github.com/lazyledger/lazyledger-core@v0.35.0-dev.0.20210613111200-4c651f053571/types/evidence.go (about)

     1  package types
     2  
     3  import (
     4  	"bytes"
     5  	"encoding/binary"
     6  	"errors"
     7  	"fmt"
     8  	"sort"
     9  	"strings"
    10  	"time"
    11  
    12  	abci "github.com/lazyledger/lazyledger-core/abci/types"
    13  	"github.com/lazyledger/lazyledger-core/crypto/merkle"
    14  	"github.com/lazyledger/lazyledger-core/crypto/tmhash"
    15  	tmjson "github.com/lazyledger/lazyledger-core/libs/json"
    16  	tmrand "github.com/lazyledger/lazyledger-core/libs/rand"
    17  	tmproto "github.com/lazyledger/lazyledger-core/proto/tendermint/types"
    18  )
    19  
    20  // Evidence represents any provable malicious activity by a validator.
    21  // Verification logic for each evidence is part of the evidence module.
    22  type Evidence interface {
    23  	ABCI() []abci.Evidence // forms individual evidence to be sent to the application
    24  	Bytes() []byte         // bytes which comprise the evidence
    25  	Hash() []byte          // hash of the evidence
    26  	Height() int64         // height of the infraction
    27  	String() string        // string format of the evidence
    28  	Time() time.Time       // time of the infraction
    29  	ValidateBasic() error  // basic consistency check
    30  }
    31  
    32  //--------------------------------------------------------------------------------------
    33  
    34  // DuplicateVoteEvidence contains evidence of a single validator signing two conflicting votes.
    35  type DuplicateVoteEvidence struct {
    36  	VoteA *Vote `json:"vote_a"`
    37  	VoteB *Vote `json:"vote_b"`
    38  
    39  	// abci specific information
    40  	TotalVotingPower int64
    41  	ValidatorPower   int64
    42  	Timestamp        time.Time
    43  }
    44  
    45  var _ Evidence = &DuplicateVoteEvidence{}
    46  
    47  // NewDuplicateVoteEvidence creates DuplicateVoteEvidence with right ordering given
    48  // two conflicting votes. If one of the votes is nil, evidence returned is nil as well
    49  func NewDuplicateVoteEvidence(vote1, vote2 *Vote, blockTime time.Time, valSet *ValidatorSet) *DuplicateVoteEvidence {
    50  	var voteA, voteB *Vote
    51  	if vote1 == nil || vote2 == nil || valSet == nil {
    52  		return nil
    53  	}
    54  	idx, val := valSet.GetByAddress(vote1.ValidatorAddress)
    55  	if idx == -1 {
    56  		return nil
    57  	}
    58  
    59  	if strings.Compare(vote1.BlockID.Key(), vote2.BlockID.Key()) == -1 {
    60  		voteA = vote1
    61  		voteB = vote2
    62  	} else {
    63  		voteA = vote2
    64  		voteB = vote1
    65  	}
    66  	return &DuplicateVoteEvidence{
    67  		VoteA:            voteA,
    68  		VoteB:            voteB,
    69  		TotalVotingPower: valSet.TotalVotingPower(),
    70  		ValidatorPower:   val.VotingPower,
    71  		Timestamp:        blockTime,
    72  	}
    73  }
    74  
    75  // ABCI returns the application relevant representation of the evidence
    76  func (dve *DuplicateVoteEvidence) ABCI() []abci.Evidence {
    77  	return []abci.Evidence{{
    78  		Type: abci.EvidenceType_DUPLICATE_VOTE,
    79  		Validator: abci.Validator{
    80  			Address: dve.VoteA.ValidatorAddress,
    81  			Power:   dve.ValidatorPower,
    82  		},
    83  		Height:           dve.VoteA.Height,
    84  		Time:             dve.Timestamp,
    85  		TotalVotingPower: dve.TotalVotingPower,
    86  	}}
    87  }
    88  
    89  // Bytes returns the proto-encoded evidence as a byte array.
    90  func (dve *DuplicateVoteEvidence) Bytes() []byte {
    91  	pbe := dve.ToProto()
    92  	bz, err := pbe.Marshal()
    93  	if err != nil {
    94  		panic(err)
    95  	}
    96  
    97  	return bz
    98  }
    99  
   100  // Hash returns the hash of the evidence.
