github.com/lbryio/lbcd@v0.22.119/btcec/btcec.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Copyright 2011 ThePiachu. All rights reserved. 3 // Copyright 2013-2014 The btcsuite developers 4 // Use of this source code is governed by an ISC 5 // license that can be found in the LICENSE file. 6 7 package btcec 8 9 // References: 10 // [SECG]: Recommended Elliptic Curve Domain Parameters 11 // http://www.secg.org/sec2-v2.pdf 12 // 13 // [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) 14 15 // This package operates, internally, on Jacobian coordinates. For a given 16 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) 17 // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole 18 // calculation can be performed within the transform (as in ScalarMult and 19 // ScalarBaseMult). But even for Add and Double, it's faster to apply and 20 // reverse the transform than to operate in affine coordinates. 21 22 import ( 23 "crypto/elliptic" 24 "math/big" 25 "sync" 26 ) 27 28 var ( 29 // fieldOne is simply the integer 1 in field representation. It is 30 // used to avoid needing to create it multiple times during the internal 31 // arithmetic. 32 fieldOne = new(fieldVal).SetInt(1) 33 ) 34 35 // KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve 36 // interface from crypto/elliptic. 37 type KoblitzCurve struct { 38 *elliptic.CurveParams 39 40 // q is the value (P+1)/4 used to compute the square root of field 41 // elements. 42 q *big.Int 43 44 H int // cofactor of the curve. 45 halfOrder *big.Int // half the order N 46 47 // fieldB is the constant B of the curve as a fieldVal. 48 fieldB *fieldVal 49 50 // byteSize is simply the bit size / 8 and is provided for convenience 51 // since it is calculated repeatedly. 52 byteSize int 53 54 // bytePoints 55 bytePoints *[32][256][3]fieldVal 56 57 // The next 6 values are used specifically for endomorphism 58 // optimizations in ScalarMult. 59 60 // lambda must fulfill lambda^3 = 1 mod N where N is the order of G. 61 lambda *big.Int 62 63 // beta must fulfill beta^3 = 1 mod P where P is the prime field of the 64 // curve. 65 beta *fieldVal 66 67 // See the EndomorphismVectors in gensecp256k1.go to see how these are 68 // derived. 69 a1 *big.Int 70 b1 *big.Int 71 a2 *big.Int 72 b2 *big.Int 73 } 74 75 // Params returns the parameters for the curve. 76 func (curve *KoblitzCurve) Params() *elliptic.CurveParams { 77 return curve.CurveParams 78 } 79 80 // bigAffineToField takes an affine point (x, y) as big integers and converts 81 // it to an affine point as field values. 82 func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) { 83 x3, y3 := new(fieldVal), new(fieldVal) 84 x3.SetByteSlice(x.Bytes()) 85 y3.SetByteSlice(y.Bytes()) 86 87 return x3, y3 88 } 89 90 // fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and 91 // converts it to an affine point as big integers. 92 func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) { 93 // Inversions are expensive and both point addition and point doubling 94 // are faster when working with points that have a z value of one. So, 95 // if the point needs to be converted to affine, go ahead and normalize 96 // the point itself at the same time as the calculation is the same. 97 var zInv, tempZ fieldVal 98 zInv.Set(z).Inverse() // zInv = Z^-1 99 tempZ.SquareVal(&zInv) // tempZ = Z^-2 100 x.Mul(&tempZ) // X = X/Z^2 (mag: 1) 101 y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1) 102 z.SetInt(1) // Z = 1 (mag: 1) 103 104 // Normalize the x and y values. 105 x.Normalize() 106 y.Normalize() 107 108 // Convert the field values for the now affine point to big.Ints. 109 x3, y3 := new(big.Int), new(big.Int) 110 x3.SetBytes(x.Bytes()[:]) 111 y3.SetBytes(y.Bytes()[:]) 112 return x3, y3 113 } 114 115 // IsOnCurve returns boolean if the point (x,y) is on the curve. 116 // Part of the elliptic.Curve interface. This function differs from the 117 // crypto/elliptic algorithm since a = 0 not -3. 118 func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool { 119 // Convert big ints to field values for faster arithmetic. 120 fx, fy := curve.bigAffineToField(x, y) 121 122 // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7 123 y2 := new(fieldVal).SquareVal(fy).Normalize() 124 result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize() 125 return y2.Equals(result) 126 } 127 128 // addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have 129 // z values of 1 and stores the result in (x3, y3, z3). That is to say 130 // (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than 131 // the generic add routine since less arithmetic is needed due to the ability to 132 // avoid the z value multiplications. 