github.com/linapex/ethereum-dpos-chinese@v0.0.0-20190316121959-b78b3a4a1ece/crypto/bn256/cloudflare/optate.go (about)

     1  
     2  //<developer>
     3  //    <name>linapex 曹一峰</name>
     4  //    <email>linapex@163.com</email>
     5  //    <wx>superexc</wx>
     6  //    <qqgroup>128148617</qqgroup>
     7  //    <url>https://jsq.ink</url>
     8  //    <role>pku engineer</role>
     9  //    <date>2019-03-16 12:09:36</date>
    10  //</624342625561874432>
    11  
    12  package bn256
    13  
    14  func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2) (a, b, c *gfP2, rOut *twistPoint) {
    15  //从“更快的计算
    16  //泰特配对”,http://arxiv.org/pdf/0904.0854v3.pdf
    17  	B := (&gfP2{}).Mul(&p.x, &r.t)
    18  
    19  	D := (&gfP2{}).Add(&p.y, &r.z)
    20  	D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t)
    21  
    22  	H := (&gfP2{}).Sub(B, &r.x)
    23  	I := (&gfP2{}).Square(H)
    24  
    25  	E := (&gfP2{}).Add(I, I)
    26  	E.Add(E, E)
    27  
    28  	J := (&gfP2{}).Mul(H, E)
    29  
    30  	L1 := (&gfP2{}).Sub(D, &r.y)
    31  	L1.Sub(L1, &r.y)
    32  
    33  	V := (&gfP2{}).Mul(&r.x, E)
    34  
    35  	rOut = &twistPoint{}
    36  	rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V)
    37  
    38  	rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I)
    39  
    40  	t := (&gfP2{}).Sub(V, &rOut.x)
    41  	t.Mul(t, L1)
    42  	t2 := (&gfP2{}).Mul(&r.y, J)
    43  	t2.Add(t2, t2)
    44  	rOut.y.Sub(t, t2)
    45  
    46  	rOut.t.Square(&rOut.z)
    47  
    48  	t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t)
    49  
    50  	t2.Mul(L1, &p.x)
    51  	t2.Add(t2, t2)
    52  	a = (&gfP2{}).Sub(t2, t)
    53  
    54  	c = (&gfP2{}).MulScalar(&rOut.z, &q.y)
    55  	c.Add(c, c)
    56  
    57  	b = (&gfP2{}).Neg(L1)
    58  	b.MulScalar(b, &q.x).Add(b, b)
    59  
    60  	return
    61  }
    62  
    63  func lineFunctionDouble(r *twistPoint, q *curvePoint) (a, b, c *gfP2, rOut *twistPoint) {
    64  //从“更快的
    65  //泰特配对”,http://arxiv.org/pdf/0904.0854v3.pdf
    66  	A := (&gfP2{}).Square(&r.x)
    67  	B := (&gfP2{}).Square(&r.y)
    68  	C := (&gfP2{}).Square(B)
    69  
    70  	D := (&gfP2{}).Add(&r.x, B)
    71  	D.Square(D).Sub(D, A).Sub(D, C).Add(D, D)
    72  
    73  	E := (&gfP2{}).Add(A, A)
    74  	E.Add(E, A)
    75  
    76  	G := (&gfP2{}).Square(E)
    77  
    78  	rOut = &twistPoint{}
    79  	rOut.x.Sub(G, D).Sub(&rOut.x, D)
    80  
    81  	rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t)
    82  
    83  	rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E)
    84  	t := (&gfP2{}).Add(C, C)
    85  	t.Add(t, t).Add(t, t)
    86  	rOut.y.Sub(&rOut.y, t)
    87  
    88  	rOut.t.Square(&rOut.z)
    89  
