github.com/likebike/go--@v0.0.0-20190911215757-0bd925d16e96/go/src/runtime/signal_unix.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // +build darwin dragonfly freebsd linux netbsd openbsd solaris
     6  
     7  package runtime
     8  
     9  import (
    10  	"runtime/internal/atomic"
    11  	"unsafe"
    12  )
    13  
    14  // sigTabT is the type of an entry in the global sigtable array.
    15  // sigtable is inherently system dependent, and appears in OS-specific files,
    16  // but sigTabT is the same for all Unixy systems.
    17  // The sigtable array is indexed by a system signal number to get the flags
    18  // and printable name of each signal.
    19  type sigTabT struct {
    20  	flags int32
    21  	name  string
    22  }
    23  
    24  //go:linkname os_sigpipe os.sigpipe
    25  func os_sigpipe() {
    26  	systemstack(sigpipe)
    27  }
    28  
    29  func signame(sig uint32) string {
    30  	if sig >= uint32(len(sigtable)) {
    31  		return ""
    32  	}
    33  	return sigtable[sig].name
    34  }
    35  
    36  const (
    37  	_SIG_DFL uintptr = 0
    38  	_SIG_IGN uintptr = 1
    39  )
    40  
    41  // Stores the signal handlers registered before Go installed its own.
    42  // These signal handlers will be invoked in cases where Go doesn't want to
    43  // handle a particular signal (e.g., signal occurred on a non-Go thread).
    44  // See sigfwdgo for more information on when the signals are forwarded.
    45  //
    46  // This is read by the signal handler; accesses should use
    47  // atomic.Loaduintptr and atomic.Storeuintptr.
    48  var fwdSig [_NSIG]uintptr
    49  
    50  // handlingSig is indexed by signal number and is non-zero if we are
    51  // currently handling the signal. Or, to put it another way, whether
    52  // the signal handler is currently set to the Go signal handler or not.
    53  // This is uint32 rather than bool so that we can use atomic instructions.
    54  var handlingSig [_NSIG]uint32
    55  
    56  // channels for synchronizing signal mask updates with the signal mask
    57  // thread
    58  var (
    59  	disableSigChan  chan uint32
    60  	enableSigChan   chan uint32
    61  	maskUpdatedChan chan struct{}
    62  )
    63  
    64  func init() {
    65  	// _NSIG is the number of signals on this operating system.
    66  	// sigtable should describe what to do for all the possible signals.
    67  	if len(sigtable) != _NSIG {
    68  		print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
    69  		throw("bad sigtable len")
    70  	}
    71  }
    72  
    73  var signalsOK bool
    74  
    75  // Initialize signals.
    76  // Called by libpreinit so runtime may not be initialized.
    77  //go:nosplit
    78  //go:nowritebarrierrec
    79  func initsig(preinit bool) {
    80  	if !preinit {
    81  		// It's now OK for signal handlers to run.
    82  		signalsOK = true
    83  	}
    84  
    85  	// For c-archive/c-shared this is called by libpreinit with
    86  	// preinit == true.
    87  	if (isarchive || islibrary) && !preinit {
    88  		return
    89  	}
    90  
    91  	for i := uint32(0); i < _NSIG; i++ {
    92  		t := &sigtable[i]
    93  		if t.flags == 0 || t.flags&_SigDefault != 0 {
    94  			continue
    95  		}
    96  
    97  		// We don't need to use atomic operations here because
    98  		// there shouldn't be any other goroutines running yet.
    99  		fwdSig[i] = getsig(i)
   100  
   101  		if !sigInstallGoHandler(i) {
   102  			// Even if we are not installing a signal handler,
   103  			// set SA_ONSTACK if necessary.
   104  			if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
   105  				setsigstack(i)
   106  			}
   107  			continue
   108  		}
   109  
   110  		handlingSig[i] = 1
   111  		setsig(i, funcPC(sighandler))
   112  	}
   113  }
   114  
   115  //go:nosplit
   116  //go:nowritebarrierrec
   117  func sigInstallGoHandler(sig uint32) bool {
   118  	// For some signals, we respect an inherited SIG_IGN handler
   119  	// rather than insist on installing our own default handler.
