github.com/llvm-mirror/llgo@v0.0.0-20190322182713-bf6f0a60fce1/third_party/gofrontend/libgo/go/regexp/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package regexp
     6  
     7  import (
     8  	"io"
     9  	"regexp/syntax"
    10  )
    11  
    12  // A queue is a 'sparse array' holding pending threads of execution.
    13  // See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
    14  type queue struct {
    15  	sparse []uint32
    16  	dense  []entry
    17  }
    18  
    19  // A entry is an entry on a queue.
    20  // It holds both the instruction pc and the actual thread.
    21  // Some queue entries are just place holders so that the machine
    22  // knows it has considered that pc.  Such entries have t == nil.
    23  type entry struct {
    24  	pc uint32
    25  	t  *thread
    26  }
    27  
    28  // A thread is the state of a single path through the machine:
    29  // an instruction and a corresponding capture array.
    30  // See http://swtch.com/~rsc/regexp/regexp2.html
    31  type thread struct {
    32  	inst *syntax.Inst
    33  	cap  []int
    34  }
    35  
    36  // A machine holds all the state during an NFA simulation for p.
    37  type machine struct {
    38  	re             *Regexp      // corresponding Regexp
    39  	p              *syntax.Prog // compiled program
    40  	op             *onePassProg // compiled onepass program, or notOnePass
    41  	maxBitStateLen int          // max length of string to search with bitstate
    42  	b              *bitState    // state for backtracker, allocated lazily
    43  	q0, q1         queue        // two queues for runq, nextq
    44  	pool           []*thread    // pool of available threads
    45  	matched        bool         // whether a match was found
    46  	matchcap       []int        // capture information for the match
    47  
    48  	// cached inputs, to avoid allocation
    49  	inputBytes  inputBytes
    50  	inputString inputString
    51  	inputReader inputReader
    52  }
    53  
    54  func (m *machine) newInputBytes(b []byte) input {
    55  	m.inputBytes.str = b
    56  	return &m.inputBytes
    57  }
    58  
    59  func (m *machine) newInputString(s string) input {
    60  	m.inputString.str = s
    61  	return &m.inputString
    62  }
    63  
    64  func (m *machine) newInputReader(r io.RuneReader) input {
    65  	m.inputReader.r = r
    66  	m.inputReader.atEOT = false
    67  	m.inputReader.pos = 0
    68  	return &m.inputReader
    69  }
    70  
    71  // progMachine returns a new machine running the prog p.
    72  func progMachine(p *syntax.Prog, op *onePassProg) *machine {
    73  	m := &machine{p: p, op: op}
    74  	n := len(m.p.Inst)
    75  	m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
    76  	m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
    77  	ncap := p.NumCap
    78  	if ncap < 2 {
    79  		ncap = 2
    80  	}
    81  	if op == notOnePass {
    82  		m.maxBitStateLen = maxBitStateLen(p)
    83  	}
    84  	m.matchcap = make([]int, ncap)
    85  	return m
    86  }
    87  
    88  func (m *machine) init(ncap int) {
    89  	for _, t := range m.pool {
    90  		t.cap = t.cap[:ncap]
    91  	}
    92  	m.matchcap = m.matchcap[:ncap]
    93  }
    94  
    95  // alloc allocates a new thread with the given instruction.
    96  // It uses the free pool if possible.
    97  func (m *machine) alloc(i *syntax.Inst) *thread {
    98  	var t *thread
    99  	if n := len(m.pool); n > 0 {
   100  		t = m.pool[n-1]
   101  		m.pool = m.pool[:n-1]
   102  	} else {
   103  		t = new(thread)
   104  		t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
   105  	}
   106  	t.inst = i
   107  	return t
   108  }
   109  
   110  // free returns t to the free pool.
   111  func (m *machine) free(t *thread) {
   112  	m.inputBytes.str = nil
   113  	m.inputString.str = ""
   114  	m.inputReader.r = nil
   115  	m.pool = append(m.pool, t)
   116  }
   117  
   118  // match runs the machine over the input starting at pos.
