github.com/likebike/go--@v0.0.0-20190911215757-0bd925d16e96/go/src/runtime/trace.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Go execution tracer. 6 // The tracer captures a wide range of execution events like goroutine 7 // creation/blocking/unblocking, syscall enter/exit/block, GC-related events, 8 // changes of heap size, processor start/stop, etc and writes them to a buffer 9 // in a compact form. A precise nanosecond-precision timestamp and a stack 10 // trace is captured for most events. 11 // See https://golang.org/s/go15trace for more info. 12 13 package runtime 14 15 import ( 16 "runtime/internal/sys" 17 "unsafe" 18 ) 19 20 // Event types in the trace, args are given in square brackets. 21 const ( 22 traceEvNone = 0 // unused 23 traceEvBatch = 1 // start of per-P batch of events [pid, timestamp] 24 traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)] 25 traceEvStack = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}] 26 traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id] 27 traceEvProcStart = 5 // start of P [timestamp, thread id] 28 traceEvProcStop = 6 // stop of P [timestamp] 29 traceEvGCStart = 7 // GC start [timestamp, seq, stack id] 30 traceEvGCDone = 8 // GC done [timestamp] 31 traceEvGCSTWStart = 9 // GC STW start [timestamp, kind] 32 traceEvGCSTWDone = 10 // GC STW done [timestamp] 33 traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id] 34 traceEvGCSweepDone = 12 // GC sweep done [timestamp, swept, reclaimed] 35 traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id] 36 traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id, seq] 37 traceEvGoEnd = 15 // goroutine ends [timestamp] 38 traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack] 39 traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack] 40 traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack] 41 traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack] 42 traceEvGoBlock = 20 // goroutine blocks [timestamp, stack] 43 traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack] 44 traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack] 45 traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack] 46 traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack] 47 traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack] 48 traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack] 49 traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack] 50 traceEvGoSysCall = 28 // syscall enter [timestamp, stack] 51 traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp] 52 traceEvGoSysBlock = 30 // syscall blocks [timestamp] 53 traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id] 54 traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id] 55 traceEvHeapAlloc = 33 // memstats.heap_live change [timestamp, heap_alloc] 56 traceEvNextGC = 34 // memstats.next_gc change [timestamp, next_gc] 57 traceEvTimerGoroutine = 35 // denotes timer goroutine [timer goroutine id] 58 traceEvFutileWakeup = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp] 59 traceEvString = 37 // string dictionary entry [ID, length, string] 60 traceEvGoStartLocal = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id] 61 traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack] 62 traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp] 63 traceEvGoStartLabel = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id] 64 traceEvGoBlockGC = 42 // goroutine blocks on GC assist [timestamp, stack] 65 traceEvGCMarkAssistStart = 43 // GC mark assist start [timestamp, stack] 66 traceEvGCMarkAssistDone = 44 // GC mark assist done [timestamp] 67 traceEvCount = 45 68 ) 69 70 const ( 71 // Timestamps in trace are cputicks/traceTickDiv. 72 // This makes absolute values of timestamp diffs smaller, 73 // and so they are encoded in less number of bytes. 74 // 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine). 75 // The suggested increment frequency for PowerPC's time base register is 76 // 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64 77 // and ppc64le. 78 // Tracing won't work reliably for architectures where cputicks is emulated 79 // by nanotime, so the value doesn't matter for those architectures. 80 traceTickDiv = 16 + 48*(sys.Goarch386|sys.GoarchAmd64|sys.GoarchAmd64p32) 81 // Maximum number of PCs in a single stack trace. 82 // Since events contain only stack id rather than whole stack trace, 83 // we can allow quite large values here. 84 traceStackSize = 128 85 // Identifier of a fake P that is used when we trace without a real P. 86 traceGlobProc = -1 87 // Maximum number of bytes to encode uint64 in base-128. 