133 func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) { 134 // To compute the point addition efficiently, this implementation splits 135 // the equation into intermediate elements which are used to minimize 136 // the number of field multiplications using the method shown at: 137 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 138 // 139 // In particular it performs the calculations using the following: 140 // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I 141 // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H 142 // 143 // This results in a cost of 4 field multiplications, 2 field squarings, 144 // 6 field additions, and 5 integer multiplications. 145 146 // When the x coordinates are the same for two points on the curve, the 147 // y coordinates either must be the same, in which case it is point 148 // doubling, or they are opposite and the result is the point at 149 // infinity per the group law for elliptic curve cryptography. 150 x1.Normalize() 151 y1.Normalize() 152 x2.Normalize() 153 y2.Normalize() 154 if x1.Equals(x2) { 155 if y1.Equals(y2) { 156 // Since x1 == x2 and y1 == y2, point doubling must be 157 // done, otherwise the addition would end up dividing 158 // by zero. 159 curve.doubleJacobian(x1, y1, z1, x3, y3, z3) 160 return 161 } 162 163 // Since x1 == x2 and y1 == -y2, the sum is the point at 164 // infinity per the group law. 165 x3.SetInt(0) 166 y3.SetInt(0) 167 z3.SetInt(0) 168 return 169 } 170 171 // Calculate X3, Y3, and Z3 according to the intermediate elements 172 // breakdown above. 173 var h, i, j, r, v fieldVal 174 var negJ, neg2V, negX3 fieldVal 175 h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3) 176 i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4) 177 j.Mul2(&h, &i) // J = H*I (mag: 1) 178 r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6) 179 v.Mul2(x1, &i) // V = X1*I (mag: 1) 180 negJ.Set(&j).Negate(1) // negJ = -J (mag: 2) 181 neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3) 182 x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6) 183 negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7) 184 j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3) 185 y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4) 186 z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6) 187 188 // Normalize the resulting field values to a magnitude of 1 as needed. 189 x3.Normalize() 190 y3.Normalize() 191 z3.Normalize() 192 } 193 194 // addZ1EqualsZ2 adds two Jacobian points that are already known to have the 195 // same z value and stores the result in (x3, y3, z3). That is to say 196 // (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than 197 // the generic add routine since less arithmetic is needed due to the known 198 // equivalence. 199 func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) { 200 // To compute the point addition efficiently, this implementation splits 201 // the equation into intermediate elements which are used to minimize 202 // the number of field multiplications using a slightly modified version 203 // of the method shown at: 204 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 205 // 206 // In particular it performs the calculations using the following: 207 // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B 208 // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A 209 // 210 // This results in a cost of 5 field multiplications, 2 field squarings, 211 // 9 field additions, and 0 integer multiplications. 212 213 // When the x coordinates are the same for two points on the curve, the 214 // y coordinates either must be the same, in which case it is point 215 // doubling, or they are opposite and the result is the point at 216 // infinity per the group law for elliptic curve cryptography. 217 x1.Normalize() 218 y1.Normalize() 219 x2.Normalize() 220 y2.Normalize() 221 if x1.Equals(x2) { 222 if y1.Equals(y2) { 223 // Since x1 == x2 and y1 == y2, point doubling must be 224 // done, otherwise the addition would end up dividing 225 // by zero. 226 curve.doubleJacobian(x1, y1, z1, x3, y3, z3) 227 return 228 } 229 230 // Since x1 == x2 and y1 == -y2, the sum is the point at 231 // infinity per the group law. 232 x3.SetInt(0) 233 y3.SetInt(0) 234 z3.SetInt(0) 235 return 236 } 237 238 // Calculate X3, Y3, and Z3 according to the intermediate elements 239 // breakdown above. 240 var a, b, c, d, e, f fieldVal 241 var negX1, negY1, negE, negX3 fieldVal 242 negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) 243 negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) 244 a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3) 245 b.SquareVal(&a) // B = A^2 (mag: 1) 246 c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3) 247 d.SquareVal(&c) // D = C^2 (mag: 1) 248 e.Mul2(x1, &b) // E = X1*B (mag: 1) 249 negE.Set(&e).Negate(1) // negE = -E (mag: 2) 250 f.Mul2(x2, &b) // F = X2*B (mag: 1) 251 x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5) 252 negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1) 253 y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4) 254 y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5) 255 z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1) 256 257 // Normalize the resulting field values to a magnitude of 1 as needed. 