    90  	t.Mul(E, &r.t).Add(t, t)
    91  	b = (&gfP2{}).Neg(t)
    92  	b.MulScalar(b, &q.x)
    93  
    94  	a = (&gfP2{}).Add(&r.x, E)
    95  	a.Square(a).Sub(a, A).Sub(a, G)
    96  	t.Add(B, B).Add(t, t)
    97  	a.Sub(a, t)
    98  
    99  	c = (&gfP2{}).Mul(&rOut.z, &r.t)
   100  	c.Add(c, c).MulScalar(c, &q.y)
   101  
   102  	return
   103  }
   104  
   105  func mulLine(ret *gfP12, a, b, c *gfP2) {
   106  	a2 := &gfP6{}
   107  	a2.y.Set(a)
   108  	a2.z.Set(b)
   109  	a2.Mul(a2, &ret.x)
   110  	t3 := (&gfP6{}).MulScalar(&ret.y, c)
   111  
   112  	t := (&gfP2{}).Add(b, c)
   113  	t2 := &gfP6{}
   114  	t2.y.Set(a)
   115  	t2.z.Set(t)
   116  	ret.x.Add(&ret.x, &ret.y)
   117  
   118  	ret.y.Set(t3)
   119  
   120  	ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y)
   121  	a2.MulTau(a2)
   122  	ret.y.Add(&ret.y, a2)
   123  }
   124  
   125  //Sixuplus2NAF为6U+2,非相邻形式。
   126  var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
   127  	0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
   128  	1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
   129  	1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
   130  
   131  //Miller实现了用于计算最佳ATE对的Miller循环。
   132  //见算法1 http://crypto绝地.org/papers/dclxvi-20100714.pdf
   133  func miller(q *twistPoint, p *curvePoint) *gfP12 {
   134  	ret := (&gfP12{}).SetOne()
   135  
   136  	aAffine := &twistPoint{}
   137  	aAffine.Set(q)
   138  	aAffine.MakeAffine()
   139  
   140  	bAffine := &curvePoint{}
   141  	bAffine.Set(p)
   142  	bAffine.MakeAffine()
   143  
   144  	minusA := &twistPoint{}
   145  	minusA.Neg(aAffine)
   146  
   147  	r := &twistPoint{}
   148  	r.Set(aAffine)
   149  
   150  	r2 := (&gfP2{}).Square(&aAffine.y)
   151  
   152  	for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
   153  		a, b, c, newR := lineFunctionDouble(r, bAffine)
   154  		if i != len(sixuPlus2NAF)-1 {
   155  			ret.Square(ret)
   156  		}
   157  
   158  		mulLine(ret, a, b, c)
   159  		r = newR
   160  
   161  		switch sixuPlus2NAF[i-1] {
   162  		case 1:
   163  			a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2)
   164  		case -1:
   165  			a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2)
   166  		default:
   167  			continue
   168  		}
   169  
   170  		mulLine(ret, a, b, c)
   171  		r = newR
   172  	}
   173  
   174  //为了计算q1,我们必须把q从性别扭曲中转换出来。
   175  //对于完整的gf(p^12)组,应用frobenius,然后转换
   176  //回来。
   177  //
   178  //扭曲同构为(x’,y’)->(xω2,yω3)。如果我们考虑
   179  //在应用了frobenius之后,我们得到了xω^(2p)
   180  //其中x是x的共轭。如果我们要应用逆
   181  //同构我们需要一个单系数ω2的值,所以我们
   182  //将其改写为xω^(2p-2)ω2。ξ_=ω,由于
   183  //p,2p-2是6的倍数。因此我们可以重写为
   184  //xξ^((p-1)/3)ω2应用逆同构消除了
   185  //ω
   186  //
   187  //可以为Y值创建类似的参数。