88 traceBytesPerNumber = 10 89 // Shift of the number of arguments in the first event byte. 90 traceArgCountShift = 6 91 // Flag passed to traceGoPark to denote that the previous wakeup of this 92 // goroutine was futile. For example, a goroutine was unblocked on a mutex, 93 // but another goroutine got ahead and acquired the mutex before the first 94 // goroutine is scheduled, so the first goroutine has to block again. 95 // Such wakeups happen on buffered channels and sync.Mutex, 96 // but are generally not interesting for end user. 97 traceFutileWakeup byte = 128 98 ) 99 100 // trace is global tracing context. 101 var trace struct { 102 lock mutex // protects the following members 103 lockOwner *g // to avoid deadlocks during recursive lock locks 104 enabled bool // when set runtime traces events 105 shutdown bool // set when we are waiting for trace reader to finish after setting enabled to false 106 headerWritten bool // whether ReadTrace has emitted trace header 107 footerWritten bool // whether ReadTrace has emitted trace footer 108 shutdownSema uint32 // used to wait for ReadTrace completion 109 seqStart uint64 // sequence number when tracing was started 110 ticksStart int64 // cputicks when tracing was started 111 ticksEnd int64 // cputicks when tracing was stopped 112 timeStart int64 // nanotime when tracing was started 113 timeEnd int64 // nanotime when tracing was stopped 114 seqGC uint64 // GC start/done sequencer 115 reading traceBufPtr // buffer currently handed off to user 116 empty traceBufPtr // stack of empty buffers 117 fullHead traceBufPtr // queue of full buffers 118 fullTail traceBufPtr 119 reader guintptr // goroutine that called ReadTrace, or nil 120 stackTab traceStackTable // maps stack traces to unique ids 121 122 // Dictionary for traceEvString. 123 // 124 // Currently this is used only at trace setup and for 125 // func/file:line info after tracing session, so we assume 126 // single-threaded access. 127 strings map[string]uint64 128 stringSeq uint64 129 130 // markWorkerLabels maps gcMarkWorkerMode to string ID. 131 markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64 132 133 bufLock mutex // protects buf 134 buf traceBufPtr // global trace buffer, used when running without a p 135 } 136 137 // traceBufHeader is per-P tracing buffer. 138 type traceBufHeader struct { 139 link traceBufPtr // in trace.empty/full 140 lastTicks uint64 // when we wrote the last event 141 pos int // next write offset in arr 142 stk [traceStackSize]uintptr // scratch buffer for traceback 143 } 144 145 // traceBuf is per-P tracing buffer. 146 // 147 //go:notinheap 148 type traceBuf struct { 149 traceBufHeader 150 arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf 151 } 152 153 // traceBufPtr is a *traceBuf that is not traced by the garbage 154 // collector and doesn't have write barriers. traceBufs are not 155 // allocated from the GC'd heap, so this is safe, and are often 156 // manipulated in contexts where write barriers are not allowed, so 157 // this is necessary. 158 // 159 // TODO: Since traceBuf is now go:notinheap, this isn't necessary. 160 type traceBufPtr uintptr 161 162 func (tp traceBufPtr) ptr() *traceBuf { return (*traceBuf)(unsafe.Pointer(tp)) } 163 func (tp *traceBufPtr) set(b *traceBuf) { *tp = traceBufPtr(unsafe.Pointer(b)) } 164 func traceBufPtrOf(b *traceBuf) traceBufPtr { 165 return traceBufPtr(unsafe.Pointer(b)) 166 } 167 168 // StartTrace enables tracing for the current process. 169 // While tracing, the data will be buffered and available via ReadTrace. 170 // StartTrace returns an error if tracing is already enabled. 171 // Most clients should use the runtime/trace package or the testing package's 172 // -test.trace flag instead of calling StartTrace directly. 173 func StartTrace() error { 174 // Stop the world, so that we can take a consistent snapshot 175 // of all goroutines at the beginning of the trace. 176 stopTheWorld("start tracing") 177 178 // We are in stop-the-world, but syscalls can finish and write to trace concurrently. 179 // Exitsyscall could check trace.enabled long before and then suddenly wake up 180 // and decide to write to trace at a random point in time. 181 // However, such syscall will use the global trace.buf buffer, because we've 182 // acquired all p's by doing stop-the-world. So this protects us from such races. 