github.com/lbryio/lbcd@v0.22.119/blockchain/difficulty.go (about)

     1  // Copyright (c) 2013-2017 The btcsuite developers
     2  // Use of this source code is governed by an ISC
     3  // license that can be found in the LICENSE file.
     4  
     5  package blockchain
     6  
     7  import (
     8  	"math/big"
     9  	"time"
    10  
    11  	"github.com/lbryio/lbcd/chaincfg/chainhash"
    12  )
    13  
    14  var (
    15  	// bigOne is 1 represented as a big.Int.  It is defined here to avoid
    16  	// the overhead of creating it multiple times.
    17  	bigOne = big.NewInt(1)
    18  
    19  	// oneLsh256 is 1 shifted left 256 bits.  It is defined here to avoid
    20  	// the overhead of creating it multiple times.
    21  	oneLsh256 = new(big.Int).Lsh(bigOne, 256)
    22  )
    23  
    24  // HashToBig converts a chainhash.Hash into a big.Int that can be used to
    25  // perform math comparisons.
    26  func HashToBig(hash *chainhash.Hash) *big.Int {
    27  	// A Hash is in little-endian, but the big package wants the bytes in
    28  	// big-endian, so reverse them.
    29  	buf := *hash
    30  	blen := len(buf)
    31  	for i := 0; i < blen/2; i++ {
    32  		buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i]
    33  	}
    34  
    35  	return new(big.Int).SetBytes(buf[:])
    36  }
    37  
    38  // CompactToBig converts a compact representation of a whole number N to an
    39  // unsigned 32-bit number.  The representation is similar to IEEE754 floating
    40  // point numbers.
    41  //
    42  // Like IEEE754 floating point, there are three basic components: the sign,
    43  // the exponent, and the mantissa.  They are broken out as follows:
    44  //
    45  //   - the most significant 8 bits represent the unsigned base 256 exponent
    46  //
    47  //   - bit 23 (the 24th bit) represents the sign bit
    48  //
    49  //   - the least significant 23 bits represent the mantissa
    50  //
    51  //     -------------------------------------------------
    52  //     |   Exponent     |    Sign    |    Mantissa     |
    53  //     -------------------------------------------------
    54  //     | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
    55  //     -------------------------------------------------
    56  //
    57  // The formula to calculate N is:
    58  //
    59  //	N = (-1^sign) * mantissa * 256^(exponent-3)
    60  //
    61  // This compact form is only used in bitcoin to encode unsigned 256-bit numbers
    62  // which represent difficulty targets, thus there really is not a need for a
    63  // sign bit, but it is implemented here to stay consistent with bitcoind.
    64  func CompactToBig(compact uint32) *big.Int {
    65  	// Extract the mantissa, sign bit, and exponent.
    66  	mantissa := compact & 0x007fffff
    67  	isNegative := compact&0x00800000 != 0
    68  	exponent := uint(compact >> 24)
    69  
    70  	// Since the base for the exponent is 256, the exponent can be treated
    71  	// as the number of bytes to represent the full 256-bit number.  So,
    72  	// treat the exponent as the number of bytes and shift the mantissa
    73  	// right or left accordingly.  This is equivalent to:
    74  	// N = mantissa * 256^(exponent-3)
    75  	var bn *big.Int
    76  	if exponent <= 3 {
    77  		mantissa >>= 8 * (3 - exponent)
    78  		bn = big.NewInt(int64(mantissa))
    79  	} else {
    80  		bn = big.NewInt(int64(mantissa))
    81  		bn.Lsh(bn, 8*(exponent-3))
    82  	}
    83  
    84  	// Make it negative if the sign bit is set.
    85  	if isNegative {
    86  		bn = bn.Neg(bn)
    87  	}
    88  
    89  	return bn
    90  }
    91  
    92  // BigToCompact converts a whole number N to a compact representation using
    93  // an unsigned 32-bit number.  The compact representation only provides 23 bits
    94  // of precision, so values larger than (2^23 - 1) only encode the most
    95  // significant digits of the number.  See CompactToBig for details.
    96  func BigToCompact(n *big.Int) uint32 {
    97  	// No need to do any work if it's zero.
    98  	if n.Sign() == 0 {
    99  		return 0
   100  	}
   101  
   102  	// Since the base for the exponent is 256, the exponent can be treated
   103  	// as the number of bytes.  So, shift the number right or left
   104  	// accordingly.  This is equivalent to:
   105  	// mantissa = mantissa / 256^(exponent-3)
   106  	var mantissa uint32
   107  	exponent := uint(len(n.Bytes()))
   108  	if exponent <= 3 {
   109  		mantissa = uint32(n.Bits()[0])
   110  		mantissa <<= 8 * (3 - exponent)
   111  	} else {
   112  		// Use a copy to avoid modifying the caller's original number.
