github.com/llvm-mirror/llgo@v0.0.0-20190322182713-bf6f0a60fce1/third_party/gotools/go/pointer/gen.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package pointer
     6  
     7  // This file defines the constraint generation phase.
     8  
     9  // TODO(adonovan): move the constraint definitions and the store() etc
    10  // functions which add them (and are also used by the solver) into a
    11  // new file, constraints.go.
    12  
    13  import (
    14  	"fmt"
    15  	"go/token"
    16  
    17  	"llvm.org/llgo/third_party/gotools/go/callgraph"
    18  	"llvm.org/llgo/third_party/gotools/go/ssa"
    19  	"llvm.org/llgo/third_party/gotools/go/types"
    20  )
    21  
    22  var (
    23  	tEface     = types.NewInterface(nil, nil).Complete()
    24  	tInvalid   = types.Typ[types.Invalid]
    25  	tUnsafePtr = types.Typ[types.UnsafePointer]
    26  )
    27  
    28  // ---------- Node creation ----------
    29  
    30  // nextNode returns the index of the next unused node.
    31  func (a *analysis) nextNode() nodeid {
    32  	return nodeid(len(a.nodes))
    33  }
    34  
    35  // addNodes creates nodes for all scalar elements in type typ, and
    36  // returns the id of the first one, or zero if the type was
    37  // analytically uninteresting.
    38  //
    39  // comment explains the origin of the nodes, as a debugging aid.
    40  //
    41  func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
    42  	id := a.nextNode()
    43  	for _, fi := range a.flatten(typ) {
    44  		a.addOneNode(fi.typ, comment, fi)
    45  	}
    46  	if id == a.nextNode() {
    47  		return 0 // type contained no pointers
    48  	}
    49  	return id
    50  }
    51  
    52  // addOneNode creates a single node with type typ, and returns its id.
    53  //
    54  // typ should generally be scalar (except for tagged.T nodes
    55  // and struct/array identity nodes).  Use addNodes for non-scalar types.
    56  //
    57  // comment explains the origin of the nodes, as a debugging aid.
    58  // subelement indicates the subelement, e.g. ".a.b[*].c".
    59  //
    60  func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
    61  	id := a.nextNode()
    62  	a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement, solve: new(solverState)})
    63  	if a.log != nil {
    64  		fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
    65  			id, typ, comment, subelement.path())
    66  	}
    67  	return id
    68  }
    69  
    70  // setValueNode associates node id with the value v.
    71  // cgn identifies the context iff v is a local variable.
    72  //
    73  func (a *analysis) setValueNode(v ssa.Value, id nodeid, cgn *cgnode) {
    74  	if cgn != nil {
    75  		a.localval[v] = id
    76  	} else {
    77  		a.globalval[v] = id
    78  	}
    79  	if a.log != nil {
    80  		fmt.Fprintf(a.log, "\tval[%s] = n%d  (%T)\n", v.Name(), id, v)
    81  	}
    82  
    83  	// Due to context-sensitivity, we may encounter the same Value
    84  	// in many contexts. We merge them to a canonical node, since
    85  	// that's what all clients want.
    86  
    87  	// Record the (v, id) relation if the client has queried pts(v).
    88  	if _, ok := a.config.Queries[v]; ok {
    89  		t := v.Type()
    90  		ptr, ok := a.result.Queries[v]
    91  		if !ok {
    92  			// First time?  Create the canonical query node.
    93  			ptr = Pointer{a, a.addNodes(t, "query")}
    94  			a.result.Queries[v] = ptr
    95  		}
    96  		a.result.Queries[v] = ptr
    97  		a.copy(ptr.n, id, a.sizeof(t))
    98  	}
    99  
   100  	// Record the (*v, id) relation if the client has queried pts(*v).
   101  	if _, ok := a.config.IndirectQueries[v]; ok {
   102  		t := v.Type()
   103  		ptr, ok := a.result.IndirectQueries[v]
   104  		if !ok {
   105  			// First time? Create the canonical indirect query node.
   106  			ptr = Pointer{a, a.addNodes(v.Type(), "query.indirect")}
   107  			a.result.IndirectQueries[v] = ptr
   108  		}
   109  		a.genLoad(cgn, ptr.n, v, 0, a.sizeof(t))
   110  	}
   111  }
   112  
   113  // endObject marks the end of a sequence of calls to addNodes denoting
   114  // a single object allocation.
   115  //
   116  // obj is the start node of the object, from a prior call to nextNode.
   117  // Its size, flags and optional data will be updated.
   118  //
   119  func (a *analysis) endObject(obj nodeid, cgn *cgnode, data interface{}) *object {
   120  	// Ensure object is non-empty by padding;
   121  	// the pad will be the object node.
   122  	size := uint32(a.nextNode() - obj)
   123  	if size == 0 {
   124  		a.addOneNode(tInvalid, "padding", nil)
   125  	}
   126  	objNode := a.nodes[obj]
   127  	o := &object{
   128  		size: size, // excludes padding
   129  		cgn:  cgn,
   130  		data: data,
   131  	}
   132  	objNode.obj = o
   133  
   134  	return o
   135  }
   136  
   137  // makeFunctionObject creates and returns a new function object
   138  // (contour) for fn, and returns the id of its first node.  It also
   139  // enqueues fn for subsequent constraint generation.
   140  //
   141  // For a context-sensitive contour, callersite identifies the sole
   142  // callsite; for shared contours, caller is nil.
   143  //
   144  func (a *analysis) makeFunctionObject(fn *ssa.Function, callersite *callsite) nodeid {
   145  	if a.log != nil {
   146  		fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
   147  	}
   148  
   149  	// obj is the function object (identity, params, results).
   150  	obj := a.nextNode()
   151  	cgn := a.makeCGNode(fn, obj, callersite)
   152  	sig := fn.Signature
   153  	a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
   154  	if recv := sig.Recv(); recv != nil {
   155  		a.addNodes(recv.Type(), "func.recv")
   156  	}
   157  	a.addNodes(sig.Params(), "func.params")
   158  	a.addNodes(sig.Results(), "func.results")
   159  	a.endObject(obj, cgn, fn).flags |= otFunction
   160  
   161  	if a.log != nil {
   162  		fmt.Fprintf(a.log, "\t----\n")
   163  	}
   164  
   165  	// Queue it up for constraint processing.
   166  	a.genq = append(a.genq, cgn)
   167  
   168  	return obj
   169  }
   170  
   171  // makeTagged creates a tagged object of type typ.