183 lock(&trace.bufLock) 184 185 if trace.enabled || trace.shutdown { 186 unlock(&trace.bufLock) 187 startTheWorld() 188 return errorString("tracing is already enabled") 189 } 190 191 // Can't set trace.enabled yet. While the world is stopped, exitsyscall could 192 // already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here. 193 // That would lead to an inconsistent trace: 194 // - either GoSysExit appears before EvGoInSyscall, 195 // - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below. 196 // To instruct traceEvent that it must not ignore events below, we set startingtrace. 197 // trace.enabled is set afterwards once we have emitted all preliminary events. 198 _g_ := getg() 199 _g_.m.startingtrace = true 200 201 // Obtain current stack ID to use in all traceEvGoCreate events below. 202 mp := acquirem() 203 stkBuf := make([]uintptr, traceStackSize) 204 stackID := traceStackID(mp, stkBuf, 2) 205 releasem(mp) 206 207 for _, gp := range allgs { 208 status := readgstatus(gp) 209 if status != _Gdead { 210 gp.traceseq = 0 211 gp.tracelastp = getg().m.p 212 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. 213 id := trace.stackTab.put([]uintptr{gp.startpc + sys.PCQuantum}) 214 traceEvent(traceEvGoCreate, -1, uint64(gp.goid), uint64(id), stackID) 215 } 216 if status == _Gwaiting { 217 // traceEvGoWaiting is implied to have seq=1. 218 gp.traceseq++ 219 traceEvent(traceEvGoWaiting, -1, uint64(gp.goid)) 220 } 221 if status == _Gsyscall { 222 gp.traceseq++ 223 traceEvent(traceEvGoInSyscall, -1, uint64(gp.goid)) 224 } else { 225 gp.sysblocktraced = false 226 } 227 } 228 traceProcStart() 229 traceGoStart() 230 // Note: ticksStart needs to be set after we emit traceEvGoInSyscall events. 231 // If we do it the other way around, it is possible that exitsyscall will 232 // query sysexitticks after ticksStart but before traceEvGoInSyscall timestamp. 233 // It will lead to a false conclusion that cputicks is broken. 234 trace.ticksStart = cputicks() 235 trace.timeStart = nanotime() 236 trace.headerWritten = false 237 trace.footerWritten = false 238 239 // string to id mapping 240 // 0 : reserved for an empty string 241 // remaining: other strings registered by traceString 242 trace.stringSeq = 0 243 trace.strings = make(map[string]uint64) 244 245 trace.seqGC = 0 246 _g_.m.startingtrace = false 247 trace.enabled = true 248 249 // Register runtime goroutine labels. 250 _, pid, bufp := traceAcquireBuffer() 251 for i, label := range gcMarkWorkerModeStrings[:] { 252 trace.markWorkerLabels[i], bufp = traceString(bufp, pid, label) 253 } 254 traceReleaseBuffer(pid) 255 256 unlock(&trace.bufLock) 257 258 startTheWorld() 259 return nil 260 } 261 262 // StopTrace stops tracing, if it was previously enabled. 263 // StopTrace only returns after all the reads for the trace have completed. 264 func StopTrace() { 265 // Stop the world so that we can collect the trace buffers from all p's below, 266 // and also to avoid races with traceEvent. 267 stopTheWorld("stop tracing") 268 269 // See the comment in StartTrace. 270 lock(&trace.bufLock) 271 272 if !trace.enabled { 273 unlock(&trace.bufLock) 274 startTheWorld() 275 return 276 } 277 278 traceGoSched() 279 280 // Loop over all allocated Ps because dead Ps may still have 281 // trace buffers. 282 for _, p := range allp[:cap(allp)] { 283 buf := p.tracebuf 284 if buf != 0 { 285 traceFullQueue(buf) 286 p.tracebuf = 0 287 } 288 } 289 if trace.buf != 0 { 290 buf := trace.buf 291 trace.buf = 0 292 if buf.ptr().pos != 0 { 293 traceFullQueue(buf) 294 } 295 } 296 297 for { 298 trace.ticksEnd = cputicks() 299 trace.timeEnd = nanotime() 300 // Windows time can tick only every 15ms, wait for at least one tick. 301 if trace.timeEnd != trace.timeStart { 302 break 303 } 304 osyield() 305 } 306 307 trace.enabled = false 308 trace.shutdown = true 309 unlock(&trace.bufLock) 310 311 startTheWorld() 312 313 // The world is started but we've set trace.shutdown, so new tracing can't start. 314 // Wait for the trace reader to flush pending buffers and stop. 315 semacquire(&trace.shutdownSema) 316 if raceenabled { 317 raceacquire(unsafe.Pointer(&trace.shutdownSema)) 318 } 319 320 // The lock protects us from races with StartTrace/StopTrace because they do stop-the-world. 