   120  	// Even these signals can be fetched using the os/signal package.
   121  	switch sig {
   122  	case _SIGHUP, _SIGINT:
   123  		if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN {
   124  			return false
   125  		}
   126  	}
   127  
   128  	t := &sigtable[sig]
   129  	if t.flags&_SigSetStack != 0 {
   130  		return false
   131  	}
   132  
   133  	// When built using c-archive or c-shared, only install signal
   134  	// handlers for synchronous signals and SIGPIPE.
   135  	if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE {
   136  		return false
   137  	}
   138  
   139  	return true
   140  }
   141  
   142  // sigenable enables the Go signal handler to catch the signal sig.
   143  // It is only called while holding the os/signal.handlers lock,
   144  // via os/signal.enableSignal and signal_enable.
   145  func sigenable(sig uint32) {
   146  	if sig >= uint32(len(sigtable)) {
   147  		return
   148  	}
   149  
   150  	// SIGPROF is handled specially for profiling.
   151  	if sig == _SIGPROF {
   152  		return
   153  	}
   154  
   155  	t := &sigtable[sig]
   156  	if t.flags&_SigNotify != 0 {
   157  		ensureSigM()
   158  		enableSigChan <- sig
   159  		<-maskUpdatedChan
   160  		if atomic.Cas(&handlingSig[sig], 0, 1) {
   161  			atomic.Storeuintptr(&fwdSig[sig], getsig(sig))
   162  			setsig(sig, funcPC(sighandler))
   163  		}
   164  	}
   165  }
   166  
   167  // sigdisable disables the Go signal handler for the signal sig.
   168  // It is only called while holding the os/signal.handlers lock,
   169  // via os/signal.disableSignal and signal_disable.
   170  func sigdisable(sig uint32) {
   171  	if sig >= uint32(len(sigtable)) {
   172  		return
   173  	}
   174  
   175  	// SIGPROF is handled specially for profiling.
   176  	if sig == _SIGPROF {
   177  		return
   178  	}
   179  
   180  	t := &sigtable[sig]
   181  	if t.flags&_SigNotify != 0 {
   182  		ensureSigM()
   183  		disableSigChan <- sig
   184  		<-maskUpdatedChan
   185  
   186  		// If initsig does not install a signal handler for a
   187  		// signal, then to go back to the state before Notify
   188  		// we should remove the one we installed.
   189  		if !sigInstallGoHandler(sig) {
   190  			atomic.Store(&handlingSig[sig], 0)
   191  			setsig(sig, atomic.Loaduintptr(&fwdSig[sig]))
   192  		}
   193  	}
   194  }
   195  
   196  // sigignore ignores the signal sig.
   197  // It is only called while holding the os/signal.handlers lock,
   198  // via os/signal.ignoreSignal and signal_ignore.
   199  func sigignore(sig uint32) {
   200  	if sig >= uint32(len(sigtable)) {
   201  		return
   202  	}
   203  
   204  	// SIGPROF is handled specially for profiling.
   205  	if sig == _SIGPROF {
   206  		return
   207  	}
   208  
   209  	t := &sigtable[sig]
   210  	if t.flags&_SigNotify != 0 {
   211  		atomic.Store(&handlingSig[sig], 0)
   212  		setsig(sig, _SIG_IGN)
   213  	}
   214  }
   215  
   216  // clearSignalHandlers clears all signal handlers that are not ignored
   217  // back to the default. This is called by the child after a fork, so that
   218  // we can enable the signal mask for the exec without worrying about
   219  // running a signal handler in the child.
   220  //go:nosplit
   221  //go:nowritebarrierrec
   222  func clearSignalHandlers() {
   223  	for i := uint32(0); i < _NSIG; i++ {
   224  		if atomic.Load(&handlingSig[i]) != 0 {
   225  			setsig(i, _SIG_DFL)
   226  		}
   227  	}
   228  }
   229  
   230  // setProcessCPUProfiler is called when the profiling timer changes.
   231  // It is called with prof.lock held. hz is the new timer, and is 0 if
   232  // profiling is being disabled. Enable or disable the signal as
   233  // required for -buildmode=c-archive.