   113  		tn := new(big.Int).Set(n)
   114  		mantissa = uint32(tn.Rsh(tn, 8*(exponent-3)).Bits()[0])
   115  	}
   116  
   117  	// When the mantissa already has the sign bit set, the number is too
   118  	// large to fit into the available 23-bits, so divide the number by 256
   119  	// and increment the exponent accordingly.
   120  	if mantissa&0x00800000 != 0 {
   121  		mantissa >>= 8
   122  		exponent++
   123  	}
   124  
   125  	// Pack the exponent, sign bit, and mantissa into an unsigned 32-bit
   126  	// int and return it.
   127  	compact := uint32(exponent<<24) | mantissa
   128  	if n.Sign() < 0 {
   129  		compact |= 0x00800000
   130  	}
   131  	return compact
   132  }
   133  
   134  // CalcWork calculates a work value from difficulty bits.  Bitcoin increases
   135  // the difficulty for generating a block by decreasing the value which the
   136  // generated hash must be less than.  This difficulty target is stored in each
   137  // block header using a compact representation as described in the documentation
   138  // for CompactToBig.  The main chain is selected by choosing the chain that has
   139  // the most proof of work (highest difficulty).  Since a lower target difficulty
   140  // value equates to higher actual difficulty, the work value which will be
   141  // accumulated must be the inverse of the difficulty.  Also, in order to avoid
   142  // potential division by zero and really small floating point numbers, the
   143  // result adds 1 to the denominator and multiplies the numerator by 2^256.
   144  func CalcWork(bits uint32) *big.Int {
   145  	// Return a work value of zero if the passed difficulty bits represent
   146  	// a negative number. Note this should not happen in practice with valid
   147  	// blocks, but an invalid block could trigger it.
   148  	difficultyNum := CompactToBig(bits)
   149  	if difficultyNum.Sign() <= 0 {
   150  		return big.NewInt(0)
   151  	}
   152  
   153  	// (1 << 256) / (difficultyNum + 1)
   154  	denominator := new(big.Int).Add(difficultyNum, bigOne)
   155  	return new(big.Int).Div(oneLsh256, denominator)
   156  }
   157  
   158  // calcEasiestDifficulty calculates the easiest possible difficulty that a block
   159  // can have given starting difficulty bits and a duration.  It is mainly used to
   160  // verify that claimed proof of work by a block is sane as compared to a
   161  // known good checkpoint.
   162  func (b *BlockChain) calcEasiestDifficulty(bits uint32, duration time.Duration) uint32 {
   163  	// Convert types used in the calculations below.
   164  	durationVal := int64(duration / time.Second)
   165  
   166  	// The test network rules allow minimum difficulty blocks after more
   167  	// than twice the desired amount of time needed to generate a block has
   168  	// elapsed.
   169  	if b.chainParams.ReduceMinDifficulty {
   170  		reductionTime := int64(b.chainParams.MinDiffReductionTime /
   171  			time.Second)
   172  		if durationVal > reductionTime {
   173  			return b.chainParams.PowLimitBits
   174  		}
   175  	}
   176  
   177  	// Since easier difficulty equates to higher numbers, the easiest
   178  	// difficulty for a given duration is the largest value possible given
   179  	// the number of retargets for the duration and starting difficulty
   180  	// multiplied by the max adjustment factor.
   181  	newTarget := CompactToBig(bits)
   182  	for durationVal > 0 && newTarget.Cmp(b.chainParams.PowLimit) < 0 {
   183  		adj := new(big.Int).Div(newTarget, big.NewInt(2))
   184  		newTarget.Add(newTarget, adj)
   185  		durationVal -= b.maxRetargetTimespan
   186  	}
   187  
   188  	// Limit new value to the proof of work limit.
   189  	if newTarget.Cmp(b.chainParams.PowLimit) > 0 {
   190  		newTarget.Set(b.chainParams.PowLimit)
   191  	}
   192  
   193  	return BigToCompact(newTarget)
   194  }
   195  
   196  // findPrevTestNetDifficulty returns the difficulty of the previous block which
   197  // did not have the special testnet minimum difficulty rule applied.
   198  //
   199  // This function MUST be called with the chain state lock held (for writes).
   200  func (b *BlockChain) findPrevTestNetDifficulty(startNode *blockNode) uint32 {
   201  	// Search backwards through the chain for the last block without
   202  	// the special rule applied.
   203  	iterNode := startNode
   204  	for iterNode != nil && iterNode.height%b.blocksPerRetarget != 0 &&
   205  		iterNode.bits == b.chainParams.PowLimitBits {
   206  
   207  		iterNode = iterNode.parent
   208  	}
   209  
   210  	// Return the found difficulty or the minimum difficulty if no
   211  	// appropriate block was found.