321 lock(&trace.lock) 322 for _, p := range allp[:cap(allp)] { 323 if p.tracebuf != 0 { 324 throw("trace: non-empty trace buffer in proc") 325 } 326 } 327 if trace.buf != 0 { 328 throw("trace: non-empty global trace buffer") 329 } 330 if trace.fullHead != 0 || trace.fullTail != 0 { 331 throw("trace: non-empty full trace buffer") 332 } 333 if trace.reading != 0 || trace.reader != 0 { 334 throw("trace: reading after shutdown") 335 } 336 for trace.empty != 0 { 337 buf := trace.empty 338 trace.empty = buf.ptr().link 339 sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf.ptr()), &memstats.other_sys) 340 } 341 trace.strings = nil 342 trace.shutdown = false 343 unlock(&trace.lock) 344 } 345 346 // ReadTrace returns the next chunk of binary tracing data, blocking until data 347 // is available. If tracing is turned off and all the data accumulated while it 348 // was on has been returned, ReadTrace returns nil. The caller must copy the 349 // returned data before calling ReadTrace again. 350 // ReadTrace must be called from one goroutine at a time. 351 func ReadTrace() []byte { 352 // This function may need to lock trace.lock recursively 353 // (goparkunlock -> traceGoPark -> traceEvent -> traceFlush). 354 // To allow this we use trace.lockOwner. 355 // Also this function must not allocate while holding trace.lock: 356 // allocation can call heap allocate, which will try to emit a trace 357 // event while holding heap lock. 358 lock(&trace.lock) 359 trace.lockOwner = getg() 360 361 if trace.reader != 0 { 362 // More than one goroutine reads trace. This is bad. 363 // But we rather do not crash the program because of tracing, 364 // because tracing can be enabled at runtime on prod servers. 365 trace.lockOwner = nil 366 unlock(&trace.lock) 367 println("runtime: ReadTrace called from multiple goroutines simultaneously") 368 return nil 369 } 370 // Recycle the old buffer. 371 if buf := trace.reading; buf != 0 { 372 buf.ptr().link = trace.empty 373 trace.empty = buf 374 trace.reading = 0 375 } 376 // Write trace header. 377 if !trace.headerWritten { 378 trace.headerWritten = true 379 trace.lockOwner = nil 380 unlock(&trace.lock) 381 return []byte("go 1.10 trace\x00\x00\x00") 382 } 383 // Wait for new data. 384 if trace.fullHead == 0 && !trace.shutdown { 385 trace.reader.set(getg()) 386 goparkunlock(&trace.lock, "trace reader (blocked)", traceEvGoBlock, 2) 387 lock(&trace.lock) 388 } 389 // Write a buffer. 390 if trace.fullHead != 0 { 391 buf := traceFullDequeue() 392 trace.reading = buf 393 trace.lockOwner = nil 394 unlock(&trace.lock) 395 return buf.ptr().arr[:buf.ptr().pos] 396 } 397 // Write footer with timer frequency. 398 if !trace.footerWritten { 399 trace.footerWritten = true 400 // Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64. 401 freq := float64(trace.ticksEnd-trace.ticksStart) * 1e9 / float64(trace.timeEnd-trace.timeStart) / traceTickDiv 402 trace.lockOwner = nil 403 unlock(&trace.lock) 404 var data []byte 405 data = append(data, traceEvFrequency|0<<traceArgCountShift) 406 data = traceAppend(data, uint64(freq)) 407 for i := range timers { 408 tb := &timers[i] 409 if tb.gp != nil { 410 data = append(data, traceEvTimerGoroutine|0<<traceArgCountShift) 411 data = traceAppend(data, uint64(tb.gp.goid)) 412 } 413 } 414 // This will emit a bunch of full buffers, we will pick them up 415 // on the next iteration. 416 trace.stackTab.dump() 417 return data 418 } 419 // Done. 420 if trace.shutdown { 421 trace.lockOwner = nil 422 unlock(&trace.lock) 423 if raceenabled { 424 // Model synchronization on trace.shutdownSema, which race 425 // detector does not see. This is required to avoid false 426 // race reports on writer passed to trace.Start. 427 racerelease(unsafe.Pointer(&trace.shutdownSema)) 428 } 429 // trace.enabled is already reset, so can call traceable functions. 430 semrelease(&trace.shutdownSema) 431 return nil 432 } 433 // Also bad, but see the comment above. 434 trace.lockOwner = nil 435 unlock(&trace.lock) 436 println("runtime: spurious wakeup of trace reader") 437 return nil 438 } 439 440 // traceReader returns the trace reader that should be woken up, if any. 441 func traceReader() *g { 442 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) { 443 return nil 444 } 445 lock(&trace.lock) 446 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) { 447 unlock(&trace.lock) 448 return nil 449 } 450 gp := trace.reader.ptr() 451 trace.reader.set(nil) 452 unlock(&trace.lock) 453 return gp 454 } 455 456 // traceProcFree frees trace buffer associated with pp. 457 func traceProcFree(pp *p) { 458 buf := pp.tracebuf 459 pp.tracebuf = 0 460 if buf == 0 { 461 return 462 } 463 lock(&trace.lock) 464 traceFullQueue(buf) 465 unlock(&trace.lock) 466 } 467 468 // traceFullQueue queues buf into queue of full buffers. 469 func traceFullQueue(buf traceBufPtr) { 470 buf.ptr().link = 0 471 if trace.fullHead == 0 { 472 trace.fullHead = buf 473 } else { 474 trace.fullTail.ptr().link = buf 475 } 476 trace.fullTail = buf 477 } 478 479 // traceFullDequeue dequeues from queue of full buffers. 