258 x3.Normalize() 259 y3.Normalize() 260 } 261 262 // addZ2EqualsOne adds two Jacobian points when the second point is already 263 // known to have a z value of 1 (and the z value for the first point is not 1) 264 // and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) + 265 // (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic 266 // add routine since less arithmetic is needed due to the ability to avoid 267 // multiplications by the second point's z value. 268 func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) { 269 // To compute the point addition efficiently, this implementation splits 270 // the equation into intermediate elements which are used to minimize 271 // the number of field multiplications using the method shown at: 272 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl 273 // 274 // In particular it performs the calculations using the following: 275 // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2, 276 // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I 277 // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH 278 // 279 // This results in a cost of 7 field multiplications, 4 field squarings, 280 // 9 field additions, and 4 integer multiplications. 281 282 // When the x coordinates are the same for two points on the curve, the 283 // y coordinates either must be the same, in which case it is point 284 // doubling, or they are opposite and the result is the point at 285 // infinity per the group law for elliptic curve cryptography. Since 286 // any number of Jacobian coordinates can represent the same affine 287 // point, the x and y values need to be converted to like terms. Due to 288 // the assumption made for this function that the second point has a z 289 // value of 1 (z2=1), the first point is already "converted". 290 var z1z1, u2, s2 fieldVal 291 x1.Normalize() 292 y1.Normalize() 293 z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) 294 u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) 295 s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) 296 if x1.Equals(&u2) { 297 if y1.Equals(&s2) { 298 // Since x1 == x2 and y1 == y2, point doubling must be 299 // done, otherwise the addition would end up dividing 300 // by zero. 301 curve.doubleJacobian(x1, y1, z1, x3, y3, z3) 302 return 303 } 304 305 // Since x1 == x2 and y1 == -y2, the sum is the point at 306 // infinity per the group law. 307 x3.SetInt(0) 308 y3.SetInt(0) 309 z3.SetInt(0) 310 return 311 } 312 313 // Calculate X3, Y3, and Z3 according to the intermediate elements 314 // breakdown above. 315 var h, hh, i, j, r, rr, v fieldVal 316 var negX1, negY1, negX3 fieldVal 317 negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) 318 h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3) 319 hh.SquareVal(&h) // HH = H^2 (mag: 1) 320 i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4) 321 j.Mul2(&h, &i) // J = H*I (mag: 1) 322 negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) 323 r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6) 324 rr.SquareVal(&r) // rr = r^2 (mag: 1) 325 v.Mul2(x1, &i) // V = X1*I (mag: 1) 326 x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) 327 x3.Add(&rr) // X3 = r^2+X3 (mag: 5) 328 negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) 329 y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3) 330 y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) 331 z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1) 332 z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4) 333 334 // Normalize the resulting field values to a magnitude of 1 as needed. 335 x3.Normalize() 336 y3.Normalize() 337 z3.Normalize() 338 } 339 340 // addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any 341 // assumptions about the z values of the two points and stores the result in 342 // (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It 343 // is the slowest of the add routines due to requiring the most arithmetic. 344 func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) { 345 // To compute the point addition efficiently, this implementation splits 346 // the equation into intermediate elements which are used to minimize 347 // the number of field multiplications using the method shown at: 348 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 349 // 350 // In particular it performs the calculations using the following: 351 // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2 352 // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1) 353 // V = U1*I 354 // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H 355 // 356 // This results in a cost of 11 field multiplications, 5 field squarings, 357 // 9 field additions, and 4 integer multiplications. 