   212  	lastBits := b.chainParams.PowLimitBits
   213  	if iterNode != nil {
   214  		lastBits = iterNode.bits
   215  	}
   216  	return lastBits
   217  }
   218  
   219  // calcNextRequiredDifficulty calculates the required difficulty for the block
   220  // after the passed previous block node based on the difficulty retarget rules.
   221  // This function differs from the exported CalcNextRequiredDifficulty in that
   222  // the exported version uses the current best chain as the previous block node
   223  // while this function accepts any block node.
   224  func (b *BlockChain) calcNextRequiredDifficulty(lastNode *blockNode, newBlockTime time.Time) (uint32, error) {
   225  	// Genesis block.
   226  	if lastNode == nil {
   227  		return b.chainParams.PowLimitBits, nil
   228  	}
   229  
   230  	// For networks that support it, allow special reduction of the
   231  	// required difficulty once too much time has elapsed without
   232  	// mining a block.
   233  	if b.chainParams.ReduceMinDifficulty {
   234  		// Return minimum difficulty when more than the desired
   235  		// amount of time has elapsed without mining a block.
   236  		reductionTime := int64(b.chainParams.MinDiffReductionTime /
   237  			time.Second)
   238  		allowMinTime := lastNode.timestamp + reductionTime
   239  		if newBlockTime.Unix() > allowMinTime {
   240  			return b.chainParams.PowLimitBits, nil
   241  		}
   242  
   243  		// The block was mined within the desired timeframe, so
   244  		// return the difficulty for the last block which did
   245  		// not have the special minimum difficulty rule applied.
   246  		return b.findPrevTestNetDifficulty(lastNode), nil
   247  	}
   248  
   249  	// Get the block node at the previous retarget (targetTimespan days
   250  	// worth of blocks).
   251  	blocksBack := b.blocksPerRetarget
   252  	if blocksBack > lastNode.height {
   253  		blocksBack = lastNode.height
   254  	}
   255  	firstNode := lastNode.RelativeAncestor(blocksBack)
   256  	if firstNode == nil {
   257  		return 0, AssertError("unable to obtain previous retarget block")
   258  	}
   259  
   260  	targetTimeSpan := int64(b.chainParams.TargetTimespan / time.Second)
   261  
   262  	// Limit the amount of adjustment that can occur to the previous
   263  	// difficulty.
   264  	actualTimespan := lastNode.timestamp - firstNode.timestamp
   265  	adjustedTimespan := targetTimeSpan + (actualTimespan-targetTimeSpan)/8
   266  	if adjustedTimespan < b.minRetargetTimespan {
   267  		adjustedTimespan = b.minRetargetTimespan
   268  	} else if adjustedTimespan > b.maxRetargetTimespan {
   269  		adjustedTimespan = b.maxRetargetTimespan
   270  	}
   271  
   272  	// Calculate new target difficulty as:
   273  	//  currentDifficulty * (adjustedTimespan / targetTimespan)
   274  	// The result uses integer division which means it will be slightly
   275  	// rounded down.  Bitcoind also uses integer division to calculate this
   276  	// result.
   277  	oldTarget := CompactToBig(lastNode.bits)
   278  	newTarget := new(big.Int).Mul(oldTarget, big.NewInt(adjustedTimespan))
   279  	newTarget.Div(newTarget, big.NewInt(targetTimeSpan))
   280  
   281  	// Limit new value to the proof of work limit.
   282  	if newTarget.Cmp(b.chainParams.PowLimit) > 0 {
   283  		newTarget.Set(b.chainParams.PowLimit)
   284  	}
   285  
   286  	// Log new target difficulty and return it.  The new target logging is
   287  	// intentionally converting the bits back to a number instead of using
   288  	// newTarget since conversion to the compact representation loses
   289  	// precision.
   290  	newTargetBits := BigToCompact(newTarget)
   291  	log.Debugf("Difficulty retarget at block height %d", lastNode.height+1)
   292  	log.Debugf("Old target %08x (%064x)", lastNode.bits, oldTarget)
   293  	log.Debugf("New target %08x (%064x)", newTargetBits, CompactToBig(newTargetBits))
   294  	log.Debugf("Actual timespan %v, adjusted timespan %v, target timespan %v",
   295  		time.Duration(actualTimespan)*time.Second,
   296  		time.Duration(adjustedTimespan)*time.Second,
   297  		b.chainParams.TargetTimespan)
   298  
   299  	return newTargetBits, nil
   300  }
   301  
   302  // CalcNextRequiredDifficulty calculates the required difficulty for the block
   303  // after the end of the current best chain based on the difficulty retarget
   304  // rules.
   305  //
   306  // This function is safe for concurrent access.
   307  func (b *BlockChain) CalcNextRequiredDifficulty(timestamp time.Time) (uint32, error) {
   308  	b.chainLock.Lock()
   309  	difficulty, err := b.calcNextRequiredDifficulty(b.bestChain.Tip(), timestamp)
   310  	b.chainLock.Unlock()
   311  	return difficulty, err
   312  }