   172  func (a *analysis) makeTagged(typ types.Type, cgn *cgnode, data interface{}) nodeid {
   173  	obj := a.addOneNode(typ, "tagged.T", nil) // NB: type may be non-scalar!
   174  	a.addNodes(typ, "tagged.v")
   175  	a.endObject(obj, cgn, data).flags |= otTagged
   176  	return obj
   177  }
   178  
   179  // makeRtype returns the canonical tagged object of type *rtype whose
   180  // payload points to the sole rtype object for T.
   181  //
   182  // TODO(adonovan): move to reflect.go; it's part of the solver really.
   183  //
   184  func (a *analysis) makeRtype(T types.Type) nodeid {
   185  	if v := a.rtypes.At(T); v != nil {
   186  		return v.(nodeid)
   187  	}
   188  
   189  	// Create the object for the reflect.rtype itself, which is
   190  	// ordinarily a large struct but here a single node will do.
   191  	obj := a.nextNode()
   192  	a.addOneNode(T, "reflect.rtype", nil)
   193  	a.endObject(obj, nil, T)
   194  
   195  	id := a.makeTagged(a.reflectRtypePtr, nil, T)
   196  	a.nodes[id+1].typ = T // trick (each *rtype tagged object is a singleton)
   197  	a.addressOf(a.reflectRtypePtr, id+1, obj)
   198  
   199  	a.rtypes.Set(T, id)
   200  	return id
   201  }
   202  
   203  // rtypeValue returns the type of the *reflect.rtype-tagged object obj.
   204  func (a *analysis) rtypeTaggedValue(obj nodeid) types.Type {
   205  	tDyn, t, _ := a.taggedValue(obj)
   206  	if tDyn != a.reflectRtypePtr {
   207  		panic(fmt.Sprintf("not a *reflect.rtype-tagged object: obj=n%d tag=%v payload=n%d", obj, tDyn, t))
   208  	}
   209  	return a.nodes[t].typ
   210  }
   211  
   212  // valueNode returns the id of the value node for v, creating it (and
   213  // the association) as needed.  It may return zero for uninteresting
   214  // values containing no pointers.
   215  //
   216  func (a *analysis) valueNode(v ssa.Value) nodeid {
   217  	// Value nodes for locals are created en masse by genFunc.
   218  	if id, ok := a.localval[v]; ok {
   219  		return id
   220  	}
   221  
   222  	// Value nodes for globals are created on demand.
   223  	id, ok := a.globalval[v]
   224  	if !ok {
   225  		var comment string
   226  		if a.log != nil {
   227  			comment = v.String()
   228  		}
   229  		id = a.addNodes(v.Type(), comment)
   230  		if obj := a.objectNode(nil, v); obj != 0 {
   231  			a.addressOf(v.Type(), id, obj)
   232  		}
   233  		a.setValueNode(v, id, nil)
   234  	}
   235  	return id
   236  }
   237  
   238  // valueOffsetNode ascertains the node for tuple/struct value v,
   239  // then returns the node for its subfield #index.
   240  //
   241  func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
   242  	id := a.valueNode(v)
   243  	if id == 0 {
   244  		panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
   245  	}
   246  	return id + nodeid(a.offsetOf(v.Type(), index))
   247  }
   248  
   249  // isTaggedObject reports whether object obj is a tagged object.
   250  func (a *analysis) isTaggedObject(obj nodeid) bool {
   251  	return a.nodes[obj].obj.flags&otTagged != 0
   252  }
   253  
   254  // taggedValue returns the dynamic type tag, the (first node of the)
   255  // payload, and the indirect flag of the tagged object starting at id.
   256  // Panic ensues if !isTaggedObject(id).
   257  //
   258  func (a *analysis) taggedValue(obj nodeid) (tDyn types.Type, v nodeid, indirect bool) {
   259  	n := a.nodes[obj]
   260  	flags := n.obj.flags
   261  	if flags&otTagged == 0 {
   262  		panic(fmt.Sprintf("not a tagged object: n%d", obj))
   263  	}
   264  	return n.typ, obj + 1, flags&otIndirect != 0
   265  }
   266  
   267  // funcParams returns the first node of the params (P) block of the
   268  // function whose object node (obj.flags&otFunction) is id.
   269  //
   270  func (a *analysis) funcParams(id nodeid) nodeid {
   271  	n := a.nodes[id]
   272  	if n.obj == nil || n.obj.flags&otFunction == 0 {
   273  		panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
   274  	}
   275  	return id + 1
   276  }
   277  
   278  // funcResults returns the first node of the results (R) block of the
   279  // function whose object node (obj.flags&otFunction) is id.
   280  //
   281  func (a *analysis) funcResults(id nodeid) nodeid {
   282  	n := a.nodes[id]
   283  	if n.obj == nil || n.obj.flags&otFunction == 0 {
   284  		panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
   285  	}
   286  	sig := n.typ.(*types.Signature)
   287  	id += 1 + nodeid(a.sizeof(sig.Params()))
   288  	if sig.Recv() != nil {
   289  		id += nodeid(a.sizeof(sig.Recv().Type()))
   290  	}
   291  	return id
   292  }
   293  
   294  // ---------- Constraint creation ----------
   295  
   296  // copy creates a constraint of the form dst = src.
   297  // sizeof is the width (in logical fields) of the copied type.
   298  //
   299  func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
   300  	if src == dst || sizeof == 0 {
   301  		return // trivial
   302  	}
   303  	if src == 0 || dst == 0 {
   304  		panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
   305  	}
   306  	for i := uint32(0); i < sizeof; i++ {
   307  		a.addConstraint(&copyConstraint{dst, src})
   308  		src++
   309  		dst++
   310  	}
   311  }
   312  
   313  // addressOf creates a constraint of the form id = &obj.
   314  // T is the type of the address.
   315  func (a *analysis) addressOf(T types.Type, id, obj nodeid) {
   316  	if id == 0 {
   317  		panic("addressOf: zero id")
   318  	}
   319  	if obj == 0 {
   320  		panic("addressOf: zero obj")
   321  	}
   322  	if a.shouldTrack(T) {
   323  		a.addConstraint(&addrConstraint{id, obj})
   324  	}
   325  }
   326  
   327  // load creates a load constraint of the form dst = src[offset].
   328  // offset is the pointer offset in logical fields.
   329  // sizeof is the width (in logical fields) of the loaded type.