   234  func setProcessCPUProfiler(hz int32) {
   235  	if hz != 0 {
   236  		// Enable the Go signal handler if not enabled.
   237  		if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) {
   238  			atomic.Storeuintptr(&fwdSig[_SIGPROF], getsig(_SIGPROF))
   239  			setsig(_SIGPROF, funcPC(sighandler))
   240  		}
   241  	} else {
   242  		// If the Go signal handler should be disabled by default,
   243  		// disable it if it is enabled.
   244  		if !sigInstallGoHandler(_SIGPROF) {
   245  			if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) {
   246  				setsig(_SIGPROF, atomic.Loaduintptr(&fwdSig[_SIGPROF]))
   247  			}
   248  		}
   249  	}
   250  }
   251  
   252  // setThreadCPUProfiler makes any thread-specific changes required to
   253  // implement profiling at a rate of hz.
   254  func setThreadCPUProfiler(hz int32) {
   255  	var it itimerval
   256  	if hz == 0 {
   257  		setitimer(_ITIMER_PROF, &it, nil)
   258  	} else {
   259  		it.it_interval.tv_sec = 0
   260  		it.it_interval.set_usec(1000000 / hz)
   261  		it.it_value = it.it_interval
   262  		setitimer(_ITIMER_PROF, &it, nil)
   263  	}
   264  	_g_ := getg()
   265  	_g_.m.profilehz = hz
   266  }
   267  
   268  func sigpipe() {
   269  	if sigsend(_SIGPIPE) {
   270  		return
   271  	}
   272  	dieFromSignal(_SIGPIPE)
   273  }
   274  
   275  // sigtrampgo is called from the signal handler function, sigtramp,
   276  // written in assembly code.
   277  // This is called by the signal handler, and the world may be stopped.
   278  //
   279  // It must be nosplit because getg() is still the G that was running
   280  // (if any) when the signal was delivered, but it's (usually) called
   281  // on the gsignal stack. Until this switches the G to gsignal, the
   282  // stack bounds check won't work.
   283  //
   284  //go:nosplit
   285  //go:nowritebarrierrec
   286  func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
   287  	if sigfwdgo(sig, info, ctx) {
   288  		return
   289  	}
   290  	g := getg()
   291  	if g == nil {
   292  		c := &sigctxt{info, ctx}
   293  		if sig == _SIGPROF {
   294  			sigprofNonGoPC(c.sigpc())
   295  			return
   296  		}
   297  		badsignal(uintptr(sig), c)
   298  		return
   299  	}
   300  
   301  	// If some non-Go code called sigaltstack, adjust.
   302  	setStack := false
   303  	var gsignalStack gsignalStack
   304  	sp := uintptr(unsafe.Pointer(&sig))
   305  	if sp < g.m.gsignal.stack.lo || sp >= g.m.gsignal.stack.hi {
   306  		if sp >= g.m.g0.stack.lo && sp < g.m.g0.stack.hi {
   307  			// The signal was delivered on the g0 stack.
   308  			// This can happen when linked with C code
   309  			// using the thread sanitizer, which collects
   310  			// signals then delivers them itself by calling
   311  			// the signal handler directly when C code,
   312  			// including C code called via cgo, calls a
   313  			// TSAN-intercepted function such as malloc.
   314  			st := stackt{ss_size: g.m.g0.stack.hi - g.m.g0.stack.lo}
   315  			setSignalstackSP(&st, g.m.g0.stack.lo)
   316  			setGsignalStack(&st, &gsignalStack)
   317  			g.m.gsignal.stktopsp = getcallersp(unsafe.Pointer(&sig))
   318  			setStack = true
   319  		} else {
   320  			var st stackt
   321  			sigaltstack(nil, &st)
   322  			if st.ss_flags&_SS_DISABLE != 0 {
   323  				setg(nil)
   324  				needm(0)
   325  				noSignalStack(sig)
   326  				dropm()
   327  			}
   328  			stsp := uintptr(unsafe.Pointer(st.ss_sp))
   329  			if sp < stsp || sp >= stsp+st.ss_size {
   330  				setg(nil)
   331  				needm(0)
   332  				sigNotOnStack(sig)
   333  				dropm()
   334  			}
   335  			setGsignalStack(&st, &gsignalStack)
   336  			g.m.gsignal.stktopsp = getcallersp(unsafe.Pointer(&sig))
   337  			setStack = true
   338  		}
   339  	}
   340  
   341  	setg(g.m.gsignal)
   342  
   343  	if g.stackguard0 == stackFork {
   344  		signalDuringFork(sig)
   345  	}
   346  
   347  	c := &sigctxt{info, ctx}
   348  	c.fixsigcode(sig)
   349  	sighandler(sig, info, ctx, g)
   350  	setg(g)
   351  	if setStack {
   352  		restoreGsignalStack(&gsignalStack)
   353  	}
   354  }
   355  
   356  // sigpanic turns a synchronous signal into a run-time panic.
