github.com/llvm-mirror/llgo@v0.0.0-20190322182713-bf6f0a60fce1/third_party/gofrontend/libgo/go/testing/quick/quick.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package quick implements utility functions to help with black box testing. 6 package quick 7 8 import ( 9 "flag" 10 "fmt" 11 "math" 12 "math/rand" 13 "reflect" 14 "strings" 15 ) 16 17 var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check") 18 19 // A Generator can generate random values of its own type. 20 type Generator interface { 21 // Generate returns a random instance of the type on which it is a 22 // method using the size as a size hint. 23 Generate(rand *rand.Rand, size int) reflect.Value 24 } 25 26 // randFloat32 generates a random float taking the full range of a float32. 27 func randFloat32(rand *rand.Rand) float32 { 28 f := rand.Float64() * math.MaxFloat32 29 if rand.Int()&1 == 1 { 30 f = -f 31 } 32 return float32(f) 33 } 34 35 // randFloat64 generates a random float taking the full range of a float64. 36 func randFloat64(rand *rand.Rand) float64 { 37 f := rand.Float64() * math.MaxFloat64 38 if rand.Int()&1 == 1 { 39 f = -f 40 } 41 return f 42 } 43 44 // randInt64 returns a random integer taking half the range of an int64. 45 func randInt64(rand *rand.Rand) int64 { return rand.Int63() - 1<<62 } 46 47 // complexSize is the maximum length of arbitrary values that contain other 48 // values. 49 const complexSize = 50 50 51 // Value returns an arbitrary value of the given type. 52 // If the type implements the Generator interface, that will be used. 53 // Note: To create arbitrary values for structs, all the fields must be exported. 54 func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) { 55 if m, ok := reflect.Zero(t).Interface().(Generator); ok { 56 return m.Generate(rand, complexSize), true 57 } 58 59 v := reflect.New(t).Elem() 60 switch concrete := t; concrete.Kind() { 61 case reflect.Bool: 62 v.SetBool(rand.Int()&1 == 0) 63 case reflect.Float32: 64 v.SetFloat(float64(randFloat32(rand))) 65 case reflect.Float64: 66 v.SetFloat(randFloat64(rand)) 67 case reflect.Complex64: 68 v.SetComplex(complex(float64(randFloat32(rand)), float64(randFloat32(rand)))) 69 case reflect.Complex128: 70 v.SetComplex(complex(randFloat64(rand), randFloat64(rand))) 71 case reflect.Int16: 72 v.SetInt(randInt64(rand)) 73 case reflect.Int32: 74 v.SetInt(randInt64(rand)) 75 case reflect.Int64: 76 v.SetInt(randInt64(rand)) 77 case reflect.Int8: 78 v.SetInt(randInt64(rand)) 79 case reflect.Int: 80 v.SetInt(randInt64(rand)) 81 case reflect.Uint16: 82 v.SetUint(uint64(randInt64(rand))) 83 case reflect.Uint32: 84 v.SetUint(uint64(randInt64(rand))) 85 case reflect.Uint64: 86 v.SetUint(uint64(randInt64(rand))) 87 case reflect.Uint8: 88 v.SetUint(uint64(randInt64(rand))) 89 case reflect.Uint: 90 v.SetUint(uint64(randInt64(rand))) 91 case reflect.Uintptr: 92 v.SetUint(uint64(randInt64(rand))) 93 case reflect.Map: 94 numElems := rand.Intn(complexSize) 95 v.Set(reflect.MakeMap(concrete)) 96 for i := 0; i < numElems; i++ { 97 key, ok1 := Value(concrete.Key(), rand) 98 value, ok2 := Value(concrete.Elem(), rand) 99 if !ok1 || !ok2 { 100 return reflect.Value{}, false 101 } 102 v.SetMapIndex(key, value) 103 } 104 case reflect.Ptr: 105 if rand.Intn(complexSize) == 0 { 106 v.Set(reflect.Zero(concrete)) // Generate nil pointer. 