github.com/likebike/go--@v0.0.0-20190911215757-0bd925d16e96/go/src/runtime/mgcsweep.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Garbage collector: sweeping 6 7 package runtime 8 9 import ( 10 "runtime/internal/atomic" 11 "unsafe" 12 ) 13 14 var sweep sweepdata 15 16 // State of background sweep. 17 type sweepdata struct { 18 lock mutex 19 g *g 20 parked bool 21 started bool 22 23 nbgsweep uint32 24 npausesweep uint32 25 } 26 27 // finishsweep_m ensures that all spans are swept. 28 // 29 // The world must be stopped. This ensures there are no sweeps in 30 // progress. 31 // 32 //go:nowritebarrier 33 func finishsweep_m() { 34 // Sweeping must be complete before marking commences, so 35 // sweep any unswept spans. If this is a concurrent GC, there 36 // shouldn't be any spans left to sweep, so this should finish 37 // instantly. If GC was forced before the concurrent sweep 38 // finished, there may be spans to sweep. 39 for sweepone() != ^uintptr(0) { 40 sweep.npausesweep++ 41 } 42 43 nextMarkBitArenaEpoch() 44 } 45 46 func bgsweep(c chan int) { 47 sweep.g = getg() 48 49 lock(&sweep.lock) 50 sweep.parked = true 51 c <- 1 52 goparkunlock(&sweep.lock, "GC sweep wait", traceEvGoBlock, 1) 53 54 for { 55 for gosweepone() != ^uintptr(0) { 56 sweep.nbgsweep++ 57 Gosched() 58 } 59 for freeSomeWbufs(true) { 60 Gosched() 61 } 62 lock(&sweep.lock) 63 if !gosweepdone() { 64 // This can happen if a GC runs between 65 // gosweepone returning ^0 above 66 // and the lock being acquired. 67 unlock(&sweep.lock) 68 continue 69 } 70 sweep.parked = true 71 goparkunlock(&sweep.lock, "GC sweep wait", traceEvGoBlock, 1) 72 } 73 } 74 75 // sweeps one span 76 // returns number of pages returned to heap, or ^uintptr(0) if there is nothing to sweep 77 //go:nowritebarrier 78 func sweepone() uintptr { 79 _g_ := getg() 80 sweepRatio := mheap_.sweepPagesPerByte // For debugging 81 82 // increment locks to ensure that the goroutine is not preempted 83 // in the middle of sweep thus leaving the span in an inconsistent state for next GC 84 _g_.m.locks++ 85 if atomic.Load(&mheap_.sweepdone) != 0 { 86 _g_.m.locks-- 87 return ^uintptr(0) 88 } 89 atomic.Xadd(&mheap_.sweepers, +1) 90 91 npages := ^uintptr(0) 92 sg := mheap_.sweepgen 93 for { 94 s := mheap_.sweepSpans[1-sg/2%2].pop() 95 if s == nil { 96 atomic.Store(&mheap_.sweepdone, 1) 97 break 98 } 99 if s.state != mSpanInUse { 100 // This can happen if direct sweeping already 101 // swept this span, but in that case the sweep 102 // generation should always be up-to-date. 103 if s.sweepgen != sg { 104 print("runtime: bad span s.state=", s.state, " s.sweepgen=", s.sweepgen, " sweepgen=", sg, "\n") 105 throw("non in-use span in unswept list") 106 } 107 continue 108 } 109 if s.sweepgen != sg-2 || !atomic.Cas(&s.sweepgen, sg-2, sg-1) { 110 continue 111 } 112 npages = s.npages 113 if !s.sweep(false) { 114 // Span is still in-use, so this returned no 115 // pages to the heap and the span needs to 116 // move to the swept in-use list. 117 npages = 0 118 } 119 break 120 } 121 122 // Decrement the number of active sweepers and if this is the 123 // last one print trace information. 124 if atomic.Xadd(&mheap_.sweepers, -1) == 0 && atomic.Load(&mheap_.sweepdone) != 0 { 125 if debug.gcpacertrace > 0 { 126 print("pacer: sweep done at heap size ", memstats.heap_live>>20, "MB; allocated ", (memstats.heap_live-mheap_.sweepHeapLiveBasis)>>20, "MB during sweep; swept ", mheap_.pagesSwept, " pages at ", sweepRatio, " pages/byte\n") 127 } 128 } 129 _g_.m.locks-- 130 return npages 131 } 132 133 //go:nowritebarrier 134 func gosweepone() uintptr { 135 var ret uintptr 136 systemstack(func() { 137 ret = sweepone() 138 }) 139 return ret 140 } 141 142 //go:nowritebarrier 143 func gosweepdone() bool { 144 return mheap_.sweepdone != 0 145 } 146 147 // Returns only when span s has been swept. 