358 359 // When the x coordinates are the same for two points on the curve, the 360 // y coordinates either must be the same, in which case it is point 361 // doubling, or they are opposite and the result is the point at 362 // infinity. Since any number of Jacobian coordinates can represent the 363 // same affine point, the x and y values need to be converted to like 364 // terms. 365 var z1z1, z2z2, u1, u2, s1, s2 fieldVal 366 z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) 367 z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1) 368 u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1) 369 u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) 370 s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1) 371 s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) 372 if u1.Equals(&u2) { 373 if s1.Equals(&s2) { 374 // Since x1 == x2 and y1 == y2, point doubling must be 375 // done, otherwise the addition would end up dividing 376 // by zero. 377 curve.doubleJacobian(x1, y1, z1, x3, y3, z3) 378 return 379 } 380 381 // Since x1 == x2 and y1 == -y2, the sum is the point at 382 // infinity per the group law. 383 x3.SetInt(0) 384 y3.SetInt(0) 385 z3.SetInt(0) 386 return 387 } 388 389 // Calculate X3, Y3, and Z3 according to the intermediate elements 390 // breakdown above. 391 var h, i, j, r, rr, v fieldVal 392 var negU1, negS1, negX3 fieldVal 393 negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2) 394 h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3) 395 i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2) 396 j.Mul2(&h, &i) // J = H*I (mag: 1) 397 negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2) 398 r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6) 399 rr.SquareVal(&r) // rr = r^2 (mag: 1) 400 v.Mul2(&u1, &i) // V = U1*I (mag: 1) 401 x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) 402 x3.Add(&rr) // X3 = r^2+X3 (mag: 5) 403 negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) 404 y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3) 405 y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) 406 z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1) 407 z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4) 408 z3.Mul(&h) // Z3 = Z3*H (mag: 1) 409 410 // Normalize the resulting field values to a magnitude of 1 as needed. 411 x3.Normalize() 412 y3.Normalize() 413 } 414 415 // addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2) 416 // together and stores the result in (x3, y3, z3). 417 func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) { 418 // A point at infinity is the identity according to the group law for 419 // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. 420 if (x1.IsZero() && y1.IsZero()) || z1.IsZero() { 421 x3.Set(x2) 422 y3.Set(y2) 423 z3.Set(z2) 424 return 425 } 426 if (x2.IsZero() && y2.IsZero()) || z2.IsZero() { 427 x3.Set(x1) 428 y3.Set(y1) 429 z3.Set(z1) 430 return 431 } 432 433 // Faster point addition can be achieved when certain assumptions are 434 // met. For example, when both points have the same z value, arithmetic 435 // on the z values can be avoided. This section thus checks for these 436 // conditions and calls an appropriate add function which is accelerated 437 // by using those assumptions. 438 z1.Normalize() 439 z2.Normalize() 440 isZ1One := z1.Equals(fieldOne) 441 isZ2One := z2.Equals(fieldOne) 442 switch { 443 case isZ1One && isZ2One: 444 curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3) 445 return 446 case z1.Equals(z2): 447 curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3) 448 return 449 case isZ2One: 450 curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3) 451 return 452 } 453 454 // None of the above assumptions are true, so fall back to generic 455 // point addition. 456 curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3) 457 } 458 459 // Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve 460 // interface. 461 func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 462 // A point at infinity is the identity according to the group law for 463 // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. 464 if x1.Sign() == 0 && y1.Sign() == 0 { 465 return x2, y2 466 } 467 if x2.Sign() == 0 && y2.Sign() == 0 { 468 return x1, y1 469 } 470 471 // Convert the affine coordinates from big integers to field values 472 // and do the point addition in Jacobian projective space. 473 fx1, fy1 := curve.bigAffineToField(x1, y1) 474 fx2, fy2 := curve.bigAffineToField(x2, y2) 475 fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal) 476 fOne := new(fieldVal).SetInt(1) 477 curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3) 478 479 // Convert the Jacobian coordinate field values back to affine big 480 // integers. 