   101  func (dve *DuplicateVoteEvidence) Hash() []byte {
   102  	return tmhash.Sum(dve.Bytes())
   103  }
   104  
   105  // Height returns the height of the infraction
   106  func (dve *DuplicateVoteEvidence) Height() int64 {
   107  	return dve.VoteA.Height
   108  }
   109  
   110  // String returns a string representation of the evidence.
   111  func (dve *DuplicateVoteEvidence) String() string {
   112  	return fmt.Sprintf("DuplicateVoteEvidence{VoteA: %v, VoteB: %v}", dve.VoteA, dve.VoteB)
   113  }
   114  
   115  // Time returns the time of the infraction
   116  func (dve *DuplicateVoteEvidence) Time() time.Time {
   117  	return dve.Timestamp
   118  }
   119  
   120  // ValidateBasic performs basic validation.
   121  func (dve *DuplicateVoteEvidence) ValidateBasic() error {
   122  	if dve == nil {
   123  		return errors.New("empty duplicate vote evidence")
   124  	}
   125  
   126  	if dve.VoteA == nil || dve.VoteB == nil {
   127  		return fmt.Errorf("one or both of the votes are empty %v, %v", dve.VoteA, dve.VoteB)
   128  	}
   129  	if err := dve.VoteA.ValidateBasic(); err != nil {
   130  		return fmt.Errorf("invalid VoteA: %w", err)
   131  	}
   132  	if err := dve.VoteB.ValidateBasic(); err != nil {
   133  		return fmt.Errorf("invalid VoteB: %w", err)
   134  	}
   135  	// Enforce Votes are lexicographically sorted on blockID
   136  	if strings.Compare(dve.VoteA.BlockID.Key(), dve.VoteB.BlockID.Key()) >= 0 {
   137  		return errors.New("duplicate votes in invalid order")
   138  	}
   139  	return nil
   140  }
   141  
   142  // ToProto encodes DuplicateVoteEvidence to protobuf
   143  func (dve *DuplicateVoteEvidence) ToProto() *tmproto.DuplicateVoteEvidence {
   144  	voteB := dve.VoteB.ToProto()
   145  	voteA := dve.VoteA.ToProto()
   146  	tp := tmproto.DuplicateVoteEvidence{
   147  		VoteA:            voteA,
   148  		VoteB:            voteB,
   149  		TotalVotingPower: dve.TotalVotingPower,
   150  		ValidatorPower:   dve.ValidatorPower,
   151  		Timestamp:        dve.Timestamp,
   152  	}
   153  	return &tp
   154  }
   155  
   156  // DuplicateVoteEvidenceFromProto decodes protobuf into DuplicateVoteEvidence
   157  func DuplicateVoteEvidenceFromProto(pb *tmproto.DuplicateVoteEvidence) (*DuplicateVoteEvidence, error) {
   158  	if pb == nil {
   159  		return nil, errors.New("nil duplicate vote evidence")
   160  	}
   161  
   162  	vA, err := VoteFromProto(pb.VoteA)
   163  	if err != nil {
   164  		return nil, err
   165  	}
   166  
   167  	vB, err := VoteFromProto(pb.VoteB)
   168  	if err != nil {
   169  		return nil, err
   170  	}
   171  
   172  	dve := &DuplicateVoteEvidence{
   173  		VoteA:            vA,
   174  		VoteB:            vB,
   175  		TotalVotingPower: pb.TotalVotingPower,
   176  		ValidatorPower:   pb.ValidatorPower,
   177  		Timestamp:        pb.Timestamp,
   178  	}
   179  
   180  	return dve, dve.ValidateBasic()
   181  }
   182  
   183  //------------------------------------ LIGHT EVIDENCE --------------------------------------
   184  
   185  // LightClientAttackEvidence is a generalized evidence that captures all forms of known attacks on
   186  // a light client such that a full node can verify, propose and commit the evidence on-chain for
   187  // punishment of the malicious validators. There are three forms of attacks: Lunatic, Equivocation
   188  // and Amnesia. These attacks are exhaustive. You can find a more detailed overview of this at
   189  // tendermint/docs/architecture/adr-047-handling-evidence-from-light-client.md
   190  type LightClientAttackEvidence struct {
   191  	ConflictingBlock *LightBlock
   192  	CommonHeight     int64
   193  
   194  	// abci specific information
   195  	ByzantineValidators []*Validator // validators in the validator set that misbehaved in creating the conflicting block
   196  	TotalVotingPower    int64        // total voting power of the validator set at the common height
   197  	Timestamp           time.Time    // timestamp of the block at the common height