   119  // It reports whether a match was found.
   120  // If so, m.matchcap holds the submatch information.
   121  func (m *machine) match(i input, pos int) bool {
   122  	startCond := m.re.cond
   123  	if startCond == ^syntax.EmptyOp(0) { // impossible
   124  		return false
   125  	}
   126  	m.matched = false
   127  	for i := range m.matchcap {
   128  		m.matchcap[i] = -1
   129  	}
   130  	runq, nextq := &m.q0, &m.q1
   131  	r, r1 := endOfText, endOfText
   132  	width, width1 := 0, 0
   133  	r, width = i.step(pos)
   134  	if r != endOfText {
   135  		r1, width1 = i.step(pos + width)
   136  	}
   137  	var flag syntax.EmptyOp
   138  	if pos == 0 {
   139  		flag = syntax.EmptyOpContext(-1, r)
   140  	} else {
   141  		flag = i.context(pos)
   142  	}
   143  	for {
   144  		if len(runq.dense) == 0 {
   145  			if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
   146  				// Anchored match, past beginning of text.
   147  				break
   148  			}
   149  			if m.matched {
   150  				// Have match; finished exploring alternatives.
   151  				break
   152  			}
   153  			if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
   154  				// Match requires literal prefix; fast search for it.
   155  				advance := i.index(m.re, pos)
   156  				if advance < 0 {
   157  					break
   158  				}
   159  				pos += advance
   160  				r, width = i.step(pos)
   161  				r1, width1 = i.step(pos + width)
   162  			}
   163  		}
   164  		if !m.matched {
   165  			if len(m.matchcap) > 0 {
   166  				m.matchcap[0] = pos
   167  			}
   168  			m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)
   169  		}
   170  		flag = syntax.EmptyOpContext(r, r1)
   171  		m.step(runq, nextq, pos, pos+width, r, flag)
   172  		if width == 0 {
   173  			break
   174  		}
   175  		if len(m.matchcap) == 0 && m.matched {
   176  			// Found a match and not paying attention
   177  			// to where it is, so any match will do.
   178  			break
   179  		}
   180  		pos += width
   181  		r, width = r1, width1
   182  		if r != endOfText {
   183  			r1, width1 = i.step(pos + width)
   184  		}
   185  		runq, nextq = nextq, runq
   186  	}
   187  	m.clear(nextq)
   188  	return m.matched
   189  }
   190  
   191  // clear frees all threads on the thread queue.
   192  func (m *machine) clear(q *queue) {
   193  	for _, d := range q.dense {
   194  		if d.t != nil {
   195  			// m.free(d.t)
   196  			m.pool = append(m.pool, d.t)
   197  		}
   198  	}
   199  	q.dense = q.dense[:0]
   200  }
   201  
   202  // step executes one step of the machine, running each of the threads
   203  // on runq and appending new threads to nextq.
   204  // The step processes the rune c (which may be endOfText),
   205  // which starts at position pos and ends at nextPos.
   206  // nextCond gives the setting for the empty-width flags after c.
   207  func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {
   208  	longest := m.re.longest
   209  	for j := 0; j < len(runq.dense); j++ {
   210  		d := &runq.dense[j]
   211  		t := d.t
   212  		if t == nil {
   213  			continue
   214  		}
   215  		if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
   216  			// m.free(t)
   217  			m.pool = append(m.pool, t)
   218  			continue
   219  		}
   220  		i := t.inst
   221  		add := false
   222  		switch i.Op {
   223  		default:
   224  			panic("bad inst")
   225  
   226  		case syntax.InstMatch:
   227  			if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
   228  				t.cap[1] = pos
   229  				copy(m.matchcap, t.cap)
   230  			}
   231  			if !longest {
   232  				// First-match mode: cut off all lower-priority threads.