481 return curve.fieldJacobianToBigAffine(fx3, fy3, fz3) 482 } 483 484 // doubleZ1EqualsOne performs point doubling on the passed Jacobian point 485 // when the point is already known to have a z value of 1 and stores 486 // the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It 487 // performs faster point doubling than the generic routine since less arithmetic 488 // is needed due to the ability to avoid multiplication by the z value. 489 func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) { 490 // This function uses the assumptions that z1 is 1, thus the point 491 // doubling formulas reduce to: 492 // 493 // X3 = (3*X1^2)^2 - 8*X1*Y1^2 494 // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 495 // Z3 = 2*Y1 496 // 497 // To compute the above efficiently, this implementation splits the 498 // equation into intermediate elements which are used to minimize the 499 // number of field multiplications in favor of field squarings which 500 // are roughly 35% faster than field multiplications with the current 501 // implementation at the time this was written. 502 // 503 // This uses a slightly modified version of the method shown at: 504 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl 505 // 506 // In particular it performs the calculations using the following: 507 // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) 508 // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C 509 // Z3 = 2*Y1 510 // 511 // This results in a cost of 1 field multiplication, 5 field squarings, 512 // 6 field additions, and 5 integer multiplications. 513 var a, b, c, d, e, f fieldVal 514 z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2) 515 a.SquareVal(x1) // A = X1^2 (mag: 1) 516 b.SquareVal(y1) // B = Y1^2 (mag: 1) 517 c.SquareVal(&b) // C = B^2 (mag: 1) 518 b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) 519 d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) 520 d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) 521 e.Set(&a).MulInt(3) // E = 3*A (mag: 3) 522 f.SquareVal(&e) // F = E^2 (mag: 1) 523 x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) 524 x3.Add(&f) // X3 = F+X3 (mag: 18) 525 f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) 526 y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) 527 y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) 528 529 // Normalize the field values back to a magnitude of 1. 530 x3.Normalize() 531 y3.Normalize() 532 z3.Normalize() 533 } 534 535 // doubleGeneric performs point doubling on the passed Jacobian point without 536 // any assumptions about the z value and stores the result in (x3, y3, z3). 537 // That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point 538 // doubling routines due to requiring the most arithmetic. 539 func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) { 540 // Point doubling formula for Jacobian coordinates for the secp256k1 541 // curve: 542 // X3 = (3*X1^2)^2 - 8*X1*Y1^2 543 // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 544 // Z3 = 2*Y1*Z1 545 // 546 // To compute the above efficiently, this implementation splits the 547 // equation into intermediate elements which are used to minimize the 548 // number of field multiplications in favor of field squarings which 549 // are roughly 35% faster than field multiplications with the current 550 // implementation at the time this was written. 551 // 552 // This uses a slightly modified version of the method shown at: 553 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 554 // 555 // In particular it performs the calculations using the following: 556 // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) 557 // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C 558 // Z3 = 2*Y1*Z1 559 // 560 // This results in a cost of 1 field multiplication, 5 field squarings, 561 // 6 field additions, and 5 integer multiplications. 562 var a, b, c, d, e, f fieldVal 563 z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2) 564 a.SquareVal(x1) // A = X1^2 (mag: 1) 565 b.SquareVal(y1) // B = Y1^2 (mag: 1) 566 c.SquareVal(&b) // C = B^2 (mag: 1) 567 b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) 568 d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) 569 d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) 570 e.Set(&a).MulInt(3) // E = 3*A (mag: 3) 571 f.SquareVal(&e) // F = E^2 (mag: 1) 572 x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) 573 x3.Add(&f) // X3 = F+X3 (mag: 18) 574 f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) 575 y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) 576 y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) 577 578 // Normalize the field values back to a magnitude of 1. 