github.com/likebike/go--@v0.0.0-20190911215757-0bd925d16e96/go/src/crypto/x509/verify.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package x509
     6  
     7  import (
     8  	"bytes"
     9  	"encoding/asn1"
    10  	"errors"
    11  	"fmt"
    12  	"net"
    13  	"net/url"
    14  	"reflect"
    15  	"runtime"
    16  	"strconv"
    17  	"strings"
    18  	"time"
    19  	"unicode/utf8"
    20  )
    21  
    22  type InvalidReason int
    23  
    24  const (
    25  	// NotAuthorizedToSign results when a certificate is signed by another
    26  	// which isn't marked as a CA certificate.
    27  	NotAuthorizedToSign InvalidReason = iota
    28  	// Expired results when a certificate has expired, based on the time
    29  	// given in the VerifyOptions.
    30  	Expired
    31  	// CANotAuthorizedForThisName results when an intermediate or root
    32  	// certificate has a name constraint which doesn't permit a DNS or
    33  	// other name (including IP address) in the leaf certificate.
    34  	CANotAuthorizedForThisName
    35  	// TooManyIntermediates results when a path length constraint is
    36  	// violated.
    37  	TooManyIntermediates
    38  	// IncompatibleUsage results when the certificate's key usage indicates
    39  	// that it may only be used for a different purpose.
    40  	IncompatibleUsage
    41  	// NameMismatch results when the subject name of a parent certificate
    42  	// does not match the issuer name in the child.
    43  	NameMismatch
    44  	// NameConstraintsWithoutSANs results when a leaf certificate doesn't
    45  	// contain a Subject Alternative Name extension, but a CA certificate
    46  	// contains name constraints.
    47  	NameConstraintsWithoutSANs
    48  	// UnconstrainedName results when a CA certificate contains permitted
    49  	// name constraints, but leaf certificate contains a name of an
    50  	// unsupported or unconstrained type.
    51  	UnconstrainedName
    52  	// TooManyConstraints results when the number of comparision operations
    53  	// needed to check a certificate exceeds the limit set by
    54  	// VerifyOptions.MaxConstraintComparisions. This limit exists to
    55  	// prevent pathological certificates can consuming excessive amounts of
    56  	// CPU time to verify.
    57  	TooManyConstraints
    58  	// CANotAuthorizedForExtKeyUsage results when an intermediate or root
    59  	// certificate does not permit an extended key usage that is claimed by
    60  	// the leaf certificate.
    61  	CANotAuthorizedForExtKeyUsage
    62  )
    63  
    64  // CertificateInvalidError results when an odd error occurs. Users of this
    65  // library probably want to handle all these errors uniformly.
    66  type CertificateInvalidError struct {
    67  	Cert   *Certificate
    68  	Reason InvalidReason
    69  	Detail string
    70  }
    71  
    72  func (e CertificateInvalidError) Error() string {
    73  	switch e.Reason {
    74  	case NotAuthorizedToSign:
    75  		return "x509: certificate is not authorized to sign other certificates"
    76  	case Expired:
    77  		return "x509: certificate has expired or is not yet valid"
    78  	case CANotAuthorizedForThisName:
    79  		return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
    80  	case CANotAuthorizedForExtKeyUsage:
    81  		return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
    82  	case TooManyIntermediates:
    83  		return "x509: too many intermediates for path length constraint"
    84  	case IncompatibleUsage:
    85  		return "x509: certificate specifies an incompatible key usage: " + e.Detail
    86  	case NameMismatch:
    87  		return "x509: issuer name does not match subject from issuing certificate"
    88  	case NameConstraintsWithoutSANs:
    89  		return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
    90  	case UnconstrainedName:
    91  		return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
    92  	}
    93  	return "x509: unknown error"
    94  }
    95  
    96  // HostnameError results when the set of authorized names doesn't match the
    97  // requested name.
    98  type HostnameError struct {
    99  	Certificate *Certificate
   100  	Host        string
   101  }
   102  
   103  func (h HostnameError) Error() string {
   104  	c := h.Certificate
   105  
   106  	var valid string
   107  	if ip := net.ParseIP(h.Host); ip != nil {
   108  		// Trying to validate an IP
   109  		if len(c.IPAddresses) == 0 {
   110  			return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
   111  		}
   112  		for _, san := range c.IPAddresses {
   113  			if len(valid) > 0 {
   114  				valid += ", "
   115  			}
   116  			valid += san.String()
   117  		}
   118  	} else {
   119  		if c.hasSANExtension() {
   120  			valid = strings.Join(c.DNSNames, ", ")
   121  		} else {
   122  			valid = c.Subject.CommonName
   123  		}
   124  	}
   125  
   126  	if len(valid) == 0 {
   127  		return "x509: certificate is not valid for any names, but wanted to match " + h.Host
   128  	}
   129  	return "x509: certificate is valid for " + valid + ", not " + h.Host
   130  }
   131  
   132  // UnknownAuthorityError results when the certificate issuer is unknown
   133  type UnknownAuthorityError struct {
   134  	Cert *Certificate
   135  	// hintErr contains an error that may be helpful in determining why an
   136  	// authority wasn't found.