   330  //
   331  func (a *analysis) load(dst, src nodeid, offset, sizeof uint32) {
   332  	if dst == 0 {
   333  		return // load of non-pointerlike value
   334  	}
   335  	if src == 0 && dst == 0 {
   336  		return // non-pointerlike operation
   337  	}
   338  	if src == 0 || dst == 0 {
   339  		panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
   340  	}
   341  	for i := uint32(0); i < sizeof; i++ {
   342  		a.addConstraint(&loadConstraint{offset, dst, src})
   343  		offset++
   344  		dst++
   345  	}
   346  }
   347  
   348  // store creates a store constraint of the form dst[offset] = src.
   349  // offset is the pointer offset in logical fields.
   350  // sizeof is the width (in logical fields) of the stored type.
   351  //
   352  func (a *analysis) store(dst, src nodeid, offset uint32, sizeof uint32) {
   353  	if src == 0 {
   354  		return // store of non-pointerlike value
   355  	}
   356  	if src == 0 && dst == 0 {
   357  		return // non-pointerlike operation
   358  	}
   359  	if src == 0 || dst == 0 {
   360  		panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
   361  	}
   362  	for i := uint32(0); i < sizeof; i++ {
   363  		a.addConstraint(&storeConstraint{offset, dst, src})
   364  		offset++
   365  		src++
   366  	}
   367  }
   368  
   369  // offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
   370  // offset is the field offset in logical fields.
   371  // T is the type of the address.
   372  //
   373  func (a *analysis) offsetAddr(T types.Type, dst, src nodeid, offset uint32) {
   374  	if !a.shouldTrack(T) {
   375  		return
   376  	}
   377  	if offset == 0 {
   378  		// Simplify  dst = &src->f0
   379  		//       to  dst = src
   380  		// (NB: this optimisation is defeated by the identity
   381  		// field prepended to struct and array objects.)
   382  		a.copy(dst, src, 1)
   383  	} else {
   384  		a.addConstraint(&offsetAddrConstraint{offset, dst, src})
   385  	}
   386  }
   387  
   388  // typeAssert creates a typeFilter or untag constraint of the form dst = src.(T):
   389  // typeFilter for an interface, untag for a concrete type.
   390  // The exact flag is specified as for untagConstraint.
   391  //
   392  func (a *analysis) typeAssert(T types.Type, dst, src nodeid, exact bool) {
   393  	if isInterface(T) {
   394  		a.addConstraint(&typeFilterConstraint{T, dst, src})
   395  	} else {
   396  		a.addConstraint(&untagConstraint{T, dst, src, exact})
   397  	}
   398  }
   399  
   400  // addConstraint adds c to the constraint set.
   401  func (a *analysis) addConstraint(c constraint) {
   402  	a.constraints = append(a.constraints, c)
   403  	if a.log != nil {
   404  		fmt.Fprintf(a.log, "\t%s\n", c)
   405  	}
   406  }
   407  
   408  // copyElems generates load/store constraints for *dst = *src,
   409  // where src and dst are slices or *arrays.
   410  //
   411  func (a *analysis) copyElems(cgn *cgnode, typ types.Type, dst, src ssa.Value) {
   412  	tmp := a.addNodes(typ, "copy")
   413  	sz := a.sizeof(typ)
   414  	a.genLoad(cgn, tmp, src, 1, sz)
   415  	a.genStore(cgn, dst, tmp, 1, sz)
   416  }
   417  
   418  // ---------- Constraint generation ----------
   419  
   420  // genConv generates constraints for the conversion operation conv.
   421  func (a *analysis) genConv(conv *ssa.Convert, cgn *cgnode) {
   422  	res := a.valueNode(conv)
   423  	if res == 0 {
   424  		return // result is non-pointerlike
   425  	}
   426  
   427  	tSrc := conv.X.Type()
   428  	tDst := conv.Type()
   429  
   430  	switch utSrc := tSrc.Underlying().(type) {
   431  	case *types.Slice:
   432  		// []byte/[]rune -> string?
   433  		return
   434  
   435  	case *types.Pointer:
   436  		// *T -> unsafe.Pointer?
   437  		if tDst.Underlying() == tUnsafePtr {
   438  			return // we don't model unsafe aliasing (unsound)
   439  		}
   440  
   441  	case *types.Basic:
   442  		switch tDst.Underlying().(type) {
   443  		case *types.Pointer:
   444  			// Treat unsafe.Pointer->*T conversions like
   445  			// new(T) and create an unaliased object.
   446  			if utSrc == tUnsafePtr {
   447  				obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
   448  				a.endObject(obj, cgn, conv)
   449  				a.addressOf(tDst, res, obj)
   450  				return
   451  			}
   452  
   453  		case *types.Slice:
   454  			// string -> []byte/[]rune (or named aliases)?
   455  			if utSrc.Info()&types.IsString != 0 {
   456  				obj := a.addNodes(sliceToArray(tDst), "convert")
   457  				a.endObject(obj, cgn, conv)
   458  				a.addressOf(tDst, res, obj)
   459  				return
   460  			}
   461  
   462  		case *types.Basic:
   463  			// All basic-to-basic type conversions are no-ops.
   464  			// This includes uintptr<->unsafe.Pointer conversions,
   465  			// which we (unsoundly) ignore.
   466  			return
   467  		}
   468  	}
   469  
   470  	panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
   471  }
   472  
   473  // genAppend generates constraints for a call to append.
   474  func (a *analysis) genAppend(instr *ssa.Call, cgn *cgnode) {
   475  	// Consider z = append(x, y).   y is optional.
   476  	// This may allocate a new [1]T array; call its object w.
   477  	// We get the following constraints:
   478  	// 	z = x
   479  	// 	z = &w
   480  	//     *z = *y
   481  
   482  	x := instr.Call.Args[0]
   483  
   484  	z := instr
   485  	a.copy(a.valueNode(z), a.valueNode(x), 1) // z = x
   486  
   487  	if len(instr.Call.Args) == 1 {
   488  		return // no allocation for z = append(x) or _ = append(x).
   489  	}
   490  
   491  	// TODO(adonovan): test append([]byte, ...string) []byte.
   492  
   493  	y := instr.Call.Args[1]
   494  	tArray := sliceToArray(instr.Call.Args[0].Type())
   495  
   496  	var w nodeid
   497  	w = a.nextNode()
   498  	a.addNodes(tArray, "append")
   499  	a.endObject(w, cgn, instr)
   500  
   501  	a.copyElems(cgn, tArray.Elem(), z, y)        // *z = *y
   502  	a.addressOf(instr.Type(), a.valueNode(z), w) //  z = &w
   503  }
   504  
   505  // genBuiltinCall generates contraints for a call to a built-in.