579 x3.Normalize() 580 y3.Normalize() 581 z3.Normalize() 582 } 583 584 // doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the 585 // result in (x3, y3, z3). 586 func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) { 587 // Doubling a point at infinity is still infinity. 588 if y1.IsZero() || z1.IsZero() { 589 x3.SetInt(0) 590 y3.SetInt(0) 591 z3.SetInt(0) 592 return 593 } 594 595 // Slightly faster point doubling can be achieved when the z value is 1 596 // by avoiding the multiplication on the z value. This section calls 597 // a point doubling function which is accelerated by using that 598 // assumption when possible. 599 if z1.Normalize().Equals(fieldOne) { 600 curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3) 601 return 602 } 603 604 // Fall back to generic point doubling which works with arbitrary z 605 // values. 606 curve.doubleGeneric(x1, y1, z1, x3, y3, z3) 607 } 608 609 // Double returns 2*(x1,y1). Part of the elliptic.Curve interface. 610 func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 611 if y1.Sign() == 0 { 612 return new(big.Int), new(big.Int) 613 } 614 615 // Convert the affine coordinates from big integers to field values 616 // and do the point doubling in Jacobian projective space. 617 fx1, fy1 := curve.bigAffineToField(x1, y1) 618 fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal) 619 fOne := new(fieldVal).SetInt(1) 620 curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3) 621 622 // Convert the Jacobian coordinate field values back to affine big 623 // integers. 624 return curve.fieldJacobianToBigAffine(fx3, fy3, fz3) 625 } 626 627 // splitK returns a balanced length-two representation of k and their signs. 628 // This is algorithm 3.74 from [GECC]. 629 // 630 // One thing of note about this algorithm is that no matter what c1 and c2 are, 631 // the final equation of k = k1 + k2 * lambda (mod n) will hold. This is 632 // provable mathematically due to how a1/b1/a2/b2 are computed. 633 // 634 // c1 and c2 are chosen to minimize the max(k1,k2). 635 func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) { 636 // All math here is done with big.Int, which is slow. 637 // At some point, it might be useful to write something similar to 638 // fieldVal but for N instead of P as the prime field if this ends up 639 // being a bottleneck. 640 bigIntK := new(big.Int) 641 c1, c2 := new(big.Int), new(big.Int) 642 tmp1, tmp2 := new(big.Int), new(big.Int) 643 k1, k2 := new(big.Int), new(big.Int) 644 645 bigIntK.SetBytes(k) 646 // c1 = round(b2 * k / n) from step 4. 647 // Rounding isn't really necessary and costs too much, hence skipped 648 c1.Mul(curve.b2, bigIntK) 649 c1.Div(c1, curve.N) 650 // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step) 651 // Rounding isn't really necessary and costs too much, hence skipped 652 c2.Mul(curve.b1, bigIntK) 653 c2.Div(c2, curve.N) 654 // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed) 655 tmp1.Mul(c1, curve.a1) 656 tmp2.Mul(c2, curve.a2) 657 k1.Sub(bigIntK, tmp1) 658 k1.Add(k1, tmp2) 659 // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed) 660 tmp1.Mul(c1, curve.b1) 661 tmp2.Mul(c2, curve.b2) 662 k2.Sub(tmp2, tmp1) 663 664 // Note Bytes() throws out the sign of k1 and k2. This matters 665 // since k1 and/or k2 can be negative. Hence, we pass that 666 // back separately. 667 return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign() 668 } 669 670 // moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This 671 // is done by doing a simple modulo curve.N. We can do this since G^N = 1 and 672 // thus any other valid point on the elliptic curve has the same order. 673 func (curve *KoblitzCurve) moduloReduce(k []byte) []byte { 674 // Since the order of G is curve.N, we can use a much smaller number 675 // by doing modulo curve.N 676 if len(k) > curve.byteSize { 677 // Reduce k by performing modulo curve.N. 678 tmpK := new(big.Int).SetBytes(k) 679 tmpK.Mod(tmpK, curve.N) 680 return tmpK.Bytes() 681 } 682 683 return k 684 } 685 686 // NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two 687 // byte slices. The first is where 1s will be. The second is where -1s will 688 // be. NAF is convenient in that on average, only 1/3rd of its values are 689 // non-zero. This is algorithm 3.30 from [GECC]. 690 // 691 // Essentially, this makes it possible to minimize the number of operations 692 // since the resulting ints returned will be at least 50% 0s. 693 func NAF(k []byte) ([]byte, []byte) { 694 // The essence of this algorithm is that whenever we have consecutive 1s 695 // in the binary, we want to put a -1 in the lowest bit and get a bunch 696 // of 0s up to the highest bit of consecutive 1s. This is due to this 697 // identity: 698 // 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k) 699 // 700 // The algorithm thus may need to go 1 more bit than the length of the 701 // bits we actually have, hence bits being 1 bit longer than was 702 // necessary. Since we need to know whether adding will cause a carry, 703 // we go from right-to-left in this addition. 