   137  	hintErr error
   138  	// hintCert contains a possible authority certificate that was rejected
   139  	// because of the error in hintErr.
   140  	hintCert *Certificate
   141  }
   142  
   143  func (e UnknownAuthorityError) Error() string {
   144  	s := "x509: certificate signed by unknown authority"
   145  	if e.hintErr != nil {
   146  		certName := e.hintCert.Subject.CommonName
   147  		if len(certName) == 0 {
   148  			if len(e.hintCert.Subject.Organization) > 0 {
   149  				certName = e.hintCert.Subject.Organization[0]
   150  			} else {
   151  				certName = "serial:" + e.hintCert.SerialNumber.String()
   152  			}
   153  		}
   154  		s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
   155  	}
   156  	return s
   157  }
   158  
   159  // SystemRootsError results when we fail to load the system root certificates.
   160  type SystemRootsError struct {
   161  	Err error
   162  }
   163  
   164  func (se SystemRootsError) Error() string {
   165  	msg := "x509: failed to load system roots and no roots provided"
   166  	if se.Err != nil {
   167  		return msg + "; " + se.Err.Error()
   168  	}
   169  	return msg
   170  }
   171  
   172  // errNotParsed is returned when a certificate without ASN.1 contents is
   173  // verified. Platform-specific verification needs the ASN.1 contents.
   174  var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
   175  
   176  // VerifyOptions contains parameters for Certificate.Verify. It's a structure
   177  // because other PKIX verification APIs have ended up needing many options.
   178  type VerifyOptions struct {
   179  	DNSName       string
   180  	Intermediates *CertPool
   181  	Roots         *CertPool // if nil, the system roots are used
   182  	CurrentTime   time.Time // if zero, the current time is used
   183  	// KeyUsage specifies which Extended Key Usage values are acceptable. A leaf
   184  	// certificate is accepted if it contains any of the listed values. An empty
   185  	// list means ExtKeyUsageServerAuth. To accept any key usage, include
   186  	// ExtKeyUsageAny.
   187  	//
   188  	// Certificate chains are required to nest extended key usage values,
   189  	// irrespective of this value. This matches the Windows CryptoAPI behavior,
   190  	// but not the spec.
   191  	KeyUsages []ExtKeyUsage
   192  	// MaxConstraintComparisions is the maximum number of comparisons to
   193  	// perform when checking a given certificate's name constraints. If
   194  	// zero, a sensible default is used. This limit prevents pathalogical
   195  	// certificates from consuming excessive amounts of CPU time when
   196  	// validating.
   197  	MaxConstraintComparisions int
   198  }
   199  
   200  const (
   201  	leafCertificate = iota
   202  	intermediateCertificate
   203  	rootCertificate
   204  )
   205  
   206  // rfc2821Mailbox represents a “mailbox” (which is an email address to most
   207  // people) by breaking it into the “local” (i.e. before the '@') and “domain”
   208  // parts.
   209  type rfc2821Mailbox struct {
   210  	local, domain string
   211  }
   212  
   213  // parseRFC2821Mailbox parses an email address into local and domain parts,
   214  // based on the ABNF for a “Mailbox” from RFC 2821. According to
   215  // https://tools.ietf.org/html/rfc5280#section-4.2.1.6 that's correct for an
   216  // rfc822Name from a certificate: “The format of an rfc822Name is a "Mailbox"
   217  // as defined in https://tools.ietf.org/html/rfc2821#section-4.1.2”.
   218  func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
   219  	if len(in) == 0 {
   220  		return mailbox, false
   221  	}
   222  
   223  	localPartBytes := make([]byte, 0, len(in)/2)
   224  
   225  	if in[0] == '"' {
   226  		// Quoted-string = DQUOTE *qcontent DQUOTE
   227  		// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
   228  		// qcontent = qtext / quoted-pair
   229  		// qtext = non-whitespace-control /
   230  		//         %d33 / %d35-91 / %d93-126
   231  		// quoted-pair = ("\" text) / obs-qp
   232  		// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
   233  		//
   234  		// (Names beginning with “obs-” are the obsolete syntax from
   235  		// https://tools.ietf.org/html/rfc2822#section-4. Since it has
   236  		// been 16 years, we no longer accept that.)