   198  }
   199  
   200  var _ Evidence = &LightClientAttackEvidence{}
   201  
   202  // ABCI forms an array of abci evidence for each byzantine validator
   203  func (l *LightClientAttackEvidence) ABCI() []abci.Evidence {
   204  	abciEv := make([]abci.Evidence, len(l.ByzantineValidators))
   205  	for idx, val := range l.ByzantineValidators {
   206  		abciEv[idx] = abci.Evidence{
   207  			Type:             abci.EvidenceType_LIGHT_CLIENT_ATTACK,
   208  			Validator:        TM2PB.Validator(val),
   209  			Height:           l.Height(),
   210  			Time:             l.Timestamp,
   211  			TotalVotingPower: l.TotalVotingPower,
   212  		}
   213  	}
   214  	return abciEv
   215  }
   216  
   217  // Bytes returns the proto-encoded evidence as a byte array
   218  func (l *LightClientAttackEvidence) Bytes() []byte {
   219  	pbe, err := l.ToProto()
   220  	if err != nil {
   221  		panic(err)
   222  	}
   223  	bz, err := pbe.Marshal()
   224  	if err != nil {
   225  		panic(err)
   226  	}
   227  	return bz
   228  }
   229  
   230  // GetByzantineValidators finds out what style of attack LightClientAttackEvidence was and then works out who
   231  // the malicious validators were and returns them. This is used both for forming the ByzantineValidators
   232  // field and for validating that it is correct. Validators are ordered based on validator power
   233  func (l *LightClientAttackEvidence) GetByzantineValidators(commonVals *ValidatorSet,
   234  	trusted *SignedHeader) []*Validator {
   235  	var validators []*Validator
   236  	// First check if the header is invalid. This means that it is a lunatic attack and therefore we take the
   237  	// validators who are in the commonVals and voted for the lunatic header
   238  	if l.ConflictingHeaderIsInvalid(trusted.Header) {
   239  		for _, commitSig := range l.ConflictingBlock.Commit.Signatures {
   240  			if !commitSig.ForBlock() {
   241  				continue
   242  			}
   243  
   244  			_, val := commonVals.GetByAddress(commitSig.ValidatorAddress)
   245  			if val == nil {
   246  				// validator wasn't in the common validator set
   247  				continue
   248  			}
   249  			validators = append(validators, val)
   250  		}
   251  		sort.Sort(ValidatorsByVotingPower(validators))
   252  		return validators
   253  	} else if trusted.Commit.Round == l.ConflictingBlock.Commit.Round {
   254  		// This is an equivocation attack as both commits are in the same round. We then find the validators
   255  		// from the conflicting light block validator set that voted in both headers.
   256  		// Validator hashes are the same therefore the indexing order of validators are the same and thus we
   257  		// only need a single loop to find the validators that voted twice.
   258  		for i := 0; i < len(l.ConflictingBlock.Commit.Signatures); i++ {
   259  			sigA := l.ConflictingBlock.Commit.Signatures[i]
   260  			if sigA.Absent() {
   261  				continue
   262  			}
   263  
   264  			sigB := trusted.Commit.Signatures[i]
   265  			if sigB.Absent() {
   266  				continue
   267  			}
   268  
   269  			_, val := l.ConflictingBlock.ValidatorSet.GetByAddress(sigA.ValidatorAddress)
   270  			validators = append(validators, val)
   271  		}
   272  		sort.Sort(ValidatorsByVotingPower(validators))
   273  		return validators
   274  	}
   275  	// if the rounds are different then this is an amnesia attack. Unfortunately, given the nature of the attack,
   276  	// we aren't able yet to deduce which are malicious validators and which are not hence we return an
   277  	// empty validator set.
   278  	return validators
   279  }
   280  
   281  // ConflictingHeaderIsInvalid takes a trusted header and matches it againt a conflicting header
   282  // to determine whether the conflicting header was the product of a valid state transition
   283  // or not. If it is then all the deterministic fields of the header should be the same.
   284  // If not, it is an invalid header and constitutes a lunatic attack.
