github.com/likebike/go--@v0.0.0-20190911215757-0bd925d16e96/go/src/runtime/mbarrier.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: write barriers.
     6  //
     7  // For the concurrent garbage collector, the Go compiler implements
     8  // updates to pointer-valued fields that may be in heap objects by
     9  // emitting calls to write barriers. This file contains the actual write barrier
    10  // implementation, gcmarkwb_m, and the various wrappers called by the
    11  // compiler to implement pointer assignment, slice assignment,
    12  // typed memmove, and so on.
    13  
    14  package runtime
    15  
    16  import (
    17  	"runtime/internal/sys"
    18  	"unsafe"
    19  )
    20  
    21  // gcmarkwb_m is the mark-phase write barrier, the only barrier we have.
    22  // The rest of this file exists only to make calls to this function.
    23  //
    24  // This is a hybrid barrier that combines a Yuasa-style deletion
    25  // barrier—which shades the object whose reference is being
    26  // overwritten—with Dijkstra insertion barrier—which shades the object
    27  // whose reference is being written. The insertion part of the barrier
    28  // is necessary while the calling goroutine's stack is grey. In
    29  // pseudocode, the barrier is:
    30  //
    31  //     writePointer(slot, ptr):
    32  //         shade(*slot)
    33  //         if current stack is grey:
    34  //             shade(ptr)
    35  //         *slot = ptr
    36  //
    37  // slot is the destination in Go code.
    38  // ptr is the value that goes into the slot in Go code.
    39  //
    40  // Shade indicates that it has seen a white pointer by adding the referent
    41  // to wbuf as well as marking it.
    42  //
    43  // The two shades and the condition work together to prevent a mutator
    44  // from hiding an object from the garbage collector:
    45  //
    46  // 1. shade(*slot) prevents a mutator from hiding an object by moving
    47  // the sole pointer to it from the heap to its stack. If it attempts
    48  // to unlink an object from the heap, this will shade it.
    49  //
    50  // 2. shade(ptr) prevents a mutator from hiding an object by moving
    51  // the sole pointer to it from its stack into a black object in the
    52  // heap. If it attempts to install the pointer into a black object,
    53  // this will shade it.
    54  //
    55  // 3. Once a goroutine's stack is black, the shade(ptr) becomes
    56  // unnecessary. shade(ptr) prevents hiding an object by moving it from
    57  // the stack to the heap, but this requires first having a pointer
    58  // hidden on the stack. Immediately after a stack is scanned, it only
    59  // points to shaded objects, so it's not hiding anything, and the
    60  // shade(*slot) prevents it from hiding any other pointers on its
    61  // stack.
    62  //
    63  // For a detailed description of this barrier and proof of
    64  // correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
    65  //
    66  //
    67  //
    68  // Dealing with memory ordering:
    69  //
    70  // Both the Yuasa and Dijkstra barriers can be made conditional on the
    71  // color of the object containing the slot. We chose not to make these
    72  // conditional because the cost of ensuring that the object holding
    73  // the slot doesn't concurrently change color without the mutator
    74  // noticing seems prohibitive.
    75  //
    76  // Consider the following example where the mutator writes into
    77  // a slot and then loads the slot's mark bit while the GC thread
    78  // writes to the slot's mark bit and then as part of scanning reads
    79  // the slot.
    80  //
    81  // Initially both [slot] and [slotmark] are 0 (nil)
    82  // Mutator thread          GC thread
    83  // st [slot], ptr          st [slotmark], 1
    84  //
    85  // ld r1, [slotmark]       ld r2, [slot]
    86  //
    87  // Without an expensive memory barrier between the st and the ld, the final
    88  // result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
    89  // example of what can happen when loads are allowed to be reordered with older
    90  // stores (avoiding such reorderings lies at the heart of the classic
    91  // Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
    92  // barriers, which will slow down both the mutator and the GC, we always grey
    93  // the ptr object regardless of the slot's color.
    94  //
    95  // Another place where we intentionally omit memory barriers is when
    96  // accessing mheap_.arena_used to check if a pointer points into the
    97  // heap. On relaxed memory machines, it's possible for a mutator to
    98  // extend the size of the heap by updating arena_used, allocate an
    99  // object from this new region, and publish a pointer to that object,
   100  // but for tracing running on another processor to observe the pointer
   101  // but use the old value of arena_used. In this case, tracing will not
   102  // mark the object, even though it's reachable. However, the mutator
   103  // is guaranteed to execute a write barrier when it publishes the
   104  // pointer, so it will take care of marking the object. A general
   105  // consequence of this is that the garbage collector may cache the
   106  // value of mheap_.arena_used. (See issue #9984.)