107 } else { 108 elem, ok := Value(concrete.Elem(), rand) 109 if !ok { 110 return reflect.Value{}, false 111 } 112 v.Set(reflect.New(concrete.Elem())) 113 v.Elem().Set(elem) 114 } 115 case reflect.Slice: 116 numElems := rand.Intn(complexSize) 117 v.Set(reflect.MakeSlice(concrete, numElems, numElems)) 118 for i := 0; i < numElems; i++ { 119 elem, ok := Value(concrete.Elem(), rand) 120 if !ok { 121 return reflect.Value{}, false 122 } 123 v.Index(i).Set(elem) 124 } 125 case reflect.Array: 126 for i := 0; i < v.Len(); i++ { 127 elem, ok := Value(concrete.Elem(), rand) 128 if !ok { 129 return reflect.Value{}, false 130 } 131 v.Index(i).Set(elem) 132 } 133 case reflect.String: 134 numChars := rand.Intn(complexSize) 135 codePoints := make([]rune, numChars) 136 for i := 0; i < numChars; i++ { 137 codePoints[i] = rune(rand.Intn(0x10ffff)) 138 } 139 v.SetString(string(codePoints)) 140 case reflect.Struct: 141 for i := 0; i < v.NumField(); i++ { 142 elem, ok := Value(concrete.Field(i).Type, rand) 143 if !ok { 144 return reflect.Value{}, false 145 } 146 v.Field(i).Set(elem) 147 } 148 default: 149 return reflect.Value{}, false 150 } 151 152 return v, true 153 } 154 155 // A Config structure contains options for running a test. 156 type Config struct { 157 // MaxCount sets the maximum number of iterations. If zero, 158 // MaxCountScale is used. 159 MaxCount int 160 // MaxCountScale is a non-negative scale factor applied to the default 161 // maximum. If zero, the default is unchanged. 162 MaxCountScale float64 163 // If non-nil, rand is a source of random numbers. Otherwise a default 164 // pseudo-random source will be used. 165 Rand *rand.Rand 166 // If non-nil, the Values function generates a slice of arbitrary 167 // reflect.Values that are congruent with the arguments to the function 168 // being tested. Otherwise, the top-level Value function is used 169 // to generate them. 170 Values func([]reflect.Value, *rand.Rand) 171 } 172 173 var defaultConfig Config 174 175 // getRand returns the *rand.Rand to use for a given Config. 176 func (c *Config) getRand() *rand.Rand { 177 if c.Rand == nil { 178 return rand.New(rand.NewSource(0)) 179 } 180 return c.Rand 181 } 182 183 // getMaxCount returns the maximum number of iterations to run for a given 184 // Config. 185 func (c *Config) getMaxCount() (maxCount int) { 186 maxCount = c.MaxCount 187 if maxCount == 0 { 188 if c.MaxCountScale != 0 { 189 maxCount = int(c.MaxCountScale * float64(*defaultMaxCount)) 190 } else { 191 maxCount = *defaultMaxCount 192 } 193 } 194 195 return 196 } 197 198 // A SetupError is the result of an error in the way that check is being 199 // used, independent of the functions being tested. 200 type SetupError string 201 202 func (s SetupError) Error() string { return string(s) } 203 204 // A CheckError is the result of Check finding an error. 205 type CheckError struct { 206 Count int 207 In []interface{} 208 } 209 210 func (s *CheckError) Error() string { 211 return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In)) 212 } 213 214 // A CheckEqualError is the result CheckEqual finding an error. 215 type CheckEqualError struct { 216 CheckError 217 Out1 []interface{} 218 Out2 []interface{} 219 } 220 221 func (s *CheckEqualError) Error() string { 222 return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2)) 223 } 224 225 // Check looks for an input to f, any function that returns bool, 226 // such that f returns false. It calls f repeatedly, with arbitrary 227 // values for each argument. If f returns false on a given input, 228 // Check returns that input as a *CheckError. 