   285  func (l *LightClientAttackEvidence) ConflictingHeaderIsInvalid(trustedHeader *Header) bool {
   286  	return !bytes.Equal(trustedHeader.ValidatorsHash, l.ConflictingBlock.ValidatorsHash) ||
   287  		!bytes.Equal(trustedHeader.NextValidatorsHash, l.ConflictingBlock.NextValidatorsHash) ||
   288  		!bytes.Equal(trustedHeader.ConsensusHash, l.ConflictingBlock.ConsensusHash) ||
   289  		!bytes.Equal(trustedHeader.AppHash, l.ConflictingBlock.AppHash) ||
   290  		!bytes.Equal(trustedHeader.LastResultsHash, l.ConflictingBlock.LastResultsHash)
   291  
   292  }
   293  
   294  // Hash returns the hash of the header and the commonHeight. This is designed to cause hash collisions
   295  // with evidence that have the same conflicting header and common height but different permutations
   296  // of validator commit signatures. The reason for this is that we don't want to allow several
   297  // permutations of the same evidence to be committed on chain. Ideally we commit the header with the
   298  // most commit signatures (captures the most byzantine validators) but anything greater than 1/3 is sufficient.
   299  func (l *LightClientAttackEvidence) Hash() []byte {
   300  	buf := make([]byte, binary.MaxVarintLen64)
   301  	n := binary.PutVarint(buf, l.CommonHeight)
   302  	bz := make([]byte, tmhash.Size+n)
   303  	copy(bz[:tmhash.Size-1], l.ConflictingBlock.Hash().Bytes())
   304  	copy(bz[tmhash.Size:], buf)
   305  	return tmhash.Sum(bz)
   306  }
   307  
   308  // Height returns the last height at which the primary provider and witness provider had the same header.
   309  // We use this as the height of the infraction rather than the actual conflicting header because we know
   310  // that the malicious validators were bonded at this height which is important for evidence expiry
   311  func (l *LightClientAttackEvidence) Height() int64 {
   312  	return l.CommonHeight
   313  }
   314  
   315  // String returns a string representation of LightClientAttackEvidence
   316  func (l *LightClientAttackEvidence) String() string {
   317  	return fmt.Sprintf("LightClientAttackEvidence{ConflictingBlock: %v, CommonHeight: %d}",
   318  		l.ConflictingBlock.String(), l.CommonHeight)
   319  }
   320  
   321  // Time returns the time of the common block where the infraction leveraged off.
   322  func (l *LightClientAttackEvidence) Time() time.Time {
   323  	return l.Timestamp
   324  }
   325  
   326  // ValidateBasic performs basic validation such that the evidence is consistent and can now be used for verification.
   327  func (l *LightClientAttackEvidence) ValidateBasic() error {
   328  	if l.ConflictingBlock == nil {
   329  		return errors.New("conflicting block is nil")
   330  	}
   331  
   332  	// this check needs to be done before we can run validate basic
   333  	if l.ConflictingBlock.Header == nil {
   334  		return errors.New("conflicting block missing header")
   335  	}
   336  
   337  	if err := l.ConflictingBlock.ValidateBasic(l.ConflictingBlock.ChainID); err != nil {
   338  		return fmt.Errorf("invalid conflicting light block: %w", err)
   339  	}
   340  
   341  	if l.CommonHeight <= 0 {
   342  		return errors.New("negative or zero common height")
   343  	}
   344  
   345  	// check that common height isn't ahead of the height of the conflicting block. It
   346  	// is possible that they are the same height if the light node witnesses either an
   347  	// amnesia or a equivocation attack.