480 func traceFullDequeue() traceBufPtr { 481 buf := trace.fullHead 482 if buf == 0 { 483 return 0 484 } 485 trace.fullHead = buf.ptr().link 486 if trace.fullHead == 0 { 487 trace.fullTail = 0 488 } 489 buf.ptr().link = 0 490 return buf 491 } 492 493 // traceEvent writes a single event to trace buffer, flushing the buffer if necessary. 494 // ev is event type. 495 // If skip > 0, write current stack id as the last argument (skipping skip top frames). 496 // If skip = 0, this event type should contain a stack, but we don't want 497 // to collect and remember it for this particular call. 498 func traceEvent(ev byte, skip int, args ...uint64) { 499 mp, pid, bufp := traceAcquireBuffer() 500 // Double-check trace.enabled now that we've done m.locks++ and acquired bufLock. 501 // This protects from races between traceEvent and StartTrace/StopTrace. 502 503 // The caller checked that trace.enabled == true, but trace.enabled might have been 504 // turned off between the check and now. Check again. traceLockBuffer did mp.locks++, 505 // StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero, 506 // so if we see trace.enabled == true now, we know it's true for the rest of the function. 507 // Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace 508 // during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer. 509 if !trace.enabled && !mp.startingtrace { 510 traceReleaseBuffer(pid) 511 return 512 } 513 buf := (*bufp).ptr() 514 const maxSize = 2 + 5*traceBytesPerNumber // event type, length, sequence, timestamp, stack id and two add params 515 if buf == nil || len(buf.arr)-buf.pos < maxSize { 516 buf = traceFlush(traceBufPtrOf(buf), pid).ptr() 517 (*bufp).set(buf) 518 } 519 520 ticks := uint64(cputicks()) / traceTickDiv 521 tickDiff := ticks - buf.lastTicks 522 buf.lastTicks = ticks 523 narg := byte(len(args)) 524 if skip >= 0 { 525 narg++ 526 } 527 // We have only 2 bits for number of arguments. 528 // If number is >= 3, then the event type is followed by event length in bytes. 529 if narg > 3 { 530 narg = 3 531 } 532 startPos := buf.pos 533 buf.byte(ev | narg<<traceArgCountShift) 534 var lenp *byte 535 if narg == 3 { 536 // Reserve the byte for length assuming that length < 128. 537 buf.varint(0) 538 lenp = &buf.arr[buf.pos-1] 539 } 540 buf.varint(tickDiff) 541 for _, a := range args { 542 buf.varint(a) 543 } 544 if skip == 0 { 545 buf.varint(0) 546 } else if skip > 0 { 547 buf.varint(traceStackID(mp, buf.stk[:], skip)) 548 } 549 evSize := buf.pos - startPos 550 if evSize > maxSize { 551 throw("invalid length of trace event") 552 } 553 if lenp != nil { 554 // Fill in actual length. 555 *lenp = byte(evSize - 2) 556 } 557 traceReleaseBuffer(pid) 558 } 559 560 func traceStackID(mp *m, buf []uintptr, skip int) uint64 { 561 _g_ := getg() 562 gp := mp.curg 563 var nstk int 564 if gp == _g_ { 565 nstk = callers(skip+1, buf[:]) 566 } else if gp != nil { 567 gp = mp.curg 568 nstk = gcallers(gp, skip, buf[:]) 569 } 570 if nstk > 0 { 571 nstk-- // skip runtime.goexit 572 } 573 if nstk > 0 && gp.goid == 1 { 574 nstk-- // skip runtime.main 575 } 576 id := trace.stackTab.put(buf[:nstk]) 577 return uint64(id) 578 } 579 580 // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it. 581 func traceAcquireBuffer() (mp *m, pid int32, bufp *traceBufPtr) { 582 mp = acquirem() 583 if p := mp.p.ptr(); p != nil { 584 return mp, p.id, &p.tracebuf 585 } 586 lock(&trace.bufLock) 587 return mp, traceGlobProc, &trace.buf 588 } 589 590 // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer. 591 func traceReleaseBuffer(pid int32) { 592 if pid == traceGlobProc { 593 unlock(&trace.bufLock) 594 } 595 releasem(getg().m) 596 } 597 598 // traceFlush puts buf onto stack of full buffers and returns an empty buffer. 599 func traceFlush(buf traceBufPtr, pid int32) traceBufPtr { 600 owner := trace.lockOwner 601 dolock := owner == nil || owner != getg().m.curg 602 if dolock { 603 lock(&trace.lock) 604 } 605 if buf != 0 { 606 traceFullQueue(buf) 607 } 608 if trace.empty != 0 { 609 buf = trace.empty 610 trace.empty = buf.ptr().link 611 } else { 612 buf = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys)) 613 if buf == 0 { 614 throw("trace: out of memory") 615 } 616 } 617 bufp := buf.ptr() 618 bufp.link.set(nil) 619 bufp.pos = 0 620 621 // initialize the buffer for a new batch 622 ticks := uint64(cputicks()) / traceTickDiv 623 bufp.lastTicks = ticks 624 bufp.byte(traceEvBatch | 1<<traceArgCountShift) 625 bufp.varint(uint64(pid)) 626 bufp.varint(ticks) 627 628 if dolock { 629 unlock(&trace.lock) 630 } 631 return buf 632 } 633 634 // traceString adds a string to the trace.strings and returns the id. 635 func traceString(bufp *traceBufPtr, pid int32, s string) (uint64, *traceBufPtr) { 636 if s == "" { 637 return 0, bufp 638 } 639 if id, ok := trace.strings[s]; ok { 640 return id, bufp 641 } 642 643 trace.stringSeq++ 644 id := trace.stringSeq 645 trace.strings[s] = id 646 647 // memory allocation in above may trigger tracing and 648 // cause *bufp changes. Following code now works with *bufp, 649 // so there must be no memory allocation or any activities 650 // that causes tracing after this point. 