   107  //
   108  //
   109  // Stack writes:
   110  //
   111  // The compiler omits write barriers for writes to the current frame,
   112  // but if a stack pointer has been passed down the call stack, the
   113  // compiler will generate a write barrier for writes through that
   114  // pointer (because it doesn't know it's not a heap pointer).
   115  //
   116  // One might be tempted to ignore the write barrier if slot points
   117  // into to the stack. Don't do it! Mark termination only re-scans
   118  // frames that have potentially been active since the concurrent scan,
   119  // so it depends on write barriers to track changes to pointers in
   120  // stack frames that have not been active.
   121  //
   122  //
   123  // Global writes:
   124  //
   125  // The Go garbage collector requires write barriers when heap pointers
   126  // are stored in globals. Many garbage collectors ignore writes to
   127  // globals and instead pick up global -> heap pointers during
   128  // termination. This increases pause time, so we instead rely on write
   129  // barriers for writes to globals so that we don't have to rescan
   130  // global during mark termination.
   131  //
   132  //
   133  // Publication ordering:
   134  //
   135  // The write barrier is *pre-publication*, meaning that the write
   136  // barrier happens prior to the *slot = ptr write that may make ptr
   137  // reachable by some goroutine that currently cannot reach it.
   138  //
   139  //
   140  //go:nowritebarrierrec
   141  //go:systemstack
   142  func gcmarkwb_m(slot *uintptr, ptr uintptr) {
   143  	if writeBarrier.needed {
   144  		// Note: This turns bad pointer writes into bad
   145  		// pointer reads, which could be confusing. We avoid
   146  		// reading from obviously bad pointers, which should
   147  		// take care of the vast majority of these. We could
   148  		// patch this up in the signal handler, or use XCHG to
   149  		// combine the read and the write. Checking inheap is
   150  		// insufficient since we need to track changes to
   151  		// roots outside the heap.
   152  		//
   153  		// Note: profbuf.go omits a barrier during signal handler
   154  		// profile logging; that's safe only because this deletion barrier exists.
   155  		// If we remove the deletion barrier, we'll have to work out
   156  		// a new way to handle the profile logging.
   157  		if slot1 := uintptr(unsafe.Pointer(slot)); slot1 >= minPhysPageSize {
   158  			if optr := *slot; optr != 0 {
   159  				shade(optr)
   160  			}
   161  		}
   162  		// TODO: Make this conditional on the caller's stack color.
   163  		if ptr != 0 && inheap(ptr) {
   164  			shade(ptr)
   165  		}
   166  	}
   167  }
   168  
   169  // writebarrierptr_prewrite1 invokes a write barrier for *dst = src
   170  // prior to the write happening.
   171  //
   172  // Write barrier calls must not happen during critical GC and scheduler
   173  // related operations. In particular there are times when the GC assumes
   174  // that the world is stopped but scheduler related code is still being
   175  // executed, dealing with syscalls, dealing with putting gs on runnable
   176  // queues and so forth. This code cannot execute write barriers because
   177  // the GC might drop them on the floor. Stopping the world involves removing
   178  // the p associated with an m. We use the fact that m.p == nil to indicate
   179  // that we are in one these critical section and throw if the write is of
   180  // a pointer to a heap object.
   181  //go:nosplit
   182  func writebarrierptr_prewrite1(dst *uintptr, src uintptr) {
   183  	mp := acquirem()
   184  	if mp.inwb || mp.dying > 0 {
   185  		// We explicitly allow write barriers in startpanic_m,
   186  		// since we're going down anyway. Ignore them here.
   187  		releasem(mp)
   188  		return
   189  	}
   190  	systemstack(func() {
   191  		if mp.p == 0 && memstats.enablegc && !mp.inwb && inheap(src) {
   192  			throw("writebarrierptr_prewrite1 called with mp.p == nil")
   193  		}
   194  		mp.inwb = true
   195  		gcmarkwb_m(dst, src)
   196  	})
   197  	mp.inwb = false
   198  	releasem(mp)
   199  }
   200  
   201  // NOTE: Really dst *unsafe.Pointer, src unsafe.Pointer,
   202  // but if we do that, Go inserts a write barrier on *dst = src.