   348  	if l.CommonHeight > l.ConflictingBlock.Height {
   349  		return fmt.Errorf("common height is ahead of the conflicting block height (%d > %d)",
   350  			l.CommonHeight, l.ConflictingBlock.Height)
   351  	}
   352  
   353  	return nil
   354  }
   355  
   356  // ToProto encodes LightClientAttackEvidence to protobuf
   357  func (l *LightClientAttackEvidence) ToProto() (*tmproto.LightClientAttackEvidence, error) {
   358  	conflictingBlock, err := l.ConflictingBlock.ToProto()
   359  	if err != nil {
   360  		return nil, err
   361  	}
   362  
   363  	byzVals := make([]*tmproto.Validator, len(l.ByzantineValidators))
   364  	for idx, val := range l.ByzantineValidators {
   365  		valpb, err := val.ToProto()
   366  		if err != nil {
   367  			return nil, err
   368  		}
   369  		byzVals[idx] = valpb
   370  	}
   371  
   372  	return &tmproto.LightClientAttackEvidence{
   373  		ConflictingBlock:    conflictingBlock,
   374  		CommonHeight:        l.CommonHeight,
   375  		ByzantineValidators: byzVals,
   376  		TotalVotingPower:    l.TotalVotingPower,
   377  		Timestamp:           l.Timestamp,
   378  	}, nil
   379  }
   380  
   381  // LightClientAttackEvidenceFromProto decodes protobuf
   382  func LightClientAttackEvidenceFromProto(lpb *tmproto.LightClientAttackEvidence) (*LightClientAttackEvidence, error) {
   383  	if lpb == nil {
   384  		return nil, errors.New("empty light client attack evidence")
   385  	}
   386  
   387  	conflictingBlock, err := LightBlockFromProto(lpb.ConflictingBlock)
   388  	if err != nil {
   389  		return nil, err
   390  	}
   391  
   392  	byzVals := make([]*Validator, len(lpb.ByzantineValidators))
   393  	for idx, valpb := range lpb.ByzantineValidators {
   394  		val, err := ValidatorFromProto(valpb)
   395  		if err != nil {
   396  			return nil, err
   397  		}
   398  		byzVals[idx] = val
   399  	}
   400  
   401  	l := &LightClientAttackEvidence{
   402  		ConflictingBlock:    conflictingBlock,
   403  		CommonHeight:        lpb.CommonHeight,
   404  		ByzantineValidators: byzVals,
   405  		TotalVotingPower:    lpb.TotalVotingPower,
   406  		Timestamp:           lpb.Timestamp,
   407  	}
   408  
   409  	return l, l.ValidateBasic()
   410  }
   411  
   412  //------------------------------------------------------------------------------------------
   413  
   414  // EvidenceList is a list of Evidence. Evidences is not a word.
   415  type EvidenceList []Evidence
   416  
   417  // Hash returns the simple merkle root hash of the EvidenceList.
   418  func (evl EvidenceList) Hash() []byte {
   419  	// These allocations are required because Evidence is not of type Bytes, and
   420  	// golang slices can't be typed cast. This shouldn't be a performance problem since
   421  	// the Evidence size is capped.
   422  	evidenceBzs := make([][]byte, len(evl))
   423  	for i := 0; i < len(evl); i++ {
   424  		evidenceBzs[i] = evl[i].Bytes()
   425  	}
   426  	return merkle.HashFromByteSlices(evidenceBzs)
   427  }
   428  
   429  func (evl EvidenceList) String() string {
   430  	s := ""
   431  	for _, e := range evl {
   432  		s += fmt.Sprintf("%s\t\t", e)
   433  	}
   434  	return s
   435  }
   436  
   437  // Has returns true if the evidence is in the EvidenceList.
   438  func (evl EvidenceList) Has(evidence Evidence) bool {
   439  	for _, ev := range evl {
   440  		if bytes.Equal(evidence.Hash(), ev.Hash()) {
   441  			return true
   442  		}
   443  	}
   444  	return false
   445  }
   446  
   447  //------------------------------------------ PROTO --------------------------------------
   448  
   449  // EvidenceToProto is a generalized function for encoding evidence that conforms to the
   450  // evidence interface to protobuf
   451  func EvidenceToProto(evidence Evidence) (*tmproto.Evidence, error) {
   452  	if evidence == nil {
   453  		return nil, errors.New("nil evidence")
   454  	}
   455  
   456  	switch evi := evidence.(type) {
   457  	case *DuplicateVoteEvidence:
   458  		pbev := evi.ToProto()
   459  		return &tmproto.Evidence{
   460  			Sum: &tmproto.Evidence_DuplicateVoteEvidence{
   461  				DuplicateVoteEvidence: pbev,
   462  			},
   463  		}, nil
   464  
   465  	case *LightClientAttackEvidence:
   466  		pbev, err := evi.ToProto()
   467  		if err != nil {
   468  			return nil, err
   469  		}
   470  		return &tmproto.Evidence{
   471  			Sum: &tmproto.Evidence_LightClientAttackEvidence{
   472  				LightClientAttackEvidence: pbev,
   473  			},
   474  		}, nil
   475  
   476  	default:
   477  		return nil, fmt.Errorf("toproto: evidence is not recognized: %T", evi)
   478  	}
   479  }
   480  
   481  // EvidenceFromProto is a generalized function for decoding protobuf into the
   482  // evidence interface
   483  func EvidenceFromProto(evidence *tmproto.Evidence) (Evidence, error) {
   484  	if evidence == nil {
   485  		return nil, errors.New("nil evidence")
   486  	}
   487  
   488  	switch evi := evidence.Sum.(type) {
   489  	case *tmproto.Evidence_DuplicateVoteEvidence:
   490  		return DuplicateVoteEvidenceFromProto(evi.DuplicateVoteEvidence)
   491  	case *tmproto.Evidence_LightClientAttackEvidence:
   492  		return LightClientAttackEvidenceFromProto(evi.LightClientAttackEvidence)
   493  	default:
   494  		return nil, errors.New("evidence is not recognized")
   495  	}
   496  }
   497  
   498  func init() {
   499  	tmjson.RegisterType(&DuplicateVoteEvidence{}, "tendermint/DuplicateVoteEvidence")
   500  	tmjson.RegisterType(&LightClientAttackEvidence{}, "tendermint/LightClientAttackEvidence")
   501  }
   502  
   503  //-------------------------------------------- ERRORS --------------------------------------
   504  
   505  // ErrInvalidEvidence wraps a piece of evidence and the error denoting how or why it is invalid.