704 var carry, curIsOne, nextIsOne bool 705 // these default to zero 706 retPos := make([]byte, len(k)+1) 707 retNeg := make([]byte, len(k)+1) 708 for i := len(k) - 1; i >= 0; i-- { 709 curByte := k[i] 710 for j := uint(0); j < 8; j++ { 711 curIsOne = curByte&1 == 1 712 if j == 7 { 713 if i == 0 { 714 nextIsOne = false 715 } else { 716 nextIsOne = k[i-1]&1 == 1 717 } 718 } else { 719 nextIsOne = curByte&2 == 2 720 } 721 if carry { 722 if curIsOne { 723 // This bit is 1, so continue to carry 724 // and don't need to do anything. 725 } else { 726 // We've hit a 0 after some number of 727 // 1s. 728 if nextIsOne { 729 // Start carrying again since 730 // a new sequence of 1s is 731 // starting. 732 retNeg[i+1] += 1 << j 733 } else { 734 // Stop carrying since 1s have 735 // stopped. 736 carry = false 737 retPos[i+1] += 1 << j 738 } 739 } 740 } else if curIsOne { 741 if nextIsOne { 742 // If this is the start of at least 2 743 // consecutive 1s, set the current one 744 // to -1 and start carrying. 745 retNeg[i+1] += 1 << j 746 carry = true 747 } else { 748 // This is a singleton, not consecutive 749 // 1s. 750 retPos[i+1] += 1 << j 751 } 752 } 753 curByte >>= 1 754 } 755 } 756 if carry { 757 retPos[0] = 1 758 return retPos, retNeg 759 } 760 return retPos[1:], retNeg[1:] 761 } 762 763 // ScalarMult returns k*(Bx, By) where k is a big endian integer. 764 // Part of the elliptic.Curve interface. 765 func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { 766 // Point Q = ∞ (point at infinity). 767 qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal) 768 769 // Decompose K into k1 and k2 in order to halve the number of EC ops. 770 // See Algorithm 3.74 in [GECC]. 771 k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k)) 772 773 // The main equation here to remember is: 774 // k * P = k1 * P + k2 * ϕ(P) 775 // 776 // P1 below is P in the equation, P2 below is ϕ(P) in the equation 777 p1x, p1y := curve.bigAffineToField(Bx, By) 778 p1yNeg := new(fieldVal).NegateVal(p1y, 1) 779 p1z := new(fieldVal).SetInt(1) 780 781 // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math 782 // goes through. 783 p2x := new(fieldVal).Mul2(p1x, curve.beta) 784 p2y := new(fieldVal).Set(p1y) 785 p2yNeg := new(fieldVal).NegateVal(p2y, 1) 786 p2z := new(fieldVal).SetInt(1) 787 788 // Flip the positive and negative values of the points as needed 789 // depending on the signs of k1 and k2. As mentioned in the equation 790 // above, each of k1 and k2 are multiplied by the respective point. 791 // Since -k * P is the same thing as k * -P, and the group law for 792 // elliptic curves states that P(x, y) = -P(x, -y), it's faster and 793 // simplifies the code to just make the point negative. 794 if signK1 == -1 { 795 p1y, p1yNeg = p1yNeg, p1y 796 } 797 if signK2 == -1 { 798 p2y, p2yNeg = p2yNeg, p2y 799 } 800 801 // NAF versions of k1 and k2 should have a lot more zeros. 802 // 803 // The Pos version of the bytes contain the +1s and the Neg versions 804 // contain the -1s. 805 k1PosNAF, k1NegNAF := NAF(k1) 806 k2PosNAF, k2NegNAF := NAF(k2) 807 k1Len := len(k1PosNAF) 808 k2Len := len(k2PosNAF) 809 810 m := k1Len 811 if m < k2Len { 812 m = k2Len 813 } 814 815 // Add left-to-right using the NAF optimization. See algorithm 3.77 816 // from [GECC]. This should be faster overall since there will be a lot 817 // more instances of 0, hence reducing the number of Jacobian additions 818 // at the cost of 1 possible extra doubling. 819 var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte 820 for i := 0; i < m; i++ { 821 // Since we're going left-to-right, pad the front with 0s. 822 if i < m-k1Len { 823 k1BytePos = 0 824 k1ByteNeg = 0 825 } else { 826 k1BytePos = k1PosNAF[i-(m-k1Len)] 827 k1ByteNeg = k1NegNAF[i-(m-k1Len)] 828 } 829 if i < m-k2Len { 830 k2BytePos = 0 831 k2ByteNeg = 0 832 } else { 833 k2BytePos = k2PosNAF[i-(m-k2Len)] 834 k2ByteNeg = k2NegNAF[i-(m-k2Len)] 835 } 836 837 for j := 7; j >= 0; j-- { 838 // Q = 2 * Q 839 curve.doubleJacobian(qx, qy, qz, qx, qy, qz) 840 841 if k1BytePos&0x80 == 0x80 { 842 curve.addJacobian(qx, qy, qz, p1x, p1y, p1z, 843 qx, qy, qz) 844 } else if k1ByteNeg&0x80 == 0x80 { 845 curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z, 846 qx, qy, qz) 847 } 848 849 if k2BytePos&0x80 == 0x80 { 850 curve.addJacobian(qx, qy, qz, p2x, p2y, p2z, 851 qx, qy, qz) 852 } else if k2ByteNeg&0x80 == 0x80 { 853 curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z, 854 qx, qy, qz) 855 } 856 k1BytePos <<= 1 857 k1ByteNeg <<= 1 858 k2BytePos <<= 1 859 k2ByteNeg <<= 1 860 } 861 } 862 863 // Convert the Jacobian coordinate field values back to affine big.Ints. 864 return curve.fieldJacobianToBigAffine(qx, qy, qz) 865 } 866 867 // ScalarBaseMult returns k*G where G is the base point of the group and k is a 868 // big endian integer. 