   237  		in = in[1:]
   238  	QuotedString:
   239  		for {
   240  			if len(in) == 0 {
   241  				return mailbox, false
   242  			}
   243  			c := in[0]
   244  			in = in[1:]
   245  
   246  			switch {
   247  			case c == '"':
   248  				break QuotedString
   249  
   250  			case c == '\\':
   251  				// quoted-pair
   252  				if len(in) == 0 {
   253  					return mailbox, false
   254  				}
   255  				if in[0] == 11 ||
   256  					in[0] == 12 ||
   257  					(1 <= in[0] && in[0] <= 9) ||
   258  					(14 <= in[0] && in[0] <= 127) {
   259  					localPartBytes = append(localPartBytes, in[0])
   260  					in = in[1:]
   261  				} else {
   262  					return mailbox, false
   263  				}
   264  
   265  			case c == 11 ||
   266  				c == 12 ||
   267  				// Space (char 32) is not allowed based on the
   268  				// BNF, but RFC 3696 gives an example that
   269  				// assumes that it is. Several “verified”
   270  				// errata continue to argue about this point.
   271  				// We choose to accept it.
   272  				c == 32 ||
   273  				c == 33 ||
   274  				c == 127 ||
   275  				(1 <= c && c <= 8) ||
   276  				(14 <= c && c <= 31) ||
   277  				(35 <= c && c <= 91) ||
   278  				(93 <= c && c <= 126):
   279  				// qtext
   280  				localPartBytes = append(localPartBytes, c)
   281  
   282  			default:
   283  				return mailbox, false
   284  			}
   285  		}
   286  	} else {
   287  		// Atom ("." Atom)*
   288  	NextChar:
   289  		for len(in) > 0 {
   290  			// atext from https://tools.ietf.org/html/rfc2822#section-3.2.4
   291  			c := in[0]
   292  
   293  			switch {
   294  			case c == '\\':
   295  				// Examples given in RFC 3696 suggest that
   296  				// escaped characters can appear outside of a
   297  				// quoted string. Several “verified” errata
   298  				// continue to argue the point. We choose to
   299  				// accept it.
   300  				in = in[1:]
   301  				if len(in) == 0 {
   302  					return mailbox, false
   303  				}
   304  				fallthrough
   305  
   306  			case ('0' <= c && c <= '9') ||
   307  				('a' <= c && c <= 'z') ||
   308  				('A' <= c && c <= 'Z') ||
   309  				c == '!' || c == '#' || c == '$' || c == '%' ||
   310  				c == '&' || c == '\'' || c == '*' || c == '+' ||
   311  				c == '-' || c == '/' || c == '=' || c == '?' ||
   312  				c == '^' || c == '_' || c == '`' || c == '{' ||
   313  				c == '|' || c == '}' || c == '~' || c == '.':
   314  				localPartBytes = append(localPartBytes, in[0])
   315  				in = in[1:]
   316  
   317  			default:
   318  				break NextChar
   319  			}
   320  		}
   321  
   322  		if len(localPartBytes) == 0 {
   323  			return mailbox, false
   324  		}
   325  
   326  		// https://tools.ietf.org/html/rfc3696#section-3
   327  		// “period (".") may also appear, but may not be used to start
   328  		// or end the local part, nor may two or more consecutive
   329  		// periods appear.”
   330  		twoDots := []byte{'.', '.'}
   331  		if localPartBytes[0] == '.' ||
   332  			localPartBytes[len(localPartBytes)-1] == '.' ||
   333  			bytes.Contains(localPartBytes, twoDots) {
   334  			return mailbox, false
   335  		}
   336  	}
   337  
   338  	if len(in) == 0 || in[0] != '@' {
   339  		return mailbox, false
   340  	}
   341  	in = in[1:]
   342  
   343  	// The RFC species a format for domains, but that's known to be
   344  	// violated in practice so we accept that anything after an '@' is the
   345  	// domain part.
   346  	if _, ok := domainToReverseLabels(in); !ok {
   347  		return mailbox, false
   348  	}
   349  
   350  	mailbox.local = string(localPartBytes)
   351  	mailbox.domain = in
   352  	return mailbox, true
   353  }
   354  
   355  // domainToReverseLabels converts a textual domain name like foo.example.com to
   356  // the list of labels in reverse order, e.g. ["com", "example", "foo"].
   357  func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
   358  	for len(domain) > 0 {
   359  		if i := strings.LastIndexByte(domain, '.'); i == -1 {
   360  			reverseLabels = append(reverseLabels, domain)
   361  			domain = ""
   362  		} else {
   363  			reverseLabels = append(reverseLabels, domain[i+1:len(domain)])
   364  			domain = domain[:i]
   365  		}
   366  	}
   367  
   368  	if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
   369  		// An empty label at the end indicates an absolute value.
   370  		return nil, false
   371  	}
   372  
   373  	for _, label := range reverseLabels {
   374  		if len(label) == 0 {
   375  			// Empty labels are otherwise invalid.
   376  			return nil, false
   377  		}
   378  
   379  		for _, c := range label {
   380  			if c < 33 || c > 126 {
   381  				// Invalid character.
   382  				return nil, false
   383  			}
   384  		}
   385  	}
   386  
   387  	return reverseLabels, true
   388  }
   389  
   390  func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
   391  	// If the constraint contains an @, then it specifies an exact mailbox
   392  	// name.