148 //go:nowritebarrier 149 func (s *mspan) ensureSwept() { 150 // Caller must disable preemption. 151 // Otherwise when this function returns the span can become unswept again 152 // (if GC is triggered on another goroutine). 153 _g_ := getg() 154 if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 { 155 throw("MSpan_EnsureSwept: m is not locked") 156 } 157 158 sg := mheap_.sweepgen 159 if atomic.Load(&s.sweepgen) == sg { 160 return 161 } 162 // The caller must be sure that the span is a MSpanInUse span. 163 if atomic.Cas(&s.sweepgen, sg-2, sg-1) { 164 s.sweep(false) 165 return 166 } 167 // unfortunate condition, and we don't have efficient means to wait 168 for atomic.Load(&s.sweepgen) != sg { 169 osyield() 170 } 171 } 172 173 // Sweep frees or collects finalizers for blocks not marked in the mark phase. 174 // It clears the mark bits in preparation for the next GC round. 175 // Returns true if the span was returned to heap. 176 // If preserve=true, don't return it to heap nor relink in MCentral lists; 177 // caller takes care of it. 178 //TODO go:nowritebarrier 179 func (s *mspan) sweep(preserve bool) bool { 180 // It's critical that we enter this function with preemption disabled, 181 // GC must not start while we are in the middle of this function. 182 _g_ := getg() 183 if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 { 184 throw("MSpan_Sweep: m is not locked") 185 } 186 sweepgen := mheap_.sweepgen 187 if s.state != mSpanInUse || s.sweepgen != sweepgen-1 { 188 print("MSpan_Sweep: state=", s.state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n") 189 throw("MSpan_Sweep: bad span state") 190 } 191 192 if trace.enabled { 193 traceGCSweepSpan(s.npages * _PageSize) 194 } 195 196 atomic.Xadd64(&mheap_.pagesSwept, int64(s.npages)) 197 198 spc := s.spanclass 199 size := s.elemsize 200 res := false 201 202 c := _g_.m.mcache 203 freeToHeap := false 204 205 // The allocBits indicate which unmarked objects don't need to be 206 // processed since they were free at the end of the last GC cycle 207 // and were not allocated since then. 208 // If the allocBits index is >= s.freeindex and the bit 209 // is not marked then the object remains unallocated 210 // since the last GC. 211 // This situation is analogous to being on a freelist. 212 213 // Unlink & free special records for any objects we're about to free. 214 // Two complications here: 215 // 1. An object can have both finalizer and profile special records. 216 // In such case we need to queue finalizer for execution, 217 // mark the object as live and preserve the profile special. 218 // 2. A tiny object can have several finalizers setup for different offsets. 219 // If such object is not marked, we need to queue all finalizers at once. 220 // Both 1 and 2 are possible at the same time. 221 specialp := &s.specials 222 special := *specialp 223 for special != nil { 224 // A finalizer can be set for an inner byte of an object, find object beginning. 225 objIndex := uintptr(special.offset) / size 226 p := s.base() + objIndex*size 227 mbits := s.markBitsForIndex(objIndex) 228 if !mbits.isMarked() { 229 // This object is not marked and has at least one special record. 