869 // Part of the elliptic.Curve interface. 870 func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 871 newK := curve.moduloReduce(k) 872 diff := len(curve.bytePoints) - len(newK) 873 874 // Point Q = ∞ (point at infinity). 875 qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal) 876 877 // curve.bytePoints has all 256 byte points for each 8-bit window. The 878 // strategy is to add up the byte points. This is best understood by 879 // expressing k in base-256 which it already sort of is. 880 // Each "digit" in the 8-bit window can be looked up using bytePoints 881 // and added together. 882 for i, byteVal := range newK { 883 p := curve.bytePoints[diff+i][byteVal] 884 curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz) 885 } 886 return curve.fieldJacobianToBigAffine(qx, qy, qz) 887 } 888 889 // QPlus1Div4 returns the (P+1)/4 constant for the curve for use in calculating 890 // square roots via exponentiation. 891 // 892 // DEPRECATED: The actual value returned is (P+1)/4, where as the original 893 // method name implies that this value is (((P+1)/4)+1)/4. This method is kept 894 // to maintain backwards compatibility of the API. Use Q() instead. 895 func (curve *KoblitzCurve) QPlus1Div4() *big.Int { 896 return curve.q 897 } 898 899 // Q returns the (P+1)/4 constant for the curve for use in calculating square 900 // roots via exponentiation. 901 func (curve *KoblitzCurve) Q() *big.Int { 902 return curve.q 903 } 904 905 var initonce sync.Once 906 var secp256k1 KoblitzCurve 907 908 func initAll() { 909 initS256() 910 } 911 912 // fromHex converts the passed hex string into a big integer pointer and will 913 // panic is there is an error. This is only provided for the hard-coded 914 // constants so errors in the source code can bet detected. It will only (and 915 // must only) be called for initialization purposes. 916 func fromHex(s string) *big.Int { 917 r, ok := new(big.Int).SetString(s, 16) 918 if !ok { 919 panic("invalid hex in source file: " + s) 920 } 921 return r 922 } 923 924 func initS256() { 925 // Curve parameters taken from [SECG] section 2.4.1. 926 secp256k1.CurveParams = new(elliptic.CurveParams) 927 secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F") 928 secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141") 929 secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007") 930 secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798") 931 secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8") 932 secp256k1.BitSize = 256 933 // Curve name taken from https://safecurves.cr.yp.to/. 934 secp256k1.Name = "secp256k1" 935 secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P, 936 big.NewInt(1)), big.NewInt(4)) 937 secp256k1.H = 1 938 secp256k1.halfOrder = new(big.Int).Rsh(secp256k1.N, 1) 939 secp256k1.fieldB = new(fieldVal).SetByteSlice(secp256k1.B.Bytes()) 940 941 // Provided for convenience since this gets computed repeatedly. 942 secp256k1.byteSize = secp256k1.BitSize / 8 943 944 // Deserialize and set the pre-computed table used to accelerate scalar 945 // base multiplication. This is hard-coded data, so any errors are 946 // panics because it means something is wrong in the source code. 947 if err := loadS256BytePoints(); err != nil { 948 panic(err) 949 } 950 951 // Next 6 constants are from Hal Finney's bitcointalk.org post: 952 // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565 953 // May he rest in peace. 954 // 955 // They have also been independently derived from the code in the 956 // EndomorphismVectors function in gensecp256k1.go. 957 secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72") 958 secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE") 959 secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15") 960 secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3") 961 secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8") 962 secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15") 963 964 // Alternatively, we can use the parameters below, however, they seem 965 // to be about 8% slower. 966 // secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE") 967 // secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40") 968 // secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3") 969 // secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15") 970 // secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15") 971 // secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8") 972 } 973 974 // S256 returns a Curve which implements secp256k1. 975 func S256() *KoblitzCurve { 976 initonce.Do(initAll) 977 return &secp256k1 978 }