   357  // If the signal handler sees a synchronous panic, it arranges the
   358  // stack to look like the function where the signal occurred called
   359  // sigpanic, sets the signal's PC value to sigpanic, and returns from
   360  // the signal handler. The effect is that the program will act as
   361  // though the function that got the signal simply called sigpanic
   362  // instead.
   363  //
   364  // This must NOT be nosplit because the linker doesn't know where
   365  // sigpanic calls can be injected.
   366  //
   367  // The signal handler must not inject a call to sigpanic if
   368  // getg().throwsplit, since sigpanic may need to grow the stack.
   369  func sigpanic() {
   370  	g := getg()
   371  	if !canpanic(g) {
   372  		throw("unexpected signal during runtime execution")
   373  	}
   374  
   375  	switch g.sig {
   376  	case _SIGBUS:
   377  		if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 {
   378  			panicmem()
   379  		}
   380  		// Support runtime/debug.SetPanicOnFault.
   381  		if g.paniconfault {
   382  			panicmem()
   383  		}
   384  		print("unexpected fault address ", hex(g.sigcode1), "\n")
   385  		throw("fault")
   386  	case _SIGSEGV:
   387  		if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 {
   388  			panicmem()
   389  		}
   390  		// Support runtime/debug.SetPanicOnFault.
   391  		if g.paniconfault {
   392  			panicmem()
   393  		}
   394  		print("unexpected fault address ", hex(g.sigcode1), "\n")
   395  		throw("fault")
   396  	case _SIGFPE:
   397  		switch g.sigcode0 {
   398  		case _FPE_INTDIV:
   399  			panicdivide()
   400  		case _FPE_INTOVF:
   401  			panicoverflow()
   402  		}
   403  		panicfloat()
   404  	}
   405  
   406  	if g.sig >= uint32(len(sigtable)) {
   407  		// can't happen: we looked up g.sig in sigtable to decide to call sigpanic
   408  		throw("unexpected signal value")
   409  	}
   410  	panic(errorString(sigtable[g.sig].name))
   411  }
   412  
   413  // dieFromSignal kills the program with a signal.
   414  // This provides the expected exit status for the shell.
   415  // This is only called with fatal signals expected to kill the process.
   416  //go:nosplit
   417  //go:nowritebarrierrec
   418  func dieFromSignal(sig uint32) {
   419  	unblocksig(sig)
   420  	// Mark the signal as unhandled to ensure it is forwarded.
   421  	atomic.Store(&handlingSig[sig], 0)
   422  	raise(sig)
   423  
   424  	// That should have killed us. On some systems, though, raise
   425  	// sends the signal to the whole process rather than to just
   426  	// the current thread, which means that the signal may not yet
   427  	// have been delivered. Give other threads a chance to run and
   428  	// pick up the signal.
   429  	osyield()
   430  	osyield()
   431  	osyield()
   432  
   433  	// If that didn't work, try _SIG_DFL.
   434  	setsig(sig, _SIG_DFL)
   435  	raise(sig)
   436  
   437  	osyield()
   438  	osyield()
   439  	osyield()
   440  
   441  	// On Darwin we may still fail to die, because raise sends the
   442  	// signal to the whole process rather than just the current thread,
   443  	// and osyield just sleeps briefly rather than letting all other
   444  	// threads run. See issue 20315. Sleep longer.
   445  	if GOOS == "darwin" {
   446  		usleep(100)
   447  	}
   448  
   449  	// If we are still somehow running, just exit with the wrong status.