   506  func (a *analysis) genBuiltinCall(instr ssa.CallInstruction, cgn *cgnode) {
   507  	call := instr.Common()
   508  	switch call.Value.(*ssa.Builtin).Name() {
   509  	case "append":
   510  		// Safe cast: append cannot appear in a go or defer statement.
   511  		a.genAppend(instr.(*ssa.Call), cgn)
   512  
   513  	case "copy":
   514  		tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
   515  		a.copyElems(cgn, tElem, call.Args[0], call.Args[1])
   516  
   517  	case "panic":
   518  		a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)
   519  
   520  	case "recover":
   521  		if v := instr.Value(); v != nil {
   522  			a.copy(a.valueNode(v), a.panicNode, 1)
   523  		}
   524  
   525  	case "print":
   526  		// In the tests, the probe might be the sole reference
   527  		// to its arg, so make sure we create nodes for it.
   528  		if len(call.Args) > 0 {
   529  			a.valueNode(call.Args[0])
   530  		}
   531  
   532  	case "ssa:wrapnilchk":
   533  		a.copy(a.valueNode(instr.Value()), a.valueNode(call.Args[0]), 1)
   534  
   535  	default:
   536  		// No-ops: close len cap real imag complex print println delete.
   537  	}
   538  }
   539  
   540  // shouldUseContext defines the context-sensitivity policy.  It
   541  // returns true if we should analyse all static calls to fn anew.
   542  //
   543  // Obviously this interface rather limits how much freedom we have to
   544  // choose a policy.  The current policy, rather arbitrarily, is true
   545  // for intrinsics and accessor methods (actually: short, single-block,
   546  // call-free functions).  This is just a starting point.
   547  //
   548  func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
   549  	if a.findIntrinsic(fn) != nil {
   550  		return true // treat intrinsics context-sensitively
   551  	}
   552  	if len(fn.Blocks) != 1 {
   553  		return false // too expensive
   554  	}
   555  	blk := fn.Blocks[0]
   556  	if len(blk.Instrs) > 10 {
   557  		return false // too expensive
   558  	}
   559  	if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
   560  		return true // treat synthetic wrappers context-sensitively
   561  	}
   562  	for _, instr := range blk.Instrs {
   563  		switch instr := instr.(type) {
   564  		case ssa.CallInstruction:
   565  			// Disallow function calls (except to built-ins)
   566  			// because of the danger of unbounded recursion.
   567  			if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
   568  				return false
   569  			}
   570  		}
   571  	}
   572  	return true
   573  }
   574  
   575  // genStaticCall generates constraints for a statically dispatched function call.
   576  func (a *analysis) genStaticCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   577  	fn := call.StaticCallee()
   578  
   579  	// Special cases for inlined intrinsics.
   580  	switch fn {
   581  	case a.runtimeSetFinalizer:
   582  		// Inline SetFinalizer so the call appears direct.
   583  		site.targets = a.addOneNode(tInvalid, "SetFinalizer.targets", nil)
   584  		a.addConstraint(&runtimeSetFinalizerConstraint{
   585  			targets: site.targets,
   586  			x:       a.valueNode(call.Args[0]),
   587  			f:       a.valueNode(call.Args[1]),
   588  		})
   589  		return
   590  
   591  	case a.reflectValueCall:
   592  		// Inline (reflect.Value).Call so the call appears direct.
   593  		dotdotdot := false
   594  		ret := reflectCallImpl(a, caller, site, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]), dotdotdot)
   595  		if result != 0 {
   596  			a.addressOf(fn.Signature.Results().At(0).Type(), result, ret)
   597  		}
   598  		return
   599  	}
   600  
   601  	// Ascertain the context (contour/cgnode) for a particular call.
   602  	var obj nodeid
   603  	if a.shouldUseContext(fn) {
   604  		obj = a.makeFunctionObject(fn, site) // new contour
   605  	} else {
   606  		obj = a.objectNode(nil, fn) // shared contour
   607  	}
   608  	a.callEdge(caller, site, obj)
   609  
   610  	sig := call.Signature()
   611  
   612  	// Copy receiver, if any.
   613  	params := a.funcParams(obj)
   614  	args := call.Args
   615  	if sig.Recv() != nil {
   616  		sz := a.sizeof(sig.Recv().Type())
   617  		a.copy(params, a.valueNode(args[0]), sz)
   618  		params += nodeid(sz)
   619  		args = args[1:]
   620  	}
   621  
   622  	// Copy actual parameters into formal params block.
   623  	// Must loop, since the actuals aren't contiguous.
   624  	for i, arg := range args {
   625  		sz := a.sizeof(sig.Params().At(i).Type())
   626  		a.copy(params, a.valueNode(arg), sz)
   627  		params += nodeid(sz)
   628  	}
   629  
   630  	// Copy formal results block to actual result.
   631  	if result != 0 {
   632  		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
   633  	}
   634  }
   635  
   636  // genDynamicCall generates constraints for a dynamic function call.
   637  func (a *analysis) genDynamicCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   638  	// pts(targets) will be the set of possible call targets.
   639  	site.targets = a.valueNode(call.Value)
   640  
   641  	// We add dynamic closure rules that store the arguments into
   642  	// the P-block and load the results from the R-block of each
   643  	// function discovered in pts(targets).
   644  
   645  	sig := call.Signature()
   646  	var offset uint32 = 1 // P/R block starts at offset 1
   647  	for i, arg := range call.Args {
   648  		sz := a.sizeof(sig.Params().At(i).Type())
   649  		a.genStore(caller, call.Value, a.valueNode(arg), offset, sz)
   650  		offset += sz
   651  	}
   652  	if result != 0 {
   653  		a.genLoad(caller, result, call.Value, offset, a.sizeof(sig.Results()))
   654  	}
   655  }
   656  
   657  // genInvoke generates constraints for a dynamic method invocation.
   658  func (a *analysis) genInvoke(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   659  	if call.Value.Type() == a.reflectType {
   660  		a.genInvokeReflectType(caller, site, call, result)
   661  		return
   662  	}
   663  
   664  	sig := call.Signature()
   665  
   666  	// Allocate a contiguous targets/params/results block for this call.