   233  				for _, d := range runq.dense[j+1:] {
   234  					if d.t != nil {
   235  						// m.free(d.t)
   236  						m.pool = append(m.pool, d.t)
   237  					}
   238  				}
   239  				runq.dense = runq.dense[:0]
   240  			}
   241  			m.matched = true
   242  
   243  		case syntax.InstRune:
   244  			add = i.MatchRune(c)
   245  		case syntax.InstRune1:
   246  			add = c == i.Rune[0]
   247  		case syntax.InstRuneAny:
   248  			add = true
   249  		case syntax.InstRuneAnyNotNL:
   250  			add = c != '\n'
   251  		}
   252  		if add {
   253  			t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
   254  		}
   255  		if t != nil {
   256  			// m.free(t)
   257  			m.pool = append(m.pool, t)
   258  		}
   259  	}
   260  	runq.dense = runq.dense[:0]
   261  }
   262  
   263  // add adds an entry to q for pc, unless the q already has such an entry.
   264  // It also recursively adds an entry for all instructions reachable from pc by following
   265  // empty-width conditions satisfied by cond.  pos gives the current position
   266  // in the input.
   267  func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread {
   268  	if pc == 0 {
   269  		return t
   270  	}
   271  	if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
   272  		return t
   273  	}
   274  
   275  	j := len(q.dense)
   276  	q.dense = q.dense[:j+1]
   277  	d := &q.dense[j]
   278  	d.t = nil
   279  	d.pc = pc
   280  	q.sparse[pc] = uint32(j)
   281  
   282  	i := &m.p.Inst[pc]
   283  	switch i.Op {
   284  	default:
   285  		panic("unhandled")
   286  	case syntax.InstFail:
   287  		// nothing
   288  	case syntax.InstAlt, syntax.InstAltMatch:
   289  		t = m.add(q, i.Out, pos, cap, cond, t)
   290  		t = m.add(q, i.Arg, pos, cap, cond, t)
   291  	case syntax.InstEmptyWidth:
   292  		if syntax.EmptyOp(i.Arg)&^cond == 0 {
   293  			t = m.add(q, i.Out, pos, cap, cond, t)
   294  		}
   295  	case syntax.InstNop:
   296  		t = m.add(q, i.Out, pos, cap, cond, t)
   297  	case syntax.InstCapture:
   298  		if int(i.Arg) < len(cap) {
   299  			opos := cap[i.Arg]
   300  			cap[i.Arg] = pos
   301  			m.add(q, i.Out, pos, cap, cond, nil)
   302  			cap[i.Arg] = opos
   303  		} else {
   304  			t = m.add(q, i.Out, pos, cap, cond, t)
   305  		}
   306  	case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
   307  		if t == nil {
   308  			t = m.alloc(i)
   309  		} else {
   310  			t.inst = i
   311  		}
   312  		if len(cap) > 0 && &t.cap[0] != &cap[0] {
   313  			copy(t.cap, cap)
   314  		}
   315  		d.t = t
   316  		t = nil
   317  	}
   318  	return t
   319  }
   320  
   321  // onepass runs the machine over the input starting at pos.
   322  // It reports whether a match was found.
   323  // If so, m.matchcap holds the submatch information.
   324  func (m *machine) onepass(i input, pos int) bool {
   325  	startCond := m.re.cond
   326  	if startCond == ^syntax.EmptyOp(0) { // impossible
   327  		return false
   328  	}
   329  	m.matched = false
   330  	for i := range m.matchcap {
   331  		m.matchcap[i] = -1
   332  	}
   333  	r, r1 := endOfText, endOfText
   334  	width, width1 := 0, 0
   335  	r, width = i.step(pos)
   336  	if r != endOfText {
   337  		r1, width1 = i.step(pos + width)
   338  	}
   339  	var flag syntax.EmptyOp
   340  	if pos == 0 {
   341  		flag = syntax.EmptyOpContext(-1, r)
   342  	} else {
   343  		flag = i.context(pos)
   344  	}
   345  	pc := m.op.Start
   346  	inst := m.op.Inst[pc]
   347  	// If there is a simple literal prefix, skip over it.