230 // Pass 1: see if it has at least one finalizer. 231 hasFin := false 232 endOffset := p - s.base() + size 233 for tmp := special; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next { 234 if tmp.kind == _KindSpecialFinalizer { 235 // Stop freeing of object if it has a finalizer. 236 mbits.setMarkedNonAtomic() 237 hasFin = true 238 break 239 } 240 } 241 // Pass 2: queue all finalizers _or_ handle profile record. 242 for special != nil && uintptr(special.offset) < endOffset { 243 // Find the exact byte for which the special was setup 244 // (as opposed to object beginning). 245 p := s.base() + uintptr(special.offset) 246 if special.kind == _KindSpecialFinalizer || !hasFin { 247 // Splice out special record. 248 y := special 249 special = special.next 250 *specialp = special 251 freespecial(y, unsafe.Pointer(p), size) 252 } else { 253 // This is profile record, but the object has finalizers (so kept alive). 254 // Keep special record. 255 specialp = &special.next 256 special = *specialp 257 } 258 } 259 } else { 260 // object is still live: keep special record 261 specialp = &special.next 262 special = *specialp 263 } 264 } 265 266 if debug.allocfreetrace != 0 || raceenabled || msanenabled { 267 // Find all newly freed objects. This doesn't have to 268 // efficient; allocfreetrace has massive overhead. 269 mbits := s.markBitsForBase() 270 abits := s.allocBitsForIndex(0) 271 for i := uintptr(0); i < s.nelems; i++ { 272 if !mbits.isMarked() && (abits.index < s.freeindex || abits.isMarked()) { 273 x := s.base() + i*s.elemsize 274 if debug.allocfreetrace != 0 { 275 tracefree(unsafe.Pointer(x), size) 276 } 277 if raceenabled { 278 racefree(unsafe.Pointer(x), size) 279 } 280 if msanenabled { 281 msanfree(unsafe.Pointer(x), size) 282 } 283 } 284 mbits.advance() 285 abits.advance() 286 } 287 } 288 289 // Count the number of free objects in this span. 290 nalloc := uint16(s.countAlloc()) 291 if spc.sizeclass() == 0 && nalloc == 0 { 292 s.needzero = 1 293 freeToHeap = true 294 } 295 nfreed := s.allocCount - nalloc 296 if nalloc > s.allocCount { 297 print("runtime: nelems=", s.nelems, " nalloc=", nalloc, " previous allocCount=", s.allocCount, " nfreed=", nfreed, "\n") 298 throw("sweep increased allocation count") 299 } 300 301 s.allocCount = nalloc 302 wasempty := s.nextFreeIndex() == s.nelems 303 s.freeindex = 0 // reset allocation index to start of span. 304 if trace.enabled { 305 getg().m.p.ptr().traceReclaimed += uintptr(nfreed) * s.elemsize 306 } 307 308 // gcmarkBits becomes the allocBits. 309 // get a fresh cleared gcmarkBits in preparation for next GC 310 s.allocBits = s.gcmarkBits 311 s.gcmarkBits = newMarkBits(s.nelems) 312 313 // Initialize alloc bits cache. 314 s.refillAllocCache(0) 315 316 // We need to set s.sweepgen = h.sweepgen only when all blocks are swept, 317 // because of the potential for a concurrent free/SetFinalizer. 318 // But we need to set it before we make the span available for allocation 319 // (return it to heap or mcentral), because allocation code assumes that a 320 // span is already swept if available for allocation. 321 if freeToHeap || nfreed == 0 { 322 // The span must be in our exclusive ownership until we update sweepgen, 323 // check for potential races. 324 if s.state != mSpanInUse || s.sweepgen != sweepgen-1 { 325 print("MSpan_Sweep: state=", s.state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n") 326 throw("MSpan_Sweep: bad span state after sweep") 327 } 328 // Serialization point. 