   667  	block := a.nextNode()
   668  	// pts(targets) will be the set of possible call targets
   669  	site.targets = a.addOneNode(sig, "invoke.targets", nil)
   670  	p := a.addNodes(sig.Params(), "invoke.params")
   671  	r := a.addNodes(sig.Results(), "invoke.results")
   672  
   673  	// Copy the actual parameters into the call's params block.
   674  	for i, n := 0, sig.Params().Len(); i < n; i++ {
   675  		sz := a.sizeof(sig.Params().At(i).Type())
   676  		a.copy(p, a.valueNode(call.Args[i]), sz)
   677  		p += nodeid(sz)
   678  	}
   679  	// Copy the call's results block to the actual results.
   680  	if result != 0 {
   681  		a.copy(result, r, a.sizeof(sig.Results()))
   682  	}
   683  
   684  	// We add a dynamic invoke constraint that will connect the
   685  	// caller's and the callee's P/R blocks for each discovered
   686  	// call target.
   687  	a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
   688  }
   689  
   690  // genInvokeReflectType is a specialization of genInvoke where the
   691  // receiver type is a reflect.Type, under the assumption that there
   692  // can be at most one implementation of this interface, *reflect.rtype.
   693  //
   694  // (Though this may appear to be an instance of a pattern---method
   695  // calls on interfaces known to have exactly one implementation---in
   696  // practice it occurs rarely, so we special case for reflect.Type.)
   697  //
   698  // In effect we treat this:
   699  //    var rt reflect.Type = ...
   700  //    rt.F()
   701  // as this:
   702  //    rt.(*reflect.rtype).F()
   703  //
   704  func (a *analysis) genInvokeReflectType(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   705  	// Unpack receiver into rtype
   706  	rtype := a.addOneNode(a.reflectRtypePtr, "rtype.recv", nil)
   707  	recv := a.valueNode(call.Value)
   708  	a.typeAssert(a.reflectRtypePtr, rtype, recv, true)
   709  
   710  	// Look up the concrete method.
   711  	fn := a.prog.LookupMethod(a.reflectRtypePtr, call.Method.Pkg(), call.Method.Name())
   712  
   713  	obj := a.makeFunctionObject(fn, site) // new contour for this call
   714  	a.callEdge(caller, site, obj)
   715  
   716  	// From now on, it's essentially a static call, but little is
   717  	// gained by factoring together the code for both cases.
   718  
   719  	sig := fn.Signature // concrete method
   720  	targets := a.addOneNode(sig, "call.targets", nil)
   721  	a.addressOf(sig, targets, obj) // (a singleton)
   722  
   723  	// Copy receiver.
   724  	params := a.funcParams(obj)
   725  	a.copy(params, rtype, 1)
   726  	params++
   727  
   728  	// Copy actual parameters into formal P-block.
   729  	// Must loop, since the actuals aren't contiguous.
   730  	for i, arg := range call.Args {
   731  		sz := a.sizeof(sig.Params().At(i).Type())
   732  		a.copy(params, a.valueNode(arg), sz)
   733  		params += nodeid(sz)
   734  	}
   735  
   736  	// Copy formal R-block to actual R-block.
   737  	if result != 0 {
   738  		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
   739  	}
   740  }
   741  
   742  // genCall generates constraints for call instruction instr.
   743  func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
   744  	call := instr.Common()
   745  
   746  	// Intrinsic implementations of built-in functions.
   747  	if _, ok := call.Value.(*ssa.Builtin); ok {
   748  		a.genBuiltinCall(instr, caller)
   749  		return
   750  	}
   751  
   752  	var result nodeid
   753  	if v := instr.Value(); v != nil {
   754  		result = a.valueNode(v)
   755  	}
   756  
   757  	site := &callsite{instr: instr}
   758  	if call.StaticCallee() != nil {
   759  		a.genStaticCall(caller, site, call, result)
   760  	} else if call.IsInvoke() {
   761  		a.genInvoke(caller, site, call, result)
   762  	} else {
   763  		a.genDynamicCall(caller, site, call, result)
   764  	}
   765  
   766  	caller.sites = append(caller.sites, site)
   767  
   768  	if a.log != nil {
   769  		// TODO(adonovan): debug: improve log message.
   770  		fmt.Fprintf(a.log, "\t%s to targets %s from %s\n", site, site.targets, caller)
   771  	}
   772  }
   773  
   774  // objectNode returns the object to which v points, if known.
   775  // In other words, if the points-to set of v is a singleton, it
   776  // returns the sole label, zero otherwise.
   777  //
   778  // We exploit this information to make the generated constraints less
   779  // dynamic.  For example, a complex load constraint can be replaced by
   780  // a simple copy constraint when the sole destination is known a priori.
   781  //
   782  // Some SSA instructions always have singletons points-to sets:
   783  // 	Alloc, Function, Global, MakeChan, MakeClosure,  MakeInterface,  MakeMap,  MakeSlice.
   784  // Others may be singletons depending on their operands:
   785  // 	FreeVar, Const, Convert, FieldAddr, IndexAddr, Slice.
   786  //
   787  // Idempotent.  Objects are created as needed, possibly via recursion
   788  // down the SSA value graph, e.g IndexAddr(FieldAddr(Alloc))).
   789  //
   790  func (a *analysis) objectNode(cgn *cgnode, v ssa.Value) nodeid {
   791  	switch v.(type) {
   792  	case *ssa.Global, *ssa.Function, *ssa.Const, *ssa.FreeVar:
   793  		// Global object.
   794  		obj, ok := a.globalobj[v]
   795  		if !ok {
   796  			switch v := v.(type) {
   797  			case *ssa.Global:
   798  				obj = a.nextNode()
   799  				a.addNodes(mustDeref(v.Type()), "global")
   800  				a.endObject(obj, nil, v)
   801  
   802  			case *ssa.Function:
   803  				obj = a.makeFunctionObject(v, nil)
   804  
   805  			case *ssa.Const:
   806  				// not addressable
   807  
   808  			case *ssa.FreeVar:
   809  				// not addressable
   810  			}
   811  
   812  			if a.log != nil {
   813  				fmt.Fprintf(a.log, "\tglobalobj[%s] = n%d\n", v, obj)
   814  			}
   815  			a.globalobj[v] = obj
   816  		}
   817  		return obj
   818  	}
   819  
   820  	// Local object.