   393  	if strings.Contains(constraint, "@") {
   394  		constraintMailbox, ok := parseRFC2821Mailbox(constraint)
   395  		if !ok {
   396  			return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
   397  		}
   398  		return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
   399  	}
   400  
   401  	// Otherwise the constraint is like a DNS constraint of the domain part
   402  	// of the mailbox.
   403  	return matchDomainConstraint(mailbox.domain, constraint)
   404  }
   405  
   406  func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
   407  	// https://tools.ietf.org/html/rfc5280#section-4.2.1.10
   408  	// “a uniformResourceIdentifier that does not include an authority
   409  	// component with a host name specified as a fully qualified domain
   410  	// name (e.g., if the URI either does not include an authority
   411  	// component or includes an authority component in which the host name
   412  	// is specified as an IP address), then the application MUST reject the
   413  	// certificate.”
   414  
   415  	host := uri.Host
   416  	if len(host) == 0 {
   417  		return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
   418  	}
   419  
   420  	if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
   421  		var err error
   422  		host, _, err = net.SplitHostPort(uri.Host)
   423  		if err != nil {
   424  			return false, err
   425  		}
   426  	}
   427  
   428  	if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
   429  		net.ParseIP(host) != nil {
   430  		return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
   431  	}
   432  
   433  	return matchDomainConstraint(host, constraint)
   434  }
   435  
   436  func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
   437  	if len(ip) != len(constraint.IP) {
   438  		return false, nil
   439  	}
   440  
   441  	for i := range ip {
   442  		if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
   443  			return false, nil
   444  		}
   445  	}
   446  
   447  	return true, nil
   448  }
   449  
   450  func matchDomainConstraint(domain, constraint string) (bool, error) {
   451  	// The meaning of zero length constraints is not specified, but this
   452  	// code follows NSS and accepts them as matching everything.
   453  	if len(constraint) == 0 {
   454  		return true, nil
   455  	}
   456  
   457  	domainLabels, ok := domainToReverseLabels(domain)
   458  	if !ok {
   459  		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
   460  	}
   461  
   462  	// RFC 5280 says that a leading period in a domain name means that at
   463  	// least one label must be prepended, but only for URI and email
   464  	// constraints, not DNS constraints. The code also supports that
   465  	// behaviour for DNS constraints.
   466  
   467  	mustHaveSubdomains := false
   468  	if constraint[0] == '.' {
   469  		mustHaveSubdomains = true
   470  		constraint = constraint[1:]
   471  	}
   472  
   473  	constraintLabels, ok := domainToReverseLabels(constraint)
   474  	if !ok {
   475  		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
   476  	}
   477  
   478  	if len(domainLabels) < len(constraintLabels) ||
   479  		(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
   480  		return false, nil
   481  	}
   482  
   483  	for i, constraintLabel := range constraintLabels {
   484  		if !strings.EqualFold(constraintLabel, domainLabels[i]) {
   485  			return false, nil
   486  		}
   487  	}
   488  
   489  	return true, nil
   490  }
   491  
   492  // checkNameConstraints checks that c permits a child certificate to claim the
   493  // given name, of type nameType. The argument parsedName contains the parsed
   494  // form of name, suitable for passing to the match function. The total number
   495  // of comparisons is tracked in the given count and should not exceed the given
   496  // limit.
   497  func (c *Certificate) checkNameConstraints(count *int,
   498  	maxConstraintComparisons int,
   499  	nameType string,
   500  	name string,
   501  	parsedName interface{},
   502  	match func(parsedName, constraint interface{}) (match bool, err error),
   503  	permitted, excluded interface{}) error {
   504  
   505  	excludedValue := reflect.ValueOf(excluded)
   506  
   507  	*count += excludedValue.Len()
   508  	if *count > maxConstraintComparisons {
   509  		return CertificateInvalidError{c, TooManyConstraints, ""}
   510  	}
   511  
   512  	for i := 0; i < excludedValue.Len(); i++ {
   513  		constraint := excludedValue.Index(i).Interface()
   514  		match, err := match(parsedName, constraint)
   515  		if err != nil {
   516  			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
   517  		}
   518  
   519  		if match {
   520  			return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
   521  		}
   522  	}
   523  
   524  	permittedValue := reflect.ValueOf(permitted)
   525  
   526  	*count += permittedValue.Len()
   527  	if *count > maxConstraintComparisons {
   528  		return CertificateInvalidError{c, TooManyConstraints, ""}
   529  	}
   530  
   531  	ok := true
   532  	for i := 0; i < permittedValue.Len(); i++ {
   533  		constraint := permittedValue.Index(i).Interface()
   534  
   535  		var err error
   536  		if ok, err = match(parsedName, constraint); err != nil {
   537  			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
   538  		}
   539  
   540  		if ok {
   541  			break
   542  		}
   543  	}
   544  
   545  	if !ok {
   546  		return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
   547  	}
   548  
   549  	return nil
   550  }
   551  
   552  const (
   553  	checkingAgainstIssuerCert = iota
   554  	checkingAgainstLeafCert
   555  )
   556  
   557  // ekuPermittedBy returns true iff the given extended key usage is permitted by
   558  // the given EKU from a certificate. Normally, this would be a simple
   559  // comparison plus a special case for the “any” EKU. But, in order to support
   560  // existing certificates, some exceptions are made.