   188  
   189  	q1 := &twistPoint{}
   190  	q1.x.Conjugate(&aAffine.x).Mul(&q1.x, xiToPMinus1Over3)
   191  	q1.y.Conjugate(&aAffine.y).Mul(&q1.y, xiToPMinus1Over2)
   192  	q1.z.SetOne()
   193  	q1.t.SetOne()
   194  
   195  //对于第二季度,我们将申请P?Frobenius。这两个共轭抵消了
   196  //我们只剩下同构的因子。在
   197  //在x的情况下,我们得到一个纯数字,这就是为什么
   198  //xitopsquaredminus1 over3是∈gf(p)。用y我们得到-1的因子。我们
   199  //忽略这一点以-q2结束。
   200  
   201  	minusQ2 := &twistPoint{}
   202  	minusQ2.x.MulScalar(&aAffine.x, xiToPSquaredMinus1Over3)
   203  	minusQ2.y.Set(&aAffine.y)
   204  	minusQ2.z.SetOne()
   205  	minusQ2.t.SetOne()
   206  
   207  	r2.Square(&q1.y)
   208  	a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2)
   209  	mulLine(ret, a, b, c)
   210  	r = newR
   211  
   212  	r2.Square(&minusQ2.y)
   213  	a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2)
   214  	mulLine(ret, a, b, c)
   215  	r = newR
   216  
   217  	return ret
   218  }
   219  
   220  //finalexponentation计算元素的
   221  //gf(p_2)获取gt元素(算法1的步骤13-15)
   222  //http://cryptojedi.org/papers/dclxvi-20100714.pdf)
   223  func finalExponentiation(in *gfP12) *gfP12 {
   224  	t1 := &gfP12{}
   225  
   226  //这是P^6-Frobenius
   227  	t1.x.Neg(&in.x)
   228  	t1.y.Set(&in.y)
   229  
   230  	inv := &gfP12{}
   231  	inv.Invert(in)
   232  	t1.Mul(t1, inv)
   233  
   234  	t2 := (&gfP12{}).FrobeniusP2(t1)
   235  	t1.Mul(t1, t2)
   236  
   237  	fp := (&gfP12{}).Frobenius(t1)
   238  	fp2 := (&gfP12{}).FrobeniusP2(t1)
   239  	fp3 := (&gfP12{}).Frobenius(fp2)
   240  
   241  	fu := (&gfP12{}).Exp(t1, u)
   242  	fu2 := (&gfP12{}).Exp(fu, u)
   243  	fu3 := (&gfP12{}).Exp(fu2, u)
   244  
   245  	y3 := (&gfP12{}).Frobenius(fu)
   246  	fu2p := (&gfP12{}).Frobenius(fu2)
   247  	fu3p := (&gfP12{}).Frobenius(fu3)
   248  	y2 := (&gfP12{}).FrobeniusP2(fu2)
   249  
   250  	y0 := &gfP12{}
   251  	y0.Mul(fp, fp2).Mul(y0, fp3)
   252  
   253  	y1 := (&gfP12{}).Conjugate(t1)
   254  	y5 := (&gfP12{}).Conjugate(fu2)
   255  	y3.Conjugate(y3)
   256  	y4 := (&gfP12{}).Mul(fu, fu2p)
   257  	y4.Conjugate(y4)
   258  
   259  	y6 := (&gfP12{}).Mul(fu3, fu3p)
   260  	y6.Conjugate(y6)
   261  
   262  	t0 := (&gfP12{}).Square(y6)
   263  	t0.Mul(t0, y4).Mul(t0, y5)
   264  	t1.Mul(y3, y5).Mul(t1, t0)
   265  	t0.Mul(t0, y2)
   266  	t1.Square(t1).Mul(t1, t0).Square(t1)
   267  	t0.Mul(t1, y1)
   268  	t1.Mul(t1, y0)
   269  	t0.Square(t0).Mul(t0, t1)
   270  
   271  	return t0
   272  }
   273  
   274  func optimalAte(a *twistPoint, b *curvePoint) *gfP12 {
   275  	e := miller(a, b)
   276  	ret := finalExponentiation(e)
   277  
   278  	if a.IsInfinity() || b.IsInfinity() {
   279  		ret.SetOne()
   280  	}
   281  	return ret
   282  }
   283