   821  	obj, ok := a.localobj[v]
   822  	if !ok {
   823  		switch v := v.(type) {
   824  		case *ssa.Alloc:
   825  			obj = a.nextNode()
   826  			a.addNodes(mustDeref(v.Type()), "alloc")
   827  			a.endObject(obj, cgn, v)
   828  
   829  		case *ssa.MakeSlice:
   830  			obj = a.nextNode()
   831  			a.addNodes(sliceToArray(v.Type()), "makeslice")
   832  			a.endObject(obj, cgn, v)
   833  
   834  		case *ssa.MakeChan:
   835  			obj = a.nextNode()
   836  			a.addNodes(v.Type().Underlying().(*types.Chan).Elem(), "makechan")
   837  			a.endObject(obj, cgn, v)
   838  
   839  		case *ssa.MakeMap:
   840  			obj = a.nextNode()
   841  			tmap := v.Type().Underlying().(*types.Map)
   842  			a.addNodes(tmap.Key(), "makemap.key")
   843  			elem := a.addNodes(tmap.Elem(), "makemap.value")
   844  
   845  			// To update the value field, MapUpdate
   846  			// generates store-with-offset constraints which
   847  			// the presolver can't model, so we must mark
   848  			// those nodes indirect.
   849  			for id, end := elem, elem+nodeid(a.sizeof(tmap.Elem())); id < end; id++ {
   850  				a.mapValues = append(a.mapValues, id)
   851  			}
   852  			a.endObject(obj, cgn, v)
   853  
   854  		case *ssa.MakeInterface:
   855  			tConc := v.X.Type()
   856  			obj = a.makeTagged(tConc, cgn, v)
   857  
   858  			// Copy the value into it, if nontrivial.
   859  			if x := a.valueNode(v.X); x != 0 {
   860  				a.copy(obj+1, x, a.sizeof(tConc))
   861  			}
   862  
   863  		case *ssa.FieldAddr:
   864  			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
   865  				obj = xobj + nodeid(a.offsetOf(mustDeref(v.X.Type()), v.Field))
   866  			}
   867  
   868  		case *ssa.IndexAddr:
   869  			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
   870  				obj = xobj + 1
   871  			}
   872  
   873  		case *ssa.Slice:
   874  			obj = a.objectNode(cgn, v.X)
   875  
   876  		case *ssa.Convert:
   877  			// TODO(adonovan): opt: handle these cases too:
   878  			// - unsafe.Pointer->*T conversion acts like Alloc
   879  			// - string->[]byte/[]rune conversion acts like MakeSlice
   880  		}
   881  
   882  		if a.log != nil {
   883  			fmt.Fprintf(a.log, "\tlocalobj[%s] = n%d\n", v.Name(), obj)
   884  		}
   885  		a.localobj[v] = obj
   886  	}
   887  	return obj
   888  }
   889  
   890  // genLoad generates constraints for result = *(ptr + val).
   891  func (a *analysis) genLoad(cgn *cgnode, result nodeid, ptr ssa.Value, offset, sizeof uint32) {
   892  	if obj := a.objectNode(cgn, ptr); obj != 0 {
   893  		// Pre-apply loadConstraint.solve().
   894  		a.copy(result, obj+nodeid(offset), sizeof)
   895  	} else {
   896  		a.load(result, a.valueNode(ptr), offset, sizeof)
   897  	}
   898  }
   899  
   900  // genOffsetAddr generates constraints for a 'v=ptr.field' (FieldAddr)
   901  // or 'v=ptr[*]' (IndexAddr) instruction v.
   902  func (a *analysis) genOffsetAddr(cgn *cgnode, v ssa.Value, ptr nodeid, offset uint32) {
   903  	dst := a.valueNode(v)
   904  	if obj := a.objectNode(cgn, v); obj != 0 {
   905  		// Pre-apply offsetAddrConstraint.solve().
   906  		a.addressOf(v.Type(), dst, obj)
   907  	} else {
   908  		a.offsetAddr(v.Type(), dst, ptr, offset)
   909  	}
   910  }
   911  
   912  // genStore generates constraints for *(ptr + offset) = val.
   913  func (a *analysis) genStore(cgn *cgnode, ptr ssa.Value, val nodeid, offset, sizeof uint32) {
   914  	if obj := a.objectNode(cgn, ptr); obj != 0 {
   915  		// Pre-apply storeConstraint.solve().
   916  		a.copy(obj+nodeid(offset), val, sizeof)
   917  	} else {
   918  		a.store(a.valueNode(ptr), val, offset, sizeof)
   919  	}
   920  }
   921  
   922  // genInstr generates constraints for instruction instr in context cgn.
   923  func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
   924  	if a.log != nil {
   925  		var prefix string
   926  		if val, ok := instr.(ssa.Value); ok {
   927  			prefix = val.Name() + " = "
   928  		}
   929  		fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
   930  	}
   931  
   932  	switch instr := instr.(type) {
   933  	case *ssa.DebugRef:
   934  		// no-op.
   935  
   936  	case *ssa.UnOp:
   937  		switch instr.Op {
   938  		case token.ARROW: // <-x
   939  			// We can ignore instr.CommaOk because the node we're
   940  			// altering is always at zero offset relative to instr
   941  			tElem := instr.X.Type().Underlying().(*types.Chan).Elem()
   942  			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(tElem))
   943  
   944  		case token.MUL: // *x
   945  			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type()))
   946  
   947  		default:
   948  			// NOT, SUB, XOR: no-op.
   949  		}
   950  
   951  	case *ssa.BinOp:
   952  		// All no-ops.