   561  func ekuPermittedBy(eku, certEKU ExtKeyUsage, context int) bool {
   562  	if certEKU == ExtKeyUsageAny || eku == certEKU {
   563  		return true
   564  	}
   565  
   566  	// Some exceptions are made to support existing certificates. Firstly,
   567  	// the ServerAuth and SGC EKUs are treated as a group.
   568  	mapServerAuthEKUs := func(eku ExtKeyUsage) ExtKeyUsage {
   569  		if eku == ExtKeyUsageNetscapeServerGatedCrypto || eku == ExtKeyUsageMicrosoftServerGatedCrypto {
   570  			return ExtKeyUsageServerAuth
   571  		}
   572  		return eku
   573  	}
   574  
   575  	eku = mapServerAuthEKUs(eku)
   576  	certEKU = mapServerAuthEKUs(certEKU)
   577  
   578  	if eku == certEKU {
   579  		return true
   580  	}
   581  
   582  	// If checking a requested EKU against the list in a leaf certificate there
   583  	// are fewer exceptions.
   584  	if context == checkingAgainstLeafCert {
   585  		return false
   586  	}
   587  
   588  	// ServerAuth in a CA permits ClientAuth in the leaf.
   589  	return (eku == ExtKeyUsageClientAuth && certEKU == ExtKeyUsageServerAuth) ||
   590  		// Any CA may issue an OCSP responder certificate.
   591  		eku == ExtKeyUsageOCSPSigning ||
   592  		// Code-signing CAs can use Microsoft's commercial and
   593  		// kernel-mode EKUs.
   594  		(eku == ExtKeyUsageMicrosoftCommercialCodeSigning || eku == ExtKeyUsageMicrosoftKernelCodeSigning) && certEKU == ExtKeyUsageCodeSigning
   595  }
   596  
   597  // isValid performs validity checks on c given that it is a candidate to append
   598  // to the chain in currentChain.
   599  func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
   600  	if len(c.UnhandledCriticalExtensions) > 0 {
   601  		return UnhandledCriticalExtension{}
   602  	}
   603  
   604  	if len(currentChain) > 0 {
   605  		child := currentChain[len(currentChain)-1]
   606  		if !bytes.Equal(child.RawIssuer, c.RawSubject) {
   607  			return CertificateInvalidError{c, NameMismatch, ""}
   608  		}
   609  	}
   610  
   611  	now := opts.CurrentTime
   612  	if now.IsZero() {
   613  		now = time.Now()
   614  	}
   615  	if now.Before(c.NotBefore) || now.After(c.NotAfter) {
   616  		return CertificateInvalidError{c, Expired, ""}
   617  	}
   618  
   619  	maxConstraintComparisons := opts.MaxConstraintComparisions
   620  	if maxConstraintComparisons == 0 {
   621  		maxConstraintComparisons = 250000
   622  	}
   623  	comparisonCount := 0
   624  
   625  	var leaf *Certificate
   626  	if certType == intermediateCertificate || certType == rootCertificate {
   627  		if len(currentChain) == 0 {
   628  			return errors.New("x509: internal error: empty chain when appending CA cert")
   629  		}
   630  		leaf = currentChain[0]
   631  	}
   632  
   633  	if (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints() {
   634  		sanExtension, ok := leaf.getSANExtension()
   635  		if !ok {
   636  			// This is the deprecated, legacy case of depending on
   637  			// the CN as a hostname. Chains modern enough to be
   638  			// using name constraints should not be depending on
   639  			// CNs.