   203  //go:nosplit
   204  func writebarrierptr(dst *uintptr, src uintptr) {
   205  	if writeBarrier.cgo {
   206  		cgoCheckWriteBarrier(dst, src)
   207  	}
   208  	if !writeBarrier.needed {
   209  		*dst = src
   210  		return
   211  	}
   212  	if src != 0 && src < minPhysPageSize {
   213  		systemstack(func() {
   214  			print("runtime: writebarrierptr *", dst, " = ", hex(src), "\n")
   215  			throw("bad pointer in write barrier")
   216  		})
   217  	}
   218  	writebarrierptr_prewrite1(dst, src)
   219  	*dst = src
   220  }
   221  
   222  // writebarrierptr_prewrite is like writebarrierptr, but the store
   223  // will be performed by the caller after this call. The caller must
   224  // not allow preemption between this call and the write.
   225  //
   226  //go:nosplit
   227  func writebarrierptr_prewrite(dst *uintptr, src uintptr) {
   228  	if writeBarrier.cgo {
   229  		cgoCheckWriteBarrier(dst, src)
   230  	}
   231  	if !writeBarrier.needed {
   232  		return
   233  	}
   234  	if src != 0 && src < minPhysPageSize {
   235  		systemstack(func() { throw("bad pointer in write barrier") })
   236  	}
   237  	writebarrierptr_prewrite1(dst, src)
   238  }
   239  
   240  // typedmemmove copies a value of type t to dst from src.
   241  // Must be nosplit, see #16026.
   242  //
   243  // TODO: Perfect for go:nosplitrec since we can't have a safe point
   244  // anywhere in the bulk barrier or memmove.
   245  //
   246  //go:nosplit
   247  func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   248  	if typ.kind&kindNoPointers == 0 {
   249  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.size)
   250  	}
   251  	// There's a race here: if some other goroutine can write to
   252  	// src, it may change some pointer in src after we've
   253  	// performed the write barrier but before we perform the
   254  	// memory copy. This safe because the write performed by that
   255  	// other goroutine must also be accompanied by a write
   256  	// barrier, so at worst we've unnecessarily greyed the old
   257  	// pointer that was in src.
   258  	memmove(dst, src, typ.size)
   259  	if writeBarrier.cgo {
   260  		cgoCheckMemmove(typ, dst, src, 0, typ.size)
   261  	}
   262  }
   263  
   264  //go:linkname reflect_typedmemmove reflect.typedmemmove
   265  func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   266  	if raceenabled {
   267  		raceWriteObjectPC(typ, dst, getcallerpc(), funcPC(reflect_typedmemmove))
   268  		raceReadObjectPC(typ, src, getcallerpc(), funcPC(reflect_typedmemmove))
   269  	}
   270  	if msanenabled {
   271  		msanwrite(dst, typ.size)
   272  		msanread(src, typ.size)
   273  	}
   274  	typedmemmove(typ, dst, src)
   275  }
   276  
   277  // typedmemmovepartial is like typedmemmove but assumes that
   278  // dst and src point off bytes into the value and only copies size bytes.
   279  //go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
   280  func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
   281  	if writeBarrier.needed && typ.kind&kindNoPointers == 0 && size >= sys.PtrSize {
   282  		// Pointer-align start address for bulk barrier.
   283  		adst, asrc, asize := dst, src, size
   284  		if frag := -off & (sys.PtrSize - 1); frag != 0 {
   285  			adst = add(dst, frag)
   286  			asrc = add(src, frag)
   287  			asize -= frag
   288  		}
   289  		bulkBarrierPreWrite(uintptr(adst), uintptr(asrc), asize&^(sys.PtrSize-1))
   290  	}
   291  
   292  	memmove(dst, src, size)
   293  	if writeBarrier.cgo {
   294  		cgoCheckMemmove(typ, dst, src, off, size)
   295  	}
   296  }
   297  
   298  // reflectcallmove is invoked by reflectcall to copy the return values
   299  // out of the stack and into the heap, invoking the necessary write
   300  // barriers. dst, src, and size describe the return value area to
   301  // copy. typ describes the entire frame (not just the return values).
   302  // typ may be nil, which indicates write barriers are not needed.
   303  //
   304  // It must be nosplit and must only call nosplit functions because the
   305  // stack map of reflectcall is wrong.