   953  
   954  	case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
   955  		a.genCall(cgn, instr)
   956  
   957  	case *ssa.ChangeType:
   958  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
   959  
   960  	case *ssa.Convert:
   961  		a.genConv(instr, cgn)
   962  
   963  	case *ssa.Extract:
   964  		a.copy(a.valueNode(instr),
   965  			a.valueOffsetNode(instr.Tuple, instr.Index),
   966  			a.sizeof(instr.Type()))
   967  
   968  	case *ssa.FieldAddr:
   969  		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X),
   970  			a.offsetOf(mustDeref(instr.X.Type()), instr.Field))
   971  
   972  	case *ssa.IndexAddr:
   973  		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), 1)
   974  
   975  	case *ssa.Field:
   976  		a.copy(a.valueNode(instr),
   977  			a.valueOffsetNode(instr.X, instr.Field),
   978  			a.sizeof(instr.Type()))
   979  
   980  	case *ssa.Index:
   981  		a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))
   982  
   983  	case *ssa.Select:
   984  		recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
   985  		for _, st := range instr.States {
   986  			elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
   987  			switch st.Dir {
   988  			case types.RecvOnly:
   989  				a.genLoad(cgn, recv, st.Chan, 0, elemSize)
   990  				recv += nodeid(elemSize)
   991  
   992  			case types.SendOnly:
   993  				a.genStore(cgn, st.Chan, a.valueNode(st.Send), 0, elemSize)
   994  			}
   995  		}
   996  
   997  	case *ssa.Return:
   998  		results := a.funcResults(cgn.obj)
   999  		for _, r := range instr.Results {
  1000  			sz := a.sizeof(r.Type())
  1001  			a.copy(results, a.valueNode(r), sz)
  1002  			results += nodeid(sz)
  1003  		}
  1004  
  1005  	case *ssa.Send:
  1006  		a.genStore(cgn, instr.Chan, a.valueNode(instr.X), 0, a.sizeof(instr.X.Type()))
  1007  
  1008  	case *ssa.Store:
  1009  		a.genStore(cgn, instr.Addr, a.valueNode(instr.Val), 0, a.sizeof(instr.Val.Type()))
  1010  
  1011  	case *ssa.Alloc, *ssa.MakeSlice, *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeInterface:
  1012  		v := instr.(ssa.Value)
  1013  		a.addressOf(v.Type(), a.valueNode(v), a.objectNode(cgn, v))
  1014  
  1015  	case *ssa.ChangeInterface:
  1016  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
  1017  
  1018  	case *ssa.TypeAssert:
  1019  		a.typeAssert(instr.AssertedType, a.valueNode(instr), a.valueNode(instr.X), true)
  1020  
  1021  	case *ssa.Slice:
  1022  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
  1023  
  1024  	case *ssa.If, *ssa.Jump:
  1025  		// no-op.
  1026  
  1027  	case *ssa.Phi:
  1028  		sz := a.sizeof(instr.Type())
  1029  		for _, e := range instr.Edges {
  1030  			a.copy(a.valueNode(instr), a.valueNode(e), sz)
  1031  		}
  1032  
  1033  	case *ssa.MakeClosure:
  1034  		fn := instr.Fn.(*ssa.Function)
  1035  		a.copy(a.valueNode(instr), a.valueNode(fn), 1)
  1036  		// Free variables are treated like global variables.
  1037  		for i, b := range instr.Bindings {
  1038  			a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
  1039  		}
  1040  
  1041  	case *ssa.RunDefers:
  1042  		// The analysis is flow insensitive, so we just "call"
  1043  		// defers as we encounter them.
  1044  
  1045  	case *ssa.Range:
  1046  		// Do nothing.  Next{Iter: *ssa.Range} handles this case.
  1047  
  1048  	case *ssa.Next:
  1049  		if !instr.IsString { // map
  1050  			// Assumes that Next is always directly applied to a Range result.
  1051  			theMap := instr.Iter.(*ssa.Range).X
  1052  			tMap := theMap.Type().Underlying().(*types.Map)
  1053  			ksize := a.sizeof(tMap.Key())
  1054  			vsize := a.sizeof(tMap.Elem())
  1055  
  1056  			// Load from the map's (k,v) into the tuple's (ok, k, v).
  1057  			a.genLoad(cgn, a.valueNode(instr)+1, theMap, 0, ksize+vsize)
  1058  		}
  1059  
  1060  	case *ssa.Lookup:
  1061  		if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
  1062  			// CommaOk can be ignored: field 0 is a no-op.
  1063  			ksize := a.sizeof(tMap.Key())
  1064  			vsize := a.sizeof(tMap.Elem())
  1065  			a.genLoad(cgn, a.valueNode(instr), instr.X, ksize, vsize)
  1066  		}
  1067  
  1068  	case *ssa.MapUpdate:
  1069  		tmap := instr.Map.Type().Underlying().(*types.Map)
  1070  		ksize := a.sizeof(tmap.Key())
  1071  		vsize := a.sizeof(tmap.Elem())
  1072  		a.genStore(cgn, instr.Map, a.valueNode(instr.Key), 0, ksize)
  1073  		a.genStore(cgn, instr.Map, a.valueNode(instr.Value), ksize, vsize)
  1074  
  1075  	case *ssa.Panic:
  1076  		a.copy(a.panicNode, a.valueNode(instr.X), 1)
  1077  
  1078  	default:
  1079  		panic(fmt.Sprintf("unimplemented: %T", instr))
  1080  	}
  1081  }
  1082  
  1083  func (a *analysis) makeCGNode(fn *ssa.Function, obj nodeid, callersite *callsite) *cgnode {
  1084  	cgn := &cgnode{fn: fn, obj: obj, callersite: callersite}
  1085  	a.cgnodes = append(a.cgnodes, cgn)
  1086  	return cgn
  1087  }
  1088  
  1089  // genRootCalls generates the synthetic root of the callgraph and the
  1090  // initial calls from it to the analysis scope, such as main, a test
  1091  // or a library.
  1092  //
  1093  func (a *analysis) genRootCalls() *cgnode {
  1094  	r := a.prog.NewFunction("<root>", new(types.Signature), "root of callgraph")
  1095  	root := a.makeCGNode(r, 0, nil)
  1096  
  1097  	// TODO(adonovan): make an ssa utility to construct an actual
  1098  	// root function so we don't need to special-case site-less
  1099  	// call edges.
  1100  
  1101  	// For each main package, call main.init(), main.main().
  1102  	for _, mainPkg := range a.config.Mains {
  1103  		main := mainPkg.Func("main")
  1104  		if main == nil {
  1105  			panic(fmt.Sprintf("%s has no main function", mainPkg))
  1106  		}
  1107  
  1108  		targets := a.addOneNode(main.Signature, "root.targets", nil)
  1109  		site := &callsite{targets: targets}
  1110  		root.sites = append(root.sites, site)
  1111  		for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
  1112  			if a.log != nil {
  1113  				fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
  1114  			}
  1115  			a.copy(targets, a.valueNode(fn), 1)
  1116  		}
  1117  	}
  1118  
  1119  	return root
  1120  }
  1121  
  1122  // genFunc generates constraints for function fn.
  1123  func (a *analysis) genFunc(cgn *cgnode) {
  1124  	fn := cgn.fn
  1125  
  1126  	impl := a.findIntrinsic(fn)
  1127  
  1128  	if a.log != nil {
  1129  		fmt.Fprintf(a.log, "\n\n==== Generating constraints for %s, %s\n", cgn, cgn.contour())
  1130  
  1131  		// Hack: don't display body if intrinsic.
