 898 LT_PORT_80_TCP_ADDR=172.17.0.3 899 _=/usr/bin/env 900 901 When linking two containers Docker will use the exposed ports of the container 902 to create a secure tunnel for the parent to access. 903 904 If a container is connected to the default bridge network and `linked` 905 with other containers, then the container's `/etc/hosts` file is updated 906 with the linked container's name. 907 908 > **Note** Since Docker may live update the container's `/etc/hosts` file, there 909 may be situations when processes inside the container can end up reading an 910 empty or incomplete `/etc/hosts` file. In most cases, retrying the read again 911 should fix the problem. 912 913 914 ## Mapping Ports for External Usage 915 916 The exposed port of an application can be mapped to a host port using the **-p** 917 flag. For example, an httpd port 80 can be mapped to the host port 8080 using the 918 following: 919 920 # docker run -p 8080:80 -d -i -t fedora/httpd 921 922 ## Creating and Mounting a Data Volume Container 923 924 Many applications require the sharing of persistent data across several 925 containers. Docker allows you to create a Data Volume Container that other 926 containers can mount from. For example, create a named container that contains 927 directories /var/volume1 and /tmp/volume2. The image will need to contain these 928 directories so a couple of RUN mkdir instructions might be required for you 929 fedora-data image: 930 931 # docker run --name=data -v /var/volume1 -v /tmp/volume2 -i -t fedora-data true 932 # docker run --volumes-from=data --name=fedora-container1 -i -t fedora bash 933 934 Multiple --volumes-from parameters will bring together multiple data volumes from 935 multiple containers. And it's possible to mount the volumes that came from the 936 DATA container in yet another container via the fedora-container1 intermediary 937 container, allowing to abstract the actual data source from users of that data: 938 939 # docker run --volumes-from=fedora-container1 --name=fedora-container2 -i -t fedora bash 940 941 ## Mounting External Volumes 942 943 To mount a host directory as a container volume, specify the absolute path to 944 the directory and the absolute path for the container directory separated by a 945 colon: 946 947 # docker run -v /var/db:/data1 -i -t fedora bash 948 949 When using SELinux, be aware that the host has no knowledge of container SELinux 950 policy. Therefore, in the above example, if SELinux policy is enforced, the 951 `/var/db` directory is not writable to the container. A "Permission Denied" 952 message will occur and an avc: message in the host's syslog. 953 954 955 To work around this, at time of writing this man page, the following command 956 needs to be run in order for the proper SELinux policy type label to be attached 957 to the host directory: 958 959 # chcon -Rt svirt_sandbox_file_t /var/db 960 961 962 Now, writing to the /data1 volume in the container will be allowed and the 963 changes will also be reflected on the host in /var/db. 964 965 ## Using alternative security labeling 966 967 You can override the default labeling scheme for each container by specifying 968 the `--security-opt` flag. For example, you can specify the MCS/MLS level, a 969 requirement for MLS systems. Specifying the level in the following command 970 allows you to share the same content between containers. 971 972 # docker run --security-opt label=level:s0:c100,c200 -i -t fedora bash 973 974 An MLS example might be: 975 976 # docker run --security-opt label=level:TopSecret -i -t rhel7 bash 977 978 To disable the security labeling for this container versus running with the 979 `--permissive` flag, use the following command: 980 981 # docker run --security-opt label=disable -i -t fedora bash 982 983 If you want a tighter security policy on the processes within a container, 984 you can specify an alternate type for the container. You could run a container 985 that is only allowed to listen on Apache ports by executing the following 986 command: 987 988 # docker run --security-opt label=type:svirt_apache_t -i -t centos bash 989 990 Note: 991 992 You would have to write policy defining a `svirt_apache_t` type. 993 994 ## Setting device weight 995 996 If you want to set `/dev/sda` device weight to `200`, you can specify the device 997 weight by `--blkio-weight-device` flag. Use the following command: 998 999 # docker run -it --blkio-weight-device "/dev/sda:200" ubuntu 1000 1001 ## Specify isolation technology for container (--isolation) 1002 1003 This option is useful in situations where you are running Docker containers on 1004 Microsoft Windows. The `--isolation <value>` option sets a container's isolation 1005 technology. On Linux, the only supported is the `default` option which uses 1006 Linux namespaces. These two commands are equivalent on Linux: 1007 1008 ``` 1009 $ docker run -d busybox top 1010 $ docker run -d --isolation default busybox top 1011 ``` 1012 1013 On Microsoft Windows, can take any of these values: 1014 1015 * `default`: Use the value specified by the Docker daemon's `--exec-opt` . If the `daemon` does not specify an isolation technology, Microsoft Windows uses `process` as its default value. 1016 * `process`: Namespace isolation only. 1017 * `hyperv`: Hyper-V hypervisor partition-based isolation. 1018 1019 In practice, when running on Microsoft Windows without a `daemon` option set, these two commands are equivalent: 1020 1021 ``` 1022 $ docker run -d --isolation default busybox top 1023 $ docker run -d --isolation process busybox top 1024 ``` 1025 1026 If you have set the `--exec-opt isolation=hyperv` option on the Docker `daemon`, any of these commands also result in `hyperv` isolation: 1027 1028 ``` 1029 $ docker run -d --isolation default busybox top 1030 $ docker run -d --isolation hyperv busybox top 1031 ``` 1032 1033 ## Setting Namespaced Kernel Parameters (Sysctls) 1034 1035 The `--sysctl` sets namespaced kernel parameters (sysctls) in the 1036 container. For example, to turn on IP forwarding in the containers 1037 network namespace, run this command: 1038 1039 $ docker run --sysctl net.ipv4.ip_forward=1 someimage 1040 1041 Note: 1042 1043 Not all sysctls are namespaced. Docker does not support changing sysctls 1044 inside of a container that also modify the host system. As the kernel 1045 evolves we expect to see more sysctls become namespaced. 1046 1047 See the definition of the `--sysctl` option above for the current list of 1048 supported sysctls. 1049 1050 # HISTORY 1051 April 2014, Originally compiled by William Henry (whenry at redhat dot com) 1052 based on docker.com source material and internal work. 1053 June 2014, updated by Sven Dowideit <SvenDowideit@home.org.au> 1054 July 2014, updated by Sven Dowideit <SvenDowideit@home.org.au> 1055 November 2015, updated by Sally O'Malley <somalley@redhat.com>