   640  			return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""}
   641  		}
   642  
   643  		err := forEachSAN(sanExtension, func(tag int, data []byte) error {
   644  			switch tag {
   645  			case nameTypeEmail:
   646  				name := string(data)
   647  				mailbox, ok := parseRFC2821Mailbox(name)
   648  				if !ok {
   649  					return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
   650  				}
   651  
   652  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
   653  					func(parsedName, constraint interface{}) (bool, error) {
   654  						return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
   655  					}, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
   656  					return err
   657  				}
   658  
   659  			case nameTypeDNS:
   660  				name := string(data)
   661  				if _, ok := domainToReverseLabels(name); !ok {
   662  					return fmt.Errorf("x509: cannot parse dnsName %q", name)
   663  				}
   664  
   665  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
   666  					func(parsedName, constraint interface{}) (bool, error) {
   667  						return matchDomainConstraint(parsedName.(string), constraint.(string))
   668  					}, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
   669  					return err
   670  				}
   671  
   672  			case nameTypeURI:
   673  				name := string(data)
   674  				uri, err := url.Parse(name)
   675  				if err != nil {
   676  					return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
   677  				}
   678  
   679  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
   680  					func(parsedName, constraint interface{}) (bool, error) {
   681  						return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
   682  					}, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
   683  					return err
   684  				}
   685  
   686  			case nameTypeIP:
   687  				ip := net.IP(data)
   688  				if l := len(ip); l != net.IPv4len && l != net.IPv6len {
   689  					return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
   690  				}
   691  
   692  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
   693  					func(parsedName, constraint interface{}) (bool, error) {
   694  						return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
   695  					}, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
   696  					return err
   697  				}
   698  
   699  			default:
   700  				// Unknown SAN types are ignored.
   701  			}
   702  
   703  			return nil
   704  		})
   705  
   706  		if err != nil {
   707  			return err
   708  		}
   709  	}
   710  
   711  	checkEKUs := certType == intermediateCertificate
   712  
   713  	// If no extended key usages are specified, then all are acceptable.
   714  	if checkEKUs && (len(c.ExtKeyUsage) == 0 && len(c.UnknownExtKeyUsage) == 0) {
   715  		checkEKUs = false
   716  	}
   717  
   718  	// If the “any” key usage is permitted, then no more checks are needed.
   719  	if checkEKUs {
   720  		for _, caEKU := range c.ExtKeyUsage {
   721  			comparisonCount++
   722  			if caEKU == ExtKeyUsageAny {
   723  				checkEKUs = false
   724  				break
   725  			}
   726  		}
   727  	}
   728  
   729  	if checkEKUs {
   730  	NextEKU:
   731  		for _, eku := range leaf.ExtKeyUsage {
   732  			if comparisonCount > maxConstraintComparisons {
   733  				return CertificateInvalidError{c, TooManyConstraints, ""}
   734  			}
   735  
   736  			for _, caEKU := range c.ExtKeyUsage {
   737  				comparisonCount++
   738  				if ekuPermittedBy(eku, caEKU, checkingAgainstIssuerCert) {
   739  					continue NextEKU
   740  				}
   741  			}
   742  
   743  			oid, _ := oidFromExtKeyUsage(eku)
   744  			return CertificateInvalidError{c, CANotAuthorizedForExtKeyUsage, fmt.Sprintf("EKU not permitted: %#v", oid)}
   745  		}
   746  
   747  	NextUnknownEKU:
   748  		for _, eku := range leaf.UnknownExtKeyUsage {
   749  			if comparisonCount > maxConstraintComparisons {
   750  				return CertificateInvalidError{c, TooManyConstraints, ""}
   751  			}
   752  
   753  			for _, caEKU := range c.UnknownExtKeyUsage {
   754  				comparisonCount++
   755  				if caEKU.Equal(eku) {
   756  					continue NextUnknownEKU
   757  				}
   758  			}
   759  
   760  			return CertificateInvalidError{c, CANotAuthorizedForExtKeyUsage, fmt.Sprintf("EKU not permitted: %#v", eku)}
   761  		}
   762  	}
   763  
   764  	// KeyUsage status flags are ignored. From Engineering Security, Peter
   765  	// Gutmann: A European government CA marked its signing certificates as
   766  	// being valid for encryption only, but no-one noticed. Another
   767  	// European CA marked its signature keys as not being valid for
   768  	// signatures. A different CA marked its own trusted root certificate
   769  	// as being invalid for certificate signing. Another national CA
   770  	// distributed a certificate to be used to encrypt data for the
   771  	// country’s tax authority that was marked as only being usable for
   772  	// digital signatures but not for encryption. Yet another CA reversed
   773  	// the order of the bit flags in the keyUsage due to confusion over
   774  	// encoding endianness, essentially setting a random keyUsage in
   775  	// certificates that it issued. Another CA created a self-invalidating
   776  	// certificate by adding a certificate policy statement stipulating
   777  	// that the certificate had to be used strictly as specified in the
   778  	// keyUsage, and a keyUsage containing a flag indicating that the RSA
   779  	// encryption key could only be used for Diffie-Hellman key agreement.
   780  
   781  	if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
   782  		return CertificateInvalidError{c, NotAuthorizedToSign, ""}
   783  	}
   784  
   785  	if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
   786  		numIntermediates := len(currentChain) - 1
   787  		if numIntermediates > c.MaxPathLen {
   788  			return CertificateInvalidError{c, TooManyIntermediates, ""}
   789  		}
   790  	}
   791  
   792  	return nil
   793  }
   794  
   795  // formatOID formats an ASN.1 OBJECT IDENTIFER in the common, dotted style.