651 652 buf := (*bufp).ptr() 653 size := 1 + 2*traceBytesPerNumber + len(s) 654 if buf == nil || len(buf.arr)-buf.pos < size { 655 buf = traceFlush(traceBufPtrOf(buf), pid).ptr() 656 (*bufp).set(buf) 657 } 658 buf.byte(traceEvString) 659 buf.varint(id) 660 buf.varint(uint64(len(s))) 661 buf.pos += copy(buf.arr[buf.pos:], s) 662 663 (*bufp).set(buf) 664 return id, bufp 665 } 666 667 // traceAppend appends v to buf in little-endian-base-128 encoding. 668 func traceAppend(buf []byte, v uint64) []byte { 669 for ; v >= 0x80; v >>= 7 { 670 buf = append(buf, 0x80|byte(v)) 671 } 672 buf = append(buf, byte(v)) 673 return buf 674 } 675 676 // varint appends v to buf in little-endian-base-128 encoding. 677 func (buf *traceBuf) varint(v uint64) { 678 pos := buf.pos 679 for ; v >= 0x80; v >>= 7 { 680 buf.arr[pos] = 0x80 | byte(v) 681 pos++ 682 } 683 buf.arr[pos] = byte(v) 684 pos++ 685 buf.pos = pos 686 } 687 688 // byte appends v to buf. 689 func (buf *traceBuf) byte(v byte) { 690 buf.arr[buf.pos] = v 691 buf.pos++ 692 } 693 694 // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids. 695 // It is lock-free for reading. 696 type traceStackTable struct { 697 lock mutex 698 seq uint32 699 mem traceAlloc 700 tab [1 << 13]traceStackPtr 701 } 702 703 // traceStack is a single stack in traceStackTable. 704 type traceStack struct { 705 link traceStackPtr 706 hash uintptr 707 id uint32 708 n int 709 stk [0]uintptr // real type [n]uintptr 710 } 711 712 type traceStackPtr uintptr 713 714 func (tp traceStackPtr) ptr() *traceStack { return (*traceStack)(unsafe.Pointer(tp)) } 715 716 // stack returns slice of PCs. 717 func (ts *traceStack) stack() []uintptr { 718 return (*[traceStackSize]uintptr)(unsafe.Pointer(&ts.stk))[:ts.n] 719 } 720 721 // put returns a unique id for the stack trace pcs and caches it in the table, 722 // if it sees the trace for the first time. 723 func (tab *traceStackTable) put(pcs []uintptr) uint32 { 724 if len(pcs) == 0 { 725 return 0 726 } 727 hash := memhash(unsafe.Pointer(&pcs[0]), 0, uintptr(len(pcs))*unsafe.Sizeof(pcs[0])) 728 // First, search the hashtable w/o the mutex. 729 if id := tab.find(pcs, hash); id != 0 { 730 return id 731 } 732 // Now, double check under the mutex. 733 lock(&tab.lock) 734 if id := tab.find(pcs, hash); id != 0 { 735 unlock(&tab.lock) 736 return id 737 } 738 // Create new record. 739 tab.seq++ 740 stk := tab.newStack(len(pcs)) 741 stk.hash = hash 742 stk.id = tab.seq 743 stk.n = len(pcs) 744 stkpc := stk.stack() 745 for i, pc := range pcs { 746 stkpc[i] = pc 747 } 748 part := int(hash % uintptr(len(tab.tab))) 749 stk.link = tab.tab[part] 750 atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk)) 751 unlock(&tab.lock) 752 return stk.id 753 } 754 755 // find checks if the stack trace pcs is already present in the table. 756 func (tab *traceStackTable) find(pcs []uintptr, hash uintptr) uint32 { 757 part := int(hash % uintptr(len(tab.tab))) 758 Search: 759 for stk := tab.tab[part].ptr(); stk != nil; stk = stk.link.ptr() { 760 if stk.hash == hash && stk.n == len(pcs) { 761 for i, stkpc := range stk.stack() { 762 if stkpc != pcs[i] { 763 continue Search 764 } 765 } 766 return stk.id 767 } 768 } 769 return 0 770 } 771 772 // newStack allocates a new stack of size n. 773 func (tab *traceStackTable) newStack(n int) *traceStack { 774 return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*sys.PtrSize)) 775 } 776 777 // allFrames returns all of the Frames corresponding to pcs. 778 func allFrames(pcs []uintptr) []Frame { 779 frames := make([]Frame, 0, len(pcs)) 780 ci := CallersFrames(pcs) 781 for { 782 f, more := ci.Next() 783 frames = append(frames, f) 784 if !more { 785 return frames 786 } 787 } 788 } 789 790 // dump writes all previously cached stacks to trace buffers, 791 // releases all memory and resets state. 