  1132  		if impl != nil {
  1133  			fn2 := *cgn.fn // copy
  1134  			fn2.Locals = nil
  1135  			fn2.Blocks = nil
  1136  			fn2.WriteTo(a.log)
  1137  		} else {
  1138  			cgn.fn.WriteTo(a.log)
  1139  		}
  1140  	}
  1141  
  1142  	if impl != nil {
  1143  		impl(a, cgn)
  1144  		return
  1145  	}
  1146  
  1147  	if fn.Blocks == nil {
  1148  		// External function with no intrinsic treatment.
  1149  		// We'll warn about calls to such functions at the end.
  1150  		return
  1151  	}
  1152  
  1153  	if a.log != nil {
  1154  		fmt.Fprintln(a.log, "; Creating nodes for local values")
  1155  	}
  1156  
  1157  	a.localval = make(map[ssa.Value]nodeid)
  1158  	a.localobj = make(map[ssa.Value]nodeid)
  1159  
  1160  	// The value nodes for the params are in the func object block.
  1161  	params := a.funcParams(cgn.obj)
  1162  	for _, p := range fn.Params {
  1163  		a.setValueNode(p, params, cgn)
  1164  		params += nodeid(a.sizeof(p.Type()))
  1165  	}
  1166  
  1167  	// Free variables have global cardinality:
  1168  	// the outer function sets them with MakeClosure;
  1169  	// the inner function accesses them with FreeVar.
  1170  	//
  1171  	// TODO(adonovan): treat free vars context-sensitively.
  1172  
  1173  	// Create value nodes for all value instructions
  1174  	// since SSA may contain forward references.
  1175  	var space [10]*ssa.Value
  1176  	for _, b := range fn.Blocks {
  1177  		for _, instr := range b.Instrs {
  1178  			switch instr := instr.(type) {
  1179  			case *ssa.Range:
  1180  				// do nothing: it has a funky type,
  1181  				// and *ssa.Next does all the work.
  1182  
  1183  			case ssa.Value:
  1184  				var comment string
  1185  				if a.log != nil {
  1186  					comment = instr.Name()
  1187  				}
  1188  				id := a.addNodes(instr.Type(), comment)
  1189  				a.setValueNode(instr, id, cgn)
  1190  			}
  1191  
  1192  			// Record all address-taken functions (for presolver).
  1193  			rands := instr.Operands(space[:0])
  1194  			if call, ok := instr.(ssa.CallInstruction); ok && !call.Common().IsInvoke() {
  1195  				// Skip CallCommon.Value in "call" mode.
  1196  				// TODO(adonovan): fix: relies on unspecified ordering.  Specify it.
  1197  				rands = rands[1:]
  1198  			}
  1199  			for _, rand := range rands {
  1200  				if atf, ok := (*rand).(*ssa.Function); ok {
  1201  					a.atFuncs[atf] = true
  1202  				}
  1203  			}
  1204  		}
  1205  	}
  1206  
  1207  	// Generate constraints for instructions.
  1208  	for _, b := range fn.Blocks {
  1209  		for _, instr := range b.Instrs {
  1210  			a.genInstr(cgn, instr)
  1211  		}
  1212  	}
  1213  
  1214  	a.localval = nil
  1215  	a.localobj = nil
  1216  }
  1217  
  1218  // genMethodsOf generates nodes and constraints for all methods of type T.
  1219  func (a *analysis) genMethodsOf(T types.Type) {
  1220  	itf := isInterface(T)
  1221  
  1222  	// TODO(adonovan): can we skip this entirely if itf is true?
  1223  	// I think so, but the answer may depend on reflection.
  1224  	mset := a.prog.MethodSets.MethodSet(T)
  1225  	for i, n := 0, mset.Len(); i < n; i++ {
  1226  		m := a.prog.Method(mset.At(i))
  1227  		a.valueNode(m)
  1228  
  1229  		if !itf {
  1230  			// Methods of concrete types are address-taken functions.
  1231  			a.atFuncs[m] = true
  1232  		}
  1233  	}
  1234  }
  1235  
  1236  // generate generates offline constraints for the entire program.
  1237  func (a *analysis) generate() {
  1238  	start("Constraint generation")
  1239  	if a.log != nil {
  1240  		fmt.Fprintln(a.log, "==== Generating constraints")
  1241  	}
  1242  
  1243  	// Create a dummy node since we use the nodeid 0 for
  1244  	// non-pointerlike variables.
  1245  	a.addNodes(tInvalid, "(zero)")
  1246  
  1247  	// Create the global node for panic values.
  1248  	a.panicNode = a.addNodes(tEface, "panic")
  1249  
  1250  	// Create nodes and constraints for all methods of reflect.rtype.
  1251  	// (Shared contours are used by dynamic calls to reflect.Type
  1252  	// methods---typically just String().)
  1253  	if rtype := a.reflectRtypePtr; rtype != nil {
  1254  		a.genMethodsOf(rtype)
  1255  	}
  1256  
  1257  	root := a.genRootCalls()
  1258  
  1259  	if a.config.BuildCallGraph {
  1260  		a.result.CallGraph = callgraph.New(root.fn)
  1261  	}
  1262  
  1263  	// Create nodes and constraints for all methods of all types
  1264  	// that are dynamically accessible via reflection or interfaces.
  1265  	for _, T := range a.prog.RuntimeTypes() {
  1266  		a.genMethodsOf(T)
  1267  	}
  1268  
  1269  	// Generate constraints for entire program.
  1270  	for len(a.genq) > 0 {
  1271  		cgn := a.genq[0]
  1272  		a.genq = a.genq[1:]
  1273  		a.genFunc(cgn)
  1274  	}
  1275  
  1276  	// The runtime magically allocates os.Args; so should we.
  1277  	if os := a.prog.ImportedPackage("os"); os != nil {
  1278  		// In effect:  os.Args = new([1]string)[:]
  1279  		T := types.NewSlice(types.Typ[types.String])
  1280  		obj := a.addNodes(sliceToArray(T), "<command-line args>")
  1281  		a.endObject(obj, nil, "<command-line args>")
  1282  		a.addressOf(T, a.objectNode(nil, os.Var("Args")), obj)
  1283  	}
  1284  
  1285  	// Discard generation state, to avoid confusion after node renumbering.
  1286  	a.panicNode = 0
  1287  	a.globalval = nil
  1288  	a.localval = nil
  1289  	a.localobj = nil
  1290  
  1291  	stop("Constraint generation")
  1292  }