   796  func formatOID(oid asn1.ObjectIdentifier) string {
   797  	ret := ""
   798  	for i, v := range oid {
   799  		if i > 0 {
   800  			ret += "."
   801  		}
   802  		ret += strconv.Itoa(v)
   803  	}
   804  	return ret
   805  }
   806  
   807  // Verify attempts to verify c by building one or more chains from c to a
   808  // certificate in opts.Roots, using certificates in opts.Intermediates if
   809  // needed. If successful, it returns one or more chains where the first
   810  // element of the chain is c and the last element is from opts.Roots.
   811  //
   812  // If opts.Roots is nil and system roots are unavailable the returned error
   813  // will be of type SystemRootsError.
   814  //
   815  // Name constraints in the intermediates will be applied to all names claimed
   816  // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
   817  // example.com if an intermediate doesn't permit it, even if example.com is not
   818  // the name being validated. Note that DirectoryName constraints are not
   819  // supported.
   820  //
   821  // Extended Key Usage values are enforced down a chain, so an intermediate or
   822  // root that enumerates EKUs prevents a leaf from asserting an EKU not in that
   823  // list.
   824  //
   825  // WARNING: this function doesn't do any revocation checking.
   826  func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
   827  	// Platform-specific verification needs the ASN.1 contents so
   828  	// this makes the behavior consistent across platforms.
   829  	if len(c.Raw) == 0 {
   830  		return nil, errNotParsed
   831  	}
   832  	if opts.Intermediates != nil {
   833  		for _, intermediate := range opts.Intermediates.certs {
   834  			if len(intermediate.Raw) == 0 {
   835  				return nil, errNotParsed
   836  			}
   837  		}
   838  	}
   839  
   840  	// Use Windows's own verification and chain building.
   841  	if opts.Roots == nil && runtime.GOOS == "windows" {
   842  		return c.systemVerify(&opts)
   843  	}
   844  
   845  	if opts.Roots == nil {
   846  		opts.Roots = systemRootsPool()
   847  		if opts.Roots == nil {
   848  			return nil, SystemRootsError{systemRootsErr}
   849  		}
   850  	}
   851  
   852  	err = c.isValid(leafCertificate, nil, &opts)
   853  	if err != nil {
   854  		return
   855  	}
   856  
   857  	if len(opts.DNSName) > 0 {
   858  		err = c.VerifyHostname(opts.DNSName)
   859  		if err != nil {
   860  			return
   861  		}
   862  	}
   863  
   864  	requestedKeyUsages := make([]ExtKeyUsage, len(opts.KeyUsages))
   865  	copy(requestedKeyUsages, opts.KeyUsages)
   866  	if len(requestedKeyUsages) == 0 {
   867  		requestedKeyUsages = append(requestedKeyUsages, ExtKeyUsageServerAuth)
   868  	}
   869  
   870  	// If no key usages are specified, then any are acceptable.
   871  	checkEKU := len(c.ExtKeyUsage) > 0
   872  
   873  	for _, eku := range requestedKeyUsages {
   874  		if eku == ExtKeyUsageAny {
   875  			checkEKU = false
   876  			break
   877  		}
   878  	}
   879  
   880  	if checkEKU {
   881  		foundMatch := false
   882  	NextUsage:
   883  		for _, eku := range requestedKeyUsages {
   884  			for _, leafEKU := range c.ExtKeyUsage {
   885  				if ekuPermittedBy(eku, leafEKU, checkingAgainstLeafCert) {
   886  					foundMatch = true
   887  					break NextUsage
   888  				}
   889  			}
   890  		}
   891  
   892  		if !foundMatch {
   893  			msg := "leaf contains the following, recognized EKUs: "
   894  
   895  			for i, leafEKU := range c.ExtKeyUsage {
   896  				oid, ok := oidFromExtKeyUsage(leafEKU)
   897  				if !ok {
   898  					continue
   899  				}
   900  
   901  				if i > 0 {
   902  					msg += ", "
   903  				}
   904  				msg += formatOID(oid)
   905  			}
   906  
   907  			return nil, CertificateInvalidError{c, IncompatibleUsage, msg}
   908  		}
   909  	}
   910  
   911  	var candidateChains [][]*Certificate
   912  	if opts.Roots.contains(c) {
   913  		candidateChains = append(candidateChains, []*Certificate{c})
   914  	} else {
   915  		if candidateChains, err = c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts); err != nil {
   916  			return nil, err
   917  		}
   918  	}
   919  
   920  	return candidateChains, nil
   921  }
   922  
   923  func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
   924  	n := make([]*Certificate, len(chain)+1)
   925  	copy(n, chain)
   926  	n[len(chain)] = cert
   927  	return n
   928  }
   929  
   930  func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
   931  	possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
   932  nextRoot:
   933  	for _, rootNum := range possibleRoots {
   934  		root := opts.Roots.certs[rootNum]
   935  
   936  		for _, cert := range currentChain {
   937  			if cert.Equal(root) {
   938  				continue nextRoot
   939  			}
   940  		}
   941  
   942  		err = root.isValid(rootCertificate, currentChain, opts)
   943  		if err != nil {
   944  			continue
   945  		}
   946  		chains = append(chains, appendToFreshChain(currentChain, root))
   947  	}
   948  
   949  	possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
   950  nextIntermediate:
   951  	for _, intermediateNum := range possibleIntermediates {
   952  		intermediate := opts.Intermediates.certs[intermediateNum]
   953  		for _, cert := range currentChain {
   954  			if cert.Equal(intermediate) {
   955  				continue nextIntermediate
   956  			}
   957  		}
   958  		err = intermediate.isValid(intermediateCertificate, currentChain, opts)
   959  		if err != nil {
   960  			continue
   961  		}
   962  		var childChains [][]*Certificate
   963  		childChains, ok := cache[intermediateNum]
   964  		if !ok {
   965  			childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
   966  			cache[intermediateNum] = childChains
   967  		}
   968  		chains = append(chains, childChains...)