   450  	exit(2)
   451  }
   452  
   453  // raisebadsignal is called when a signal is received on a non-Go
   454  // thread, and the Go program does not want to handle it (that is, the
   455  // program has not called os/signal.Notify for the signal).
   456  func raisebadsignal(sig uint32, c *sigctxt) {
   457  	if sig == _SIGPROF {
   458  		// Ignore profiling signals that arrive on non-Go threads.
   459  		return
   460  	}
   461  
   462  	var handler uintptr
   463  	if sig >= _NSIG {
   464  		handler = _SIG_DFL
   465  	} else {
   466  		handler = atomic.Loaduintptr(&fwdSig[sig])
   467  	}
   468  
   469  	// Reset the signal handler and raise the signal.
   470  	// We are currently running inside a signal handler, so the
   471  	// signal is blocked. We need to unblock it before raising the
   472  	// signal, or the signal we raise will be ignored until we return
   473  	// from the signal handler. We know that the signal was unblocked
   474  	// before entering the handler, or else we would not have received
   475  	// it. That means that we don't have to worry about blocking it
   476  	// again.
   477  	unblocksig(sig)
   478  	setsig(sig, handler)
   479  
   480  	// If we're linked into a non-Go program we want to try to
   481  	// avoid modifying the original context in which the signal
   482  	// was raised. If the handler is the default, we know it
   483  	// is non-recoverable, so we don't have to worry about
   484  	// re-installing sighandler. At this point we can just
   485  	// return and the signal will be re-raised and caught by
   486  	// the default handler with the correct context.
   487  	if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
   488  		return
   489  	}
   490  
   491  	raise(sig)
   492  
   493  	// Give the signal a chance to be delivered.
   494  	// In almost all real cases the program is about to crash,
   495  	// so sleeping here is not a waste of time.
   496  	usleep(1000)
   497  
   498  	// If the signal didn't cause the program to exit, restore the
   499  	// Go signal handler and carry on.
   500  	//
   501  	// We may receive another instance of the signal before we
   502  	// restore the Go handler, but that is not so bad: we know
   503  	// that the Go program has been ignoring the signal.
   504  	setsig(sig, funcPC(sighandler))
   505  }
   506  
   507  func crash() {
   508  	if GOOS == "darwin" {
   509  		// OS X core dumps are linear dumps of the mapped memory,
   510  		// from the first virtual byte to the last, with zeros in the gaps.
   511  		// Because of the way we arrange the address space on 64-bit systems,
   512  		// this means the OS X core file will be >128 GB and even on a zippy
   513  		// workstation can take OS X well over an hour to write (uninterruptible).
   514  		// Save users from making that mistake.
   515  		if GOARCH == "amd64" {
   516  			return
   517  		}
   518  	}
   519  
   520  	dieFromSignal(_SIGABRT)
   521  }
   522  
   523  // ensureSigM starts one global, sleeping thread to make sure at least one thread
   524  // is available to catch signals enabled for os/signal.
   525  func ensureSigM() {
   526  	if maskUpdatedChan != nil {
   527  		return
   528  	}
   529  	maskUpdatedChan = make(chan struct{})
   530  	disableSigChan = make(chan uint32)
   531  	enableSigChan = make(chan uint32)
   532  	go func() {
   533  		// Signal masks are per-thread, so make sure this goroutine stays on one
   534  		// thread.
   535  		LockOSThread()
   536  		defer UnlockOSThread()
   537  		// The sigBlocked mask contains the signals not active for os/signal,
   538  		// initially all signals except the essential. When signal.Notify()/Stop is called,
   539  		// sigenable/sigdisable in turn notify this thread to update its signal
   540  		// mask accordingly.
   541  		sigBlocked := sigset_all
   542  		for i := range sigtable {
   543  			if !blockableSig(uint32(i)) {
   544  				sigdelset(&sigBlocked, i)
   545  			}
   546  		}
   547  		sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
   548  		for {
   549  			select {
   550  			case sig := <-enableSigChan:
   551  				if sig > 0 {
   552  					sigdelset(&sigBlocked, int(sig))
   553  				}
   554  			case sig := <-disableSigChan:
   555  				if sig > 0 && blockableSig(sig) {
   556  					sigaddset(&sigBlocked, int(sig))
   557  				}
   558  			}
   559  			sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
   560  			maskUpdatedChan <- struct{}{}
   561  		}
   562  	}()
   563  }
   564  
   565  // This is called when we receive a signal when there is no signal stack.