792 func (tab *traceStackTable) dump() { 793 var tmp [(2 + 4*traceStackSize) * traceBytesPerNumber]byte 794 bufp := traceFlush(0, 0) 795 for _, stk := range tab.tab { 796 stk := stk.ptr() 797 for ; stk != nil; stk = stk.link.ptr() { 798 tmpbuf := tmp[:0] 799 tmpbuf = traceAppend(tmpbuf, uint64(stk.id)) 800 frames := allFrames(stk.stack()) 801 tmpbuf = traceAppend(tmpbuf, uint64(len(frames))) 802 for _, f := range frames { 803 var frame traceFrame 804 frame, bufp = traceFrameForPC(bufp, 0, f) 805 tmpbuf = traceAppend(tmpbuf, uint64(f.PC)) 806 tmpbuf = traceAppend(tmpbuf, uint64(frame.funcID)) 807 tmpbuf = traceAppend(tmpbuf, uint64(frame.fileID)) 808 tmpbuf = traceAppend(tmpbuf, uint64(frame.line)) 809 } 810 // Now copy to the buffer. 811 size := 1 + traceBytesPerNumber + len(tmpbuf) 812 if buf := bufp.ptr(); len(buf.arr)-buf.pos < size { 813 bufp = traceFlush(bufp, 0) 814 } 815 buf := bufp.ptr() 816 buf.byte(traceEvStack | 3<<traceArgCountShift) 817 buf.varint(uint64(len(tmpbuf))) 818 buf.pos += copy(buf.arr[buf.pos:], tmpbuf) 819 } 820 } 821 822 lock(&trace.lock) 823 traceFullQueue(bufp) 824 unlock(&trace.lock) 825 826 tab.mem.drop() 827 *tab = traceStackTable{} 828 } 829 830 type traceFrame struct { 831 funcID uint64 832 fileID uint64 833 line uint64 834 } 835 836 // traceFrameForPC records the frame information. 837 // It may allocate memory. 838 func traceFrameForPC(buf traceBufPtr, pid int32, f Frame) (traceFrame, traceBufPtr) { 839 bufp := &buf 840 var frame traceFrame 841 842 fn := f.Function 843 const maxLen = 1 << 10 844 if len(fn) > maxLen { 845 fn = fn[len(fn)-maxLen:] 846 } 847 frame.funcID, bufp = traceString(bufp, pid, fn) 848 frame.line = uint64(f.Line) 849 file := f.File 850 if len(file) > maxLen { 851 file = file[len(file)-maxLen:] 852 } 853 frame.fileID, bufp = traceString(bufp, pid, file) 854 return frame, (*bufp) 855 } 856 857 // traceAlloc is a non-thread-safe region allocator. 858 // It holds a linked list of traceAllocBlock. 859 type traceAlloc struct { 860 head traceAllocBlockPtr 861 off uintptr 862 } 863 864 // traceAllocBlock is a block in traceAlloc. 865 // 866 // traceAllocBlock is allocated from non-GC'd memory, so it must not 867 // contain heap pointers. Writes to pointers to traceAllocBlocks do 868 // not need write barriers. 869 // 870 //go:notinheap 871 type traceAllocBlock struct { 872 next traceAllocBlockPtr 873 data [64<<10 - sys.PtrSize]byte 874 } 875 876 // TODO: Since traceAllocBlock is now go:notinheap, this isn't necessary. 877 type traceAllocBlockPtr uintptr 878 879 func (p traceAllocBlockPtr) ptr() *traceAllocBlock { return (*traceAllocBlock)(unsafe.Pointer(p)) } 880 func (p *traceAllocBlockPtr) set(x *traceAllocBlock) { *p = traceAllocBlockPtr(unsafe.Pointer(x)) } 881 882 // alloc allocates n-byte block. 883 func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer { 884 n = round(n, sys.PtrSize) 885 if a.head == 0 || a.off+n > uintptr(len(a.head.ptr().data)) { 886 if n > uintptr(len(a.head.ptr().data)) { 887 throw("trace: alloc too large") 888 } 889 block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)) 890 if block == nil { 891 throw("trace: out of memory") 892 } 893 block.next.set(a.head.ptr()) 894 a.head.set(block) 895 a.off = 0 896 } 897 p := &a.head.ptr().data[a.off] 898 a.off += n 899 return unsafe.Pointer(p) 900 } 901 902 // drop frees all previously allocated memory and resets the allocator. 903 func (a *traceAlloc) drop() { 904 for a.head != 0 { 905 block := a.head.ptr() 906 a.head.set(block.next.ptr()) 907 sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys) 908 } 909 } 910 911 // The following functions write specific events to trace. 912 913 func traceGomaxprocs(procs int32) { 914 traceEvent(traceEvGomaxprocs, 1, uint64(procs)) 915 } 916 917 func traceProcStart() { 918 traceEvent(traceEvProcStart, -1, uint64(getg().m.id)) 919 } 920 921 func traceProcStop(pp *p) { 922 // Sysmon and stopTheWorld can stop Ps blocked in syscalls, 923 // to handle this we temporary employ the P. 924 mp := acquirem() 925 oldp := mp.p 926 mp.p.set(pp) 927 traceEvent(traceEvProcStop, -1) 928 mp.p = oldp 929 releasem(mp) 930 } 931 932 func traceGCStart() { 933 traceEvent(traceEvGCStart, 3, trace.seqGC) 934 trace.seqGC++ 935 } 936 937 func traceGCDone() { 938 traceEvent(traceEvGCDone, -1) 939 } 940 941 func traceGCSTWStart(kind int) { 942 traceEvent(traceEvGCSTWStart, -1, uint64(kind)) 943 } 944 945 func traceGCSTWDone() { 946 traceEvent(traceEvGCSTWDone, -1) 947 } 948 949 // traceGCSweepStart prepares to trace a sweep loop. This does not 950 // emit any events until traceGCSweepSpan is called. 