   348  	if pos == 0 && syntax.EmptyOp(inst.Arg)&^flag == 0 &&
   349  		len(m.re.prefix) > 0 && i.canCheckPrefix() {
   350  		// Match requires literal prefix; fast search for it.
   351  		if i.hasPrefix(m.re) {
   352  			pos += len(m.re.prefix)
   353  			r, width = i.step(pos)
   354  			r1, width1 = i.step(pos + width)
   355  			flag = i.context(pos)
   356  			pc = int(m.re.prefixEnd)
   357  		} else {
   358  			return m.matched
   359  		}
   360  	}
   361  	for {
   362  		inst = m.op.Inst[pc]
   363  		pc = int(inst.Out)
   364  		switch inst.Op {
   365  		default:
   366  			panic("bad inst")
   367  		case syntax.InstMatch:
   368  			m.matched = true
   369  			if len(m.matchcap) > 0 {
   370  				m.matchcap[0] = 0
   371  				m.matchcap[1] = pos
   372  			}
   373  			return m.matched
   374  		case syntax.InstRune:
   375  			if !inst.MatchRune(r) {
   376  				return m.matched
   377  			}
   378  		case syntax.InstRune1:
   379  			if r != inst.Rune[0] {
   380  				return m.matched
   381  			}
   382  		case syntax.InstRuneAny:
   383  			// Nothing
   384  		case syntax.InstRuneAnyNotNL:
   385  			if r == '\n' {
   386  				return m.matched
   387  			}
   388  		// peek at the input rune to see which branch of the Alt to take
   389  		case syntax.InstAlt, syntax.InstAltMatch:
   390  			pc = int(onePassNext(&inst, r))
   391  			continue
   392  		case syntax.InstFail:
   393  			return m.matched
   394  		case syntax.InstNop:
   395  			continue
   396  		case syntax.InstEmptyWidth:
   397  			if syntax.EmptyOp(inst.Arg)&^flag != 0 {
   398  				return m.matched
   399  			}
   400  			continue
   401  		case syntax.InstCapture:
   402  			if int(inst.Arg) < len(m.matchcap) {
   403  				m.matchcap[inst.Arg] = pos
   404  			}
   405  			continue
   406  		}
   407  		if width == 0 {
   408  			break
   409  		}
   410  		flag = syntax.EmptyOpContext(r, r1)
   411  		pos += width
   412  		r, width = r1, width1
   413  		if r != endOfText {
   414  			r1, width1 = i.step(pos + width)
   415  		}
   416  	}
   417  	return m.matched
   418  }
   419  
   420  // empty is a non-nil 0-element slice,
   421  // so doExecute can avoid an allocation
   422  // when 0 captures are requested from a successful match.
   423  var empty = make([]int, 0)
   424  
   425  // doExecute finds the leftmost match in the input and returns
   426  // the position of its subexpressions.
   427  func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int {
   428  	m := re.get()
   429  	var i input
   430  	var size int
   431  	if r != nil {
   432  		i = m.newInputReader(r)
   433  	} else if b != nil {
   434  		i = m.newInputBytes(b)
   435  		size = len(b)
   436  	} else {
   437  		i = m.newInputString(s)
   438  		size = len(s)
   439  	}
   440  	if m.op != notOnePass {
   441  		if !m.onepass(i, pos) {
   442  			re.put(m)
   443  			return nil
   444  		}
   445  	} else if size < m.maxBitStateLen && r == nil {
   446  		if m.b == nil {
   447  			m.b = newBitState(m.p)
   448  		}
   449  		if !m.backtrack(i, pos, size, ncap) {
   450  			re.put(m)
   451  			return nil
   452  		}
   453  	} else {
   454  		m.init(ncap)
   455  		if !m.match(i, pos) {
   456  			re.put(m)
   457  			return nil
   458  		}
   459  	}
   460  	if ncap == 0 {
   461  		re.put(m)
   462  		return empty // empty but not nil
   463  	}
   464  	cap := make([]int, len(m.matchcap))
   465  	copy(cap, m.matchcap)
   466  	re.put(m)
   467  	return cap
   468  }