   566  // This can only happen if non-Go code calls sigaltstack to disable the
   567  // signal stack.
   568  func noSignalStack(sig uint32) {
   569  	println("signal", sig, "received on thread with no signal stack")
   570  	throw("non-Go code disabled sigaltstack")
   571  }
   572  
   573  // This is called if we receive a signal when there is a signal stack
   574  // but we are not on it. This can only happen if non-Go code called
   575  // sigaction without setting the SS_ONSTACK flag.
   576  func sigNotOnStack(sig uint32) {
   577  	println("signal", sig, "received but handler not on signal stack")
   578  	throw("non-Go code set up signal handler without SA_ONSTACK flag")
   579  }
   580  
   581  // signalDuringFork is called if we receive a signal while doing a fork.
   582  // We do not want signals at that time, as a signal sent to the process
   583  // group may be delivered to the child process, causing confusion.
   584  // This should never be called, because we block signals across the fork;
   585  // this function is just a safety check. See issue 18600 for background.
   586  func signalDuringFork(sig uint32) {
   587  	println("signal", sig, "received during fork")
   588  	throw("signal received during fork")
   589  }
   590  
   591  // This runs on a foreign stack, without an m or a g. No stack split.
   592  //go:nosplit
   593  //go:norace
   594  //go:nowritebarrierrec
   595  func badsignal(sig uintptr, c *sigctxt) {
   596  	needm(0)
   597  	if !sigsend(uint32(sig)) {
   598  		// A foreign thread received the signal sig, and the
   599  		// Go code does not want to handle it.
   600  		raisebadsignal(uint32(sig), c)
   601  	}
   602  	dropm()
   603  }
   604  
   605  //go:noescape
   606  func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
   607  
   608  // Determines if the signal should be handled by Go and if not, forwards the
   609  // signal to the handler that was installed before Go's. Returns whether the
   610  // signal was forwarded.
   611  // This is called by the signal handler, and the world may be stopped.
   612  //go:nosplit
   613  //go:nowritebarrierrec
   614  func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
   615  	if sig >= uint32(len(sigtable)) {
   616  		return false
   617  	}
   618  	fwdFn := atomic.Loaduintptr(&fwdSig[sig])
   619  	flags := sigtable[sig].flags
   620  
   621  	// If we aren't handling the signal, forward it.
   622  	if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK {
   623  		// If the signal is ignored, doing nothing is the same as forwarding.
   624  		if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) {
   625  			return true
   626  		}
   627  		// We are not handling the signal and there is no other handler to forward to.
   628  		// Crash with the default behavior.
   629  		if fwdFn == _SIG_DFL {
   630  			setsig(sig, _SIG_DFL)
   631  			dieFromSignal(sig)
   632  			return false
   633  		}
   634  
   635  		sigfwd(fwdFn, sig, info, ctx)
   636  		return true
   637  	}
   638  
   639  	// If there is no handler to forward to, no need to forward.
   640  	if fwdFn == _SIG_DFL {
   641  		return false
   642  	}
   643  
   644  	c := &sigctxt{info, ctx}
   645  	// Only forward synchronous signals and SIGPIPE.
   646  	// Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code
   647  	// is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket
   648  	// or pipe.
   649  	if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE {
   650  		return false
   651  	}
   652  	// Determine if the signal occurred inside Go code. We test that:
   653  	//   (1) we were in a goroutine (i.e., m.curg != nil), and
   654  	//   (2) we weren't in CGO.
   655  	g := getg()
   656  	if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo {
   657  		return false
   658  	}
   659  
   660  	// Signal not handled by Go, forward it.
   661  	if fwdFn != _SIG_IGN {
   662  		sigfwd(fwdFn, sig, info, ctx)
   663  	}
   664  
   665  	return true
   666  }
   667  
   668  // msigsave saves the current thread's signal mask into mp.sigmask.