329 // At this point the mark bits are cleared and allocation ready 330 // to go so release the span. 331 atomic.Store(&s.sweepgen, sweepgen) 332 } 333 334 if nfreed > 0 && spc.sizeclass() != 0 { 335 c.local_nsmallfree[spc.sizeclass()] += uintptr(nfreed) 336 res = mheap_.central[spc].mcentral.freeSpan(s, preserve, wasempty) 337 // MCentral_FreeSpan updates sweepgen 338 } else if freeToHeap { 339 // Free large span to heap 340 341 // NOTE(rsc,dvyukov): The original implementation of efence 342 // in CL 22060046 used SysFree instead of SysFault, so that 343 // the operating system would eventually give the memory 344 // back to us again, so that an efence program could run 345 // longer without running out of memory. Unfortunately, 346 // calling SysFree here without any kind of adjustment of the 347 // heap data structures means that when the memory does 348 // come back to us, we have the wrong metadata for it, either in 349 // the MSpan structures or in the garbage collection bitmap. 350 // Using SysFault here means that the program will run out of 351 // memory fairly quickly in efence mode, but at least it won't 352 // have mysterious crashes due to confused memory reuse. 353 // It should be possible to switch back to SysFree if we also 354 // implement and then call some kind of MHeap_DeleteSpan. 355 if debug.efence > 0 { 356 s.limit = 0 // prevent mlookup from finding this span 357 sysFault(unsafe.Pointer(s.base()), size) 358 } else { 359 mheap_.freeSpan(s, 1) 360 } 361 c.local_nlargefree++ 362 c.local_largefree += size 363 res = true 364 } 365 if !res { 366 // The span has been swept and is still in-use, so put 367 // it on the swept in-use list. 368 mheap_.sweepSpans[sweepgen/2%2].push(s) 369 } 370 return res 371 } 372 373 // deductSweepCredit deducts sweep credit for allocating a span of 374 // size spanBytes. This must be performed *before* the span is 375 // allocated to ensure the system has enough credit. If necessary, it 376 // performs sweeping to prevent going in to debt. If the caller will 377 // also sweep pages (e.g., for a large allocation), it can pass a 378 // non-zero callerSweepPages to leave that many pages unswept. 379 // 380 // deductSweepCredit makes a worst-case assumption that all spanBytes 381 // bytes of the ultimately allocated span will be available for object 382 // allocation. 383 // 384 // deductSweepCredit is the core of the "proportional sweep" system. 385 // It uses statistics gathered by the garbage collector to perform 386 // enough sweeping so that all pages are swept during the concurrent 387 // sweep phase between GC cycles. 388 // 389 // mheap_ must NOT be locked. 390 func deductSweepCredit(spanBytes uintptr, callerSweepPages uintptr) { 391 if mheap_.sweepPagesPerByte == 0 { 392 // Proportional sweep is done or disabled. 393 return 394 } 395 396 if trace.enabled { 397 traceGCSweepStart() 398 } 399 400 retry: 401 sweptBasis := atomic.Load64(&mheap_.pagesSweptBasis) 402 403 // Fix debt if necessary. 404 newHeapLive := uintptr(atomic.Load64(&memstats.heap_live)-mheap_.sweepHeapLiveBasis) + spanBytes 405 pagesTarget := int64(mheap_.sweepPagesPerByte*float64(newHeapLive)) - int64(callerSweepPages) 406 for pagesTarget > int64(atomic.Load64(&mheap_.pagesSwept)-sweptBasis) { 407 if gosweepone() == ^uintptr(0) { 408 mheap_.sweepPagesPerByte = 0 409 break 410 } 411 if atomic.Load64(&mheap_.pagesSweptBasis) != sweptBasis { 412 // Sweep pacing changed. Recompute debt. 413 goto retry 414 } 415 } 416 417 if trace.enabled { 418 traceGCSweepDone() 419 } 420 }