951 // 952 // traceGCSweepStart must be paired with traceGCSweepDone and there 953 // must be no preemption points between these two calls. 954 func traceGCSweepStart() { 955 // Delay the actual GCSweepStart event until the first span 956 // sweep. If we don't sweep anything, don't emit any events. 957 _p_ := getg().m.p.ptr() 958 if _p_.traceSweep { 959 throw("double traceGCSweepStart") 960 } 961 _p_.traceSweep, _p_.traceSwept, _p_.traceReclaimed = true, 0, 0 962 } 963 964 // traceGCSweepSpan traces the sweep of a single page. 965 // 966 // This may be called outside a traceGCSweepStart/traceGCSweepDone 967 // pair; however, it will not emit any trace events in this case. 968 func traceGCSweepSpan(bytesSwept uintptr) { 969 _p_ := getg().m.p.ptr() 970 if _p_.traceSweep { 971 if _p_.traceSwept == 0 { 972 traceEvent(traceEvGCSweepStart, 1) 973 } 974 _p_.traceSwept += bytesSwept 975 } 976 } 977 978 func traceGCSweepDone() { 979 _p_ := getg().m.p.ptr() 980 if !_p_.traceSweep { 981 throw("missing traceGCSweepStart") 982 } 983 if _p_.traceSwept != 0 { 984 traceEvent(traceEvGCSweepDone, -1, uint64(_p_.traceSwept), uint64(_p_.traceReclaimed)) 985 } 986 _p_.traceSweep = false 987 } 988 989 func traceGCMarkAssistStart() { 990 traceEvent(traceEvGCMarkAssistStart, 1) 991 } 992 993 func traceGCMarkAssistDone() { 994 traceEvent(traceEvGCMarkAssistDone, -1) 995 } 996 997 func traceGoCreate(newg *g, pc uintptr) { 998 newg.traceseq = 0 999 newg.tracelastp = getg().m.p 1000 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. 1001 id := trace.stackTab.put([]uintptr{pc + sys.PCQuantum}) 1002 traceEvent(traceEvGoCreate, 2, uint64(newg.goid), uint64(id)) 1003 } 1004 1005 func traceGoStart() { 1006 _g_ := getg().m.curg 1007 _p_ := _g_.m.p 1008 _g_.traceseq++ 1009 if _g_ == _p_.ptr().gcBgMarkWorker.ptr() { 1010 traceEvent(traceEvGoStartLabel, -1, uint64(_g_.goid), _g_.traceseq, trace.markWorkerLabels[_p_.ptr().gcMarkWorkerMode]) 1011 } else if _g_.tracelastp == _p_ { 1012 traceEvent(traceEvGoStartLocal, -1, uint64(_g_.goid)) 1013 } else { 1014 _g_.tracelastp = _p_ 1015 traceEvent(traceEvGoStart, -1, uint64(_g_.goid), _g_.traceseq) 1016 } 1017 } 1018 1019 func traceGoEnd() { 1020 traceEvent(traceEvGoEnd, -1) 1021 } 1022 1023 func traceGoSched() { 1024 _g_ := getg() 1025 _g_.tracelastp = _g_.m.p 1026 traceEvent(traceEvGoSched, 1) 1027 } 1028 1029 func traceGoPreempt() { 1030 _g_ := getg() 1031 _g_.tracelastp = _g_.m.p 1032 traceEvent(traceEvGoPreempt, 1) 1033 } 1034 1035 func traceGoPark(traceEv byte, skip int) { 1036 if traceEv&traceFutileWakeup != 0 { 1037 traceEvent(traceEvFutileWakeup, -1) 1038 } 1039 traceEvent(traceEv & ^traceFutileWakeup, skip) 1040 } 1041 1042 func traceGoUnpark(gp *g, skip int) { 1043 _p_ := getg().m.p 1044 gp.traceseq++ 1045 if gp.tracelastp == _p_ { 1046 traceEvent(traceEvGoUnblockLocal, skip, uint64(gp.goid)) 1047 } else { 1048 gp.tracelastp = _p_ 1049 traceEvent(traceEvGoUnblock, skip, uint64(gp.goid), gp.traceseq) 1050 } 1051 } 1052 1053 func traceGoSysCall() { 1054 traceEvent(traceEvGoSysCall, 1) 1055 } 1056 1057 func traceGoSysExit(ts int64) { 1058 if ts != 0 && ts < trace.ticksStart { 1059 // There is a race between the code that initializes sysexitticks 1060 // (in exitsyscall, which runs without a P, and therefore is not 1061 // stopped with the rest of the world) and the code that initializes 1062 // a new trace. The recorded sysexitticks must therefore be treated 1063 // as "best effort". If they are valid for this trace, then great, 1064 // use them for greater accuracy. But if they're not valid for this 1065 // trace, assume that the trace was started after the actual syscall 1066 // exit (but before we actually managed to start the goroutine, 1067 // aka right now), and assign a fresh time stamp to keep the log consistent. 1068 ts = 0 1069 } 1070 _g_ := getg().m.curg 1071 _g_.traceseq++ 1072 _g_.tracelastp = _g_.m.p 1073 traceEvent(traceEvGoSysExit, -1, uint64(_g_.goid), _g_.traceseq, uint64(ts)/traceTickDiv) 1074 } 1075 1076 func traceGoSysBlock(pp *p) { 1077 // Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked, 1078 // to handle this we temporary employ the P. 1079 mp := acquirem() 1080 oldp := mp.p 1081 mp.p.set(pp) 1082 traceEvent(traceEvGoSysBlock, -1) 1083 mp.p = oldp 1084 releasem(mp) 1085 } 1086 1087 func traceHeapAlloc() { 1088 traceEvent(traceEvHeapAlloc, -1, memstats.heap_live) 1089 } 1090 1091 func traceNextGC() { 1092 if memstats.next_gc == ^uint64(0) { 1093 // Heap-based triggering is disabled. 1094 traceEvent(traceEvNextGC, -1, 0) 1095 } else { 1096 traceEvent(traceEvNextGC, -1, memstats.next_gc) 1097 } 1098 }