   669  // This is used to preserve the non-Go signal mask when a non-Go
   670  // thread calls a Go function.
   671  // This is nosplit and nowritebarrierrec because it is called by needm
   672  // which may be called on a non-Go thread with no g available.
   673  //go:nosplit
   674  //go:nowritebarrierrec
   675  func msigsave(mp *m) {
   676  	sigprocmask(_SIG_SETMASK, nil, &mp.sigmask)
   677  }
   678  
   679  // msigrestore sets the current thread's signal mask to sigmask.
   680  // This is used to restore the non-Go signal mask when a non-Go thread
   681  // calls a Go function.
   682  // This is nosplit and nowritebarrierrec because it is called by dropm
   683  // after g has been cleared.
   684  //go:nosplit
   685  //go:nowritebarrierrec
   686  func msigrestore(sigmask sigset) {
   687  	sigprocmask(_SIG_SETMASK, &sigmask, nil)
   688  }
   689  
   690  // sigblock blocks all signals in the current thread's signal mask.
   691  // This is used to block signals while setting up and tearing down g
   692  // when a non-Go thread calls a Go function.
   693  // The OS-specific code is expected to define sigset_all.
   694  // This is nosplit and nowritebarrierrec because it is called by needm
   695  // which may be called on a non-Go thread with no g available.
   696  //go:nosplit
   697  //go:nowritebarrierrec
   698  func sigblock() {
   699  	sigprocmask(_SIG_SETMASK, &sigset_all, nil)
   700  }
   701  
   702  // unblocksig removes sig from the current thread's signal mask.
   703  // This is nosplit and nowritebarrierrec because it is called from
   704  // dieFromSignal, which can be called by sigfwdgo while running in the
   705  // signal handler, on the signal stack, with no g available.
   706  //go:nosplit
   707  //go:nowritebarrierrec
   708  func unblocksig(sig uint32) {
   709  	var set sigset
   710  	sigaddset(&set, int(sig))
   711  	sigprocmask(_SIG_UNBLOCK, &set, nil)
   712  }
   713  
   714  // minitSignals is called when initializing a new m to set the
   715  // thread's alternate signal stack and signal mask.
   716  func minitSignals() {
   717  	minitSignalStack()
   718  	minitSignalMask()
   719  }
   720  
   721  // minitSignalStack is called when initializing a new m to set the
   722  // alternate signal stack. If the alternate signal stack is not set
   723  // for the thread (the normal case) then set the alternate signal
   724  // stack to the gsignal stack. If the alternate signal stack is set
   725  // for the thread (the case when a non-Go thread sets the alternate
   726  // signal stack and then calls a Go function) then set the gsignal
   727  // stack to the alternate signal stack. Record which choice was made
   728  // in newSigstack, so that it can be undone in unminit.
   729  func minitSignalStack() {
   730  	_g_ := getg()
   731  	var st stackt
   732  	sigaltstack(nil, &st)
   733  	if st.ss_flags&_SS_DISABLE != 0 {
   734  		signalstack(&_g_.m.gsignal.stack)
   735  		_g_.m.newSigstack = true
   736  	} else {
   737  		setGsignalStack(&st, &_g_.m.goSigStack)
   738  		_g_.m.newSigstack = false
   739  	}
   740  }
   741  
   742  // minitSignalMask is called when initializing a new m to set the
   743  // thread's signal mask. When this is called all signals have been
   744  // blocked for the thread.  This starts with m.sigmask, which was set
   745  // either from initSigmask for a newly created thread or by calling
   746  // msigsave if this is a non-Go thread calling a Go function. It
   747  // removes all essential signals from the mask, thus causing those
   748  // signals to not be blocked. Then it sets the thread's signal mask.
   749  // After this is called the thread can receive signals.
   750  func minitSignalMask() {
   751  	nmask := getg().m.sigmask
   752  	for i := range sigtable {
   753  		if !blockableSig(uint32(i)) {
   754  			sigdelset(&nmask, i)
   755  		}
   756  	}
   757  	sigprocmask(_SIG_SETMASK, &nmask, nil)
   758  }
   759  
   760  // unminitSignals is called from dropm, via unminit, to undo the
   761  // effect of calling minit on a non-Go thread.