   506  type ErrInvalidEvidence struct {
   507  	Evidence Evidence
   508  	Reason   error
   509  }
   510  
   511  // NewErrInvalidEvidence returns a new EvidenceInvalid with the given err.
   512  func NewErrInvalidEvidence(ev Evidence, err error) *ErrInvalidEvidence {
   513  	return &ErrInvalidEvidence{ev, err}
   514  }
   515  
   516  // Error returns a string representation of the error.
   517  func (err *ErrInvalidEvidence) Error() string {
   518  	return fmt.Sprintf("Invalid evidence: %v. Evidence: %v", err.Reason, err.Evidence)
   519  }
   520  
   521  // ErrEvidenceOverflow is for when there the amount of evidence exceeds the max bytes.
   522  type ErrEvidenceOverflow struct {
   523  	Max int64
   524  	Got int64
   525  }
   526  
   527  // NewErrEvidenceOverflow returns a new ErrEvidenceOverflow where got > max.
   528  func NewErrEvidenceOverflow(max, got int64) *ErrEvidenceOverflow {
   529  	return &ErrEvidenceOverflow{max, got}
   530  }
   531  
   532  // Error returns a string representation of the error.
   533  func (err *ErrEvidenceOverflow) Error() string {
   534  	return fmt.Sprintf("Too much evidence: Max %d, got %d", err.Max, err.Got)
   535  }
   536  
   537  //-------------------------------------------- MOCKING --------------------------------------
   538  
   539  // unstable - use only for testing
   540  
   541  // assumes the round to be 0 and the validator index to be 0
   542  func NewMockDuplicateVoteEvidence(height int64, time time.Time, chainID string) *DuplicateVoteEvidence {
   543  	val := NewMockPV()
   544  	return NewMockDuplicateVoteEvidenceWithValidator(height, time, val, chainID)
   545  }
   546  
   547  // assumes voting power to be 10 and validator to be the only one in the set
   548  func NewMockDuplicateVoteEvidenceWithValidator(height int64, time time.Time,
   549  	pv PrivValidator, chainID string) *DuplicateVoteEvidence {
   550  	pubKey, _ := pv.GetPubKey()
   551  	val := NewValidator(pubKey, 10)
   552  	voteA := makeMockVote(height, 0, 0, pubKey.Address(), randBlockID(), time)
   553  	vA := voteA.ToProto()
   554  	_ = pv.SignVote(chainID, vA)
   555  	voteA.Signature = vA.Signature
   556  	voteB := makeMockVote(height, 0, 0, pubKey.Address(), randBlockID(), time)
   557  	vB := voteB.ToProto()
   558  	_ = pv.SignVote(chainID, vB)
   559  	voteB.Signature = vB.Signature
   560  	return NewDuplicateVoteEvidence(voteA, voteB, time, NewValidatorSet([]*Validator{val}))
   561  }
   562  
   563  func makeMockVote(height int64, round, index int32, addr Address,
   564  	blockID BlockID, time time.Time) *Vote {
   565  	return &Vote{
   566  		Type:             tmproto.SignedMsgType(2),
   567  		Height:           height,
   568  		Round:            round,
   569  		BlockID:          blockID,
   570  		Timestamp:        time,
   571  		ValidatorAddress: addr,
   572  		ValidatorIndex:   index,
   573  	}
   574  }
   575  
   576  func randBlockID() BlockID {
   577  	return BlockID{
   578  		Hash: tmrand.Bytes(tmhash.Size),
   579  		PartSetHeader: PartSetHeader{
   580  			Total: 1,
   581  			Hash:  tmrand.Bytes(tmhash.Size),
   582  		},
   583  	}
   584  }