229 // For example: 230 // 231 // func TestOddMultipleOfThree(t *testing.T) { 232 // f := func(x int) bool { 233 // y := OddMultipleOfThree(x) 234 // return y%2 == 1 && y%3 == 0 235 // } 236 // if err := quick.Check(f, nil); err != nil { 237 // t.Error(err) 238 // } 239 // } 240 func Check(f interface{}, config *Config) (err error) { 241 if config == nil { 242 config = &defaultConfig 243 } 244 245 fVal, fType, ok := functionAndType(f) 246 if !ok { 247 err = SetupError("argument is not a function") 248 return 249 } 250 251 if fType.NumOut() != 1 { 252 err = SetupError("function does not return one value") 253 return 254 } 255 if fType.Out(0).Kind() != reflect.Bool { 256 err = SetupError("function does not return a bool") 257 return 258 } 259 260 arguments := make([]reflect.Value, fType.NumIn()) 261 rand := config.getRand() 262 maxCount := config.getMaxCount() 263 264 for i := 0; i < maxCount; i++ { 265 err = arbitraryValues(arguments, fType, config, rand) 266 if err != nil { 267 return 268 } 269 270 if !fVal.Call(arguments)[0].Bool() { 271 err = &CheckError{i + 1, toInterfaces(arguments)} 272 return 273 } 274 } 275 276 return 277 } 278 279 // CheckEqual looks for an input on which f and g return different results. 280 // It calls f and g repeatedly with arbitrary values for each argument. 281 // If f and g return different answers, CheckEqual returns a *CheckEqualError 282 // describing the input and the outputs. 283 func CheckEqual(f, g interface{}, config *Config) (err error) { 284 if config == nil { 285 config = &defaultConfig 286 } 287 288 x, xType, ok := functionAndType(f) 289 if !ok { 290 err = SetupError("f is not a function") 291 return 292 } 293 y, yType, ok := functionAndType(g) 294 if !ok { 295 err = SetupError("g is not a function") 296 return 297 } 298 299 if xType != yType { 300 err = SetupError("functions have different types") 301 return 302 } 303 304 arguments := make([]reflect.Value, xType.NumIn()) 305 rand := config.getRand() 306 maxCount := config.getMaxCount() 307 308 for i := 0; i < maxCount; i++ { 309 err = arbitraryValues(arguments, xType, config, rand) 310 if err != nil { 311 return 312 } 313 314 xOut := toInterfaces(x.Call(arguments)) 315 yOut := toInterfaces(y.Call(arguments)) 316 317 if !reflect.DeepEqual(xOut, yOut) { 318 err = &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut} 319 return 320 } 321 } 322 323 return 324 } 325 326 // arbitraryValues writes Values to args such that args contains Values 327 // suitable for calling f. 328 func arbitraryValues(args []reflect.Value, f reflect.Type, config *Config, rand *rand.Rand) (err error) { 329 if config.Values != nil { 330 config.Values(args, rand) 331 return 332 } 333 334 for j := 0; j < len(args); j++ { 335 var ok bool 336 args[j], ok = Value(f.In(j), rand) 337 if !ok { 338 err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j)) 339 return 340 } 341 } 342 343 return 344 } 345 346 func functionAndType(f interface{}) (v reflect.Value, t reflect.Type, ok bool) { 347 v = reflect.ValueOf(f) 348 ok = v.Kind() == reflect.Func 349 if !ok { 350 return 351 } 352 t = v.Type() 353 return 354 } 355 356 func toInterfaces(values []reflect.Value) []interface{} { 357 ret := make([]interface{}, len(values)) 358 for i, v := range values { 359 ret[i] = v.Interface() 360 } 361 return ret 362 } 363 364 func toString(interfaces []interface{}) string { 365 s := make([]string, len(interfaces)) 366 for i, v := range interfaces { 367 s[i] = fmt.Sprintf("%#v", v) 368 } 369 return strings.Join(s, ", ") 370 }