github.com/llvm-mirror/llgo@v0.0.0-20190322182713-bf6f0a60fce1/third_party/gotools/go/ssa/func.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file implements the Function and BasicBlock types.
     8  
     9  import (
    10  	"bytes"
    11  	"fmt"
    12  	"go/ast"
    13  	"go/token"
    14  	"io"
    15  	"os"
    16  	"strings"
    17  
    18  	"llvm.org/llgo/third_party/gotools/go/types"
    19  )
    20  
    21  // addEdge adds a control-flow graph edge from from to to.
    22  func addEdge(from, to *BasicBlock) {
    23  	from.Succs = append(from.Succs, to)
    24  	to.Preds = append(to.Preds, from)
    25  }
    26  
    27  // Parent returns the function that contains block b.
    28  func (b *BasicBlock) Parent() *Function { return b.parent }
    29  
    30  // String returns a human-readable label of this block.
    31  // It is not guaranteed unique within the function.
    32  //
    33  func (b *BasicBlock) String() string {
    34  	return fmt.Sprintf("%d", b.Index)
    35  }
    36  
    37  // emit appends an instruction to the current basic block.
    38  // If the instruction defines a Value, it is returned.
    39  //
    40  func (b *BasicBlock) emit(i Instruction) Value {
    41  	i.setBlock(b)
    42  	b.Instrs = append(b.Instrs, i)
    43  	v, _ := i.(Value)
    44  	return v
    45  }
    46  
    47  // predIndex returns the i such that b.Preds[i] == c or panics if
    48  // there is none.
    49  func (b *BasicBlock) predIndex(c *BasicBlock) int {
    50  	for i, pred := range b.Preds {
    51  		if pred == c {
    52  			return i
    53  		}
    54  	}
    55  	panic(fmt.Sprintf("no edge %s -> %s", c, b))
    56  }
    57  
    58  // hasPhi returns true if b.Instrs contains φ-nodes.
    59  func (b *BasicBlock) hasPhi() bool {
    60  	_, ok := b.Instrs[0].(*Phi)
    61  	return ok
    62  }
    63  
    64  // phis returns the prefix of b.Instrs containing all the block's φ-nodes.
    65  func (b *BasicBlock) phis() []Instruction {
    66  	for i, instr := range b.Instrs {
    67  		if _, ok := instr.(*Phi); !ok {
    68  			return b.Instrs[:i]
    69  		}
    70  	}
    71  	return nil // unreachable in well-formed blocks
    72  }
    73  
    74  // replacePred replaces all occurrences of p in b's predecessor list with q.
    75  // Ordinarily there should be at most one.
    76  //
    77  func (b *BasicBlock) replacePred(p, q *BasicBlock) {
    78  	for i, pred := range b.Preds {
    79  		if pred == p {
    80  			b.Preds[i] = q
    81  		}
    82  	}
    83  }
    84  
    85  // replaceSucc replaces all occurrences of p in b's successor list with q.
    86  // Ordinarily there should be at most one.
    87  //
    88  func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
    89  	for i, succ := range b.Succs {
    90  		if succ == p {
    91  			b.Succs[i] = q
    92  		}
    93  	}
    94  }
    95  
    96  // removePred removes all occurrences of p in b's
    97  // predecessor list and φ-nodes.
    98  // Ordinarily there should be at most one.
    99  //
   100  func (b *BasicBlock) removePred(p *BasicBlock) {
   101  	phis := b.phis()
   102  
   103  	// We must preserve edge order for φ-nodes.
   104  	j := 0
   105  	for i, pred := range b.Preds {
   106  		if pred != p {
   107  			b.Preds[j] = b.Preds[i]
   108  			// Strike out φ-edge too.
   109  			for _, instr := range phis {
   110  				phi := instr.(*Phi)
   111  				phi.Edges[j] = phi.Edges[i]
   112  			}
   113  			j++
   114  		}
   115  	}
   116  	// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
   117  	for i := j; i < len(b.Preds); i++ {
   118  		b.Preds[i] = nil
   119  		for _, instr := range phis {
   120  			instr.(*Phi).Edges[i] = nil
   121  		}
   122  	}
   123  	b.Preds = b.Preds[:j]
   124  	for _, instr := range phis {
   125  		phi := instr.(*Phi)
   126  		phi.Edges = phi.Edges[:j]
   127  	}
   128  }
   129  
   130  // Destinations associated with unlabelled for/switch/select stmts.
   131  // We push/pop one of these as we enter/leave each construct and for
   132  // each BranchStmt we scan for the innermost target of the right type.
   133  //
   134  type targets struct {
   135  	tail         *targets // rest of stack
   136  	_break       *BasicBlock
   137  	_continue    *BasicBlock
   138  	_fallthrough *BasicBlock
   139  }
   140  
   141  // Destinations associated with a labelled block.
   142  // We populate these as labels are encountered in forward gotos or
   143  // labelled statements.
   144  //
   145  type lblock struct {
   146  	_goto     *BasicBlock
   147  	_break    *BasicBlock
   148  	_continue *BasicBlock
   149  }
   150  
   151  // labelledBlock returns the branch target associated with the
   152  // specified label, creating it if needed.
   153  //
   154  func (f *Function) labelledBlock(label *ast.Ident) *lblock {
   155  	lb := f.lblocks[label.Obj]
   156  	if lb == nil {
   157  		lb = &lblock{_goto: f.newBasicBlock(label.Name)}
   158  		if f.lblocks == nil {
   159  			f.lblocks = make(map[*ast.Object]*lblock)
   160  		}
   161  		f.lblocks[label.Obj] = lb
   162  	}
   163  	return lb
   164  }
   165  
   166  // addParam adds a (non-escaping) parameter to f.Params of the
   167  // specified name, type and source position.
   168  //
   169  func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
   170  	v := &Parameter{
   171  		name:   name,
   172  		typ:    typ,
   173  		pos:    pos,
   174  		parent: f,
   175  	}
   176  	f.Params = append(f.Params, v)
   177  	return v
   178  }
   179  
   180  func (f *Function) addParamObj(obj types.Object) *Parameter {
   181  	name := obj.Name()
   182  	if name == "" {
   183  		name = fmt.Sprintf("arg%d", len(f.Params))
   184  	}
   185  	param := f.addParam(name, obj.Type(), obj.Pos())
   186  	param.object = obj
   187  	return param
   188  }
   189  
   190  // addSpilledParam declares a parameter that is pre-spilled to the
   191  // stack; the function body will load/store the spilled location.
   192  // Subsequent lifting will eliminate spills where possible.
   193  //
   194  func (f *Function) addSpilledParam(obj types.Object) {
   195  	param := f.addParamObj(obj)
   196  	spill := &Alloc{Comment: obj.Name()}
   197  	spill.setType(types.NewPointer(obj.Type()))
   198  	spill.setPos(obj.Pos())
   199  	f.objects[obj] = spill
   200  	f.Locals = append(f.Locals, spill)
   201  	f.emit(spill)
   202  	f.emit(&Store{Addr: spill, Val: param})
   203  }
   204  
   205  // startBody initializes the function prior to generating SSA code for its body.
   206  // Precondition: f.Type() already set.
   207  //
   208  func (f *Function) startBody() {
   209  	f.currentBlock = f.newBasicBlock("entry")
   210  	f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
   211  }
   212  
   213  // createSyntacticParams populates f.Params and generates code (spills
   214  // and named result locals) for all the parameters declared in the
   215  // syntax.  In addition it populates the f.objects mapping.
   216  //
   217  // Preconditions:
   218  // f.startBody() was called.
   219  // Postcondition:
   220  // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
   221  //
   222  func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
   223  	// Receiver (at most one inner iteration).
   224  	if recv != nil {
   225  		for _, field := range recv.List {
   226  			for _, n := range field.Names {
   227  				f.addSpilledParam(f.Pkg.info.Defs[n])
   228  			}
   