   969  	}
   970  
   971  	if len(chains) > 0 {
   972  		err = nil
   973  	}
   974  
   975  	if len(chains) == 0 && err == nil {
   976  		hintErr := rootErr
   977  		hintCert := failedRoot
   978  		if hintErr == nil {
   979  			hintErr = intermediateErr
   980  			hintCert = failedIntermediate
   981  		}
   982  		err = UnknownAuthorityError{c, hintErr, hintCert}
   983  	}
   984  
   985  	return
   986  }
   987  
   988  func matchHostnames(pattern, host string) bool {
   989  	host = strings.TrimSuffix(host, ".")
   990  	pattern = strings.TrimSuffix(pattern, ".")
   991  
   992  	if len(pattern) == 0 || len(host) == 0 {
   993  		return false
   994  	}
   995  
   996  	patternParts := strings.Split(pattern, ".")
   997  	hostParts := strings.Split(host, ".")
   998  
   999  	if len(patternParts) != len(hostParts) {
  1000  		return false
  1001  	}
  1002  
  1003  	for i, patternPart := range patternParts {
  1004  		if i == 0 && patternPart == "*" {
  1005  			continue
  1006  		}
  1007  		if patternPart != hostParts[i] {
  1008  			return false
  1009  		}
  1010  	}
  1011  
  1012  	return true
  1013  }
  1014  
  1015  // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
  1016  // an explicitly ASCII function to avoid any sharp corners resulting from
  1017  // performing Unicode operations on DNS labels.
  1018  func toLowerCaseASCII(in string) string {
  1019  	// If the string is already lower-case then there's nothing to do.
  1020  	isAlreadyLowerCase := true
  1021  	for _, c := range in {
  1022  		if c == utf8.RuneError {
  1023  			// If we get a UTF-8 error then there might be
  1024  			// upper-case ASCII bytes in the invalid sequence.
  1025  			isAlreadyLowerCase = false
  1026  			break
  1027  		}
  1028  		if 'A' <= c && c <= 'Z' {
  1029  			isAlreadyLowerCase = false
  1030  			break
  1031  		}
  1032  	}
  1033  
  1034  	if isAlreadyLowerCase {
  1035  		return in
  1036  	}
  1037  
  1038  	out := []byte(in)
  1039  	for i, c := range out {
  1040  		if 'A' <= c && c <= 'Z' {
  1041  			out[i] += 'a' - 'A'
  1042  		}
  1043  	}
  1044  	return string(out)
  1045  }
  1046  
  1047  // VerifyHostname returns nil if c is a valid certificate for the named host.
  1048  // Otherwise it returns an error describing the mismatch.
  1049  func (c *Certificate) VerifyHostname(h string) error {
  1050  	// IP addresses may be written in [ ].
  1051  	candidateIP := h
  1052  	if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
  1053  		candidateIP = h[1 : len(h)-1]
  1054  	}
  1055  	if ip := net.ParseIP(candidateIP); ip != nil {
  1056  		// We only match IP addresses against IP SANs.
  1057  		// https://tools.ietf.org/html/rfc6125#appendix-B.2
  1058  		for _, candidate := range c.IPAddresses {
  1059  			if ip.Equal(candidate) {
  1060  				return nil
  1061  			}
  1062  		}
  1063  		return HostnameError{c, candidateIP}
  1064  	}
  1065  
  1066  	lowered := toLowerCaseASCII(h)
  1067  
  1068  	if c.hasSANExtension() {
  1069  		for _, match := range c.DNSNames {
  1070  			if matchHostnames(toLowerCaseASCII(match), lowered) {
  1071  				return nil
  1072  			}
  1073  		}
  1074  		// If Subject Alt Name is given, we ignore the common name.
  1075  	} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
  1076  		return nil
  1077  	}
  1078  
  1079  	return HostnameError{c, h}
  1080  }