   306  //
   307  //go:nosplit
   308  func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr) {
   309  	if writeBarrier.needed && typ != nil && typ.kind&kindNoPointers == 0 && size >= sys.PtrSize {
   310  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), size)
   311  	}
   312  	memmove(dst, src, size)
   313  }
   314  
   315  //go:nosplit
   316  func typedslicecopy(typ *_type, dst, src slice) int {
   317  	// TODO(rsc): If typedslicecopy becomes faster than calling
   318  	// typedmemmove repeatedly, consider using during func growslice.
   319  	n := dst.len
   320  	if n > src.len {
   321  		n = src.len
   322  	}
   323  	if n == 0 {
   324  		return 0
   325  	}
   326  	dstp := dst.array
   327  	srcp := src.array
   328  
   329  	// The compiler emits calls to typedslicecopy before
   330  	// instrumentation runs, so unlike the other copying and
   331  	// assignment operations, it's not instrumented in the calling
   332  	// code and needs its own instrumentation.
   333  	if raceenabled {
   334  		callerpc := getcallerpc()
   335  		pc := funcPC(slicecopy)
   336  		racewriterangepc(dstp, uintptr(n)*typ.size, callerpc, pc)
   337  		racereadrangepc(srcp, uintptr(n)*typ.size, callerpc, pc)
   338  	}
   339  	if msanenabled {
   340  		msanwrite(dstp, uintptr(n)*typ.size)
   341  		msanread(srcp, uintptr(n)*typ.size)
   342  	}
   343  
   344  	if writeBarrier.cgo {
   345  		cgoCheckSliceCopy(typ, dst, src, n)
   346  	}
   347  
   348  	// Note: No point in checking typ.kind&kindNoPointers here:
   349  	// compiler only emits calls to typedslicecopy for types with pointers,
   350  	// and growslice and reflect_typedslicecopy check for pointers
   351  	// before calling typedslicecopy.
   352  	size := uintptr(n) * typ.size
   353  	if writeBarrier.needed {
   354  		bulkBarrierPreWrite(uintptr(dstp), uintptr(srcp), size)
   355  	}
   356  	// See typedmemmove for a discussion of the race between the
   357  	// barrier and memmove.
   358  	memmove(dstp, srcp, size)
   359  	return n
   360  }
   361  
   362  //go:linkname reflect_typedslicecopy reflect.typedslicecopy
   363  func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
   364  	if elemType.kind&kindNoPointers != 0 {
   365  		n := dst.len
   366  		if n > src.len {
   367  			n = src.len
   368  		}
   369  		if n == 0 {
   370  			return 0
   371  		}
   372  
   373  		size := uintptr(n) * elemType.size
   374  		if raceenabled {
   375  			callerpc := getcallerpc()
   376  			pc := funcPC(reflect_typedslicecopy)
   377  			racewriterangepc(dst.array, size, callerpc, pc)
   378  			racereadrangepc(src.array, size, callerpc, pc)
   379  		}
   380  		if msanenabled {
   381  			msanwrite(dst.array, size)
   382  			msanread(src.array, size)
   383  		}
   384  
   385  		memmove(dst.array, src.array, size)
   386  		return n
   387  	}
   388  	return typedslicecopy(elemType, dst, src)
   389  }
   390  
   391  // typedmemclr clears the typed memory at ptr with type typ. The
   392  // memory at ptr must already be initialized (and hence in type-safe
   393  // state). If the memory is being initialized for the first time, see
   394  // memclrNoHeapPointers.
   395  //
   396  // If the caller knows that typ has pointers, it can alternatively
   397  // call memclrHasPointers.
   398  //
   399  //go:nosplit
   400  func typedmemclr(typ *_type, ptr unsafe.Pointer) {
   401  	if typ.kind&kindNoPointers == 0 {
   402  		bulkBarrierPreWrite(uintptr(ptr), 0, typ.size)
   403  	}
   404  	memclrNoHeapPointers(ptr, typ.size)
   405  }
   406  
   407  // memclrHasPointers clears n bytes of typed memory starting at ptr.
   408  // The caller must ensure that the type of the object at ptr has
   409  // pointers, usually by checking typ.kind&kindNoPointers. However, ptr
   410  // does not have to point to the start of the allocation.
   411  //
   412  //go:nosplit
   413  func memclrHasPointers(ptr unsafe.Pointer, n uintptr) {
   414  	bulkBarrierPreWrite(uintptr(ptr), 0, n)
   415  	memclrNoHeapPointers(ptr, n)
   416  }