   762  //go:nosplit
   763  func unminitSignals() {
   764  	if getg().m.newSigstack {
   765  		st := stackt{ss_flags: _SS_DISABLE}
   766  		sigaltstack(&st, nil)
   767  	} else {
   768  		// We got the signal stack from someone else. Restore
   769  		// the Go-allocated stack in case this M gets reused
   770  		// for another thread (e.g., it's an extram). Also, on
   771  		// Android, libc allocates a signal stack for all
   772  		// threads, so it's important to restore the Go stack
   773  		// even on Go-created threads so we can free it.
   774  		restoreGsignalStack(&getg().m.goSigStack)
   775  	}
   776  }
   777  
   778  // blockableSig returns whether sig may be blocked by the signal mask.
   779  // We never want to block the signals marked _SigUnblock;
   780  // these are the synchronous signals that turn into a Go panic.
   781  // In a Go program--not a c-archive/c-shared--we never want to block
   782  // the signals marked _SigKill or _SigThrow, as otherwise it's possible
   783  // for all running threads to block them and delay their delivery until
   784  // we start a new thread. When linked into a C program we let the C code
   785  // decide on the disposition of those signals.
   786  func blockableSig(sig uint32) bool {
   787  	flags := sigtable[sig].flags
   788  	if flags&_SigUnblock != 0 {
   789  		return false
   790  	}
   791  	if isarchive || islibrary {
   792  		return true
   793  	}
   794  	return flags&(_SigKill|_SigThrow) == 0
   795  }
   796  
   797  // gsignalStack saves the fields of the gsignal stack changed by
   798  // setGsignalStack.
   799  type gsignalStack struct {
   800  	stack       stack
   801  	stackguard0 uintptr
   802  	stackguard1 uintptr
   803  	stktopsp    uintptr
   804  }
   805  
   806  // setGsignalStack sets the gsignal stack of the current m to an
   807  // alternate signal stack returned from the sigaltstack system call.
   808  // It saves the old values in *old for use by restoreGsignalStack.
   809  // This is used when handling a signal if non-Go code has set the
   810  // alternate signal stack.
   811  //go:nosplit
   812  //go:nowritebarrierrec
   813  func setGsignalStack(st *stackt, old *gsignalStack) {
   814  	g := getg()
   815  	if old != nil {
   816  		old.stack = g.m.gsignal.stack
   817  		old.stackguard0 = g.m.gsignal.stackguard0
   818  		old.stackguard1 = g.m.gsignal.stackguard1
   819  		old.stktopsp = g.m.gsignal.stktopsp
   820  	}
   821  	stsp := uintptr(unsafe.Pointer(st.ss_sp))
   822  	g.m.gsignal.stack.lo = stsp
   823  	g.m.gsignal.stack.hi = stsp + st.ss_size
   824  	g.m.gsignal.stackguard0 = stsp + _StackGuard
   825  	g.m.gsignal.stackguard1 = stsp + _StackGuard
   826  }
   827  
   828  // restoreGsignalStack restores the gsignal stack to the value it had
   829  // before entering the signal handler.
   830  //go:nosplit
   831  //go:nowritebarrierrec
   832  func restoreGsignalStack(st *gsignalStack) {
   833  	gp := getg().m.gsignal
   834  	gp.stack = st.stack
   835  	gp.stackguard0 = st.stackguard0
   836  	gp.stackguard1 = st.stackguard1
   837  	gp.stktopsp = st.stktopsp
   838  }
   839  
   840  // signalstack sets the current thread's alternate signal stack to s.
   841  //go:nosplit
   842  func signalstack(s *stack) {
   843  	st := stackt{ss_size: s.hi - s.lo}
   844  	setSignalstackSP(&st, s.lo)
   845  	sigaltstack(&st, nil)
   846  }
   847  
   848  // setsigsegv is used on darwin/arm{,64} to fake a segmentation fault.
   849  //go:nosplit
   850  func setsigsegv(pc uintptr) {
   851  	g := getg()
   852  	g.sig = _SIGSEGV
   853  	g.sigpc = pc
   854  	g.sigcode0 = _SEGV_MAPERR
   855  	g.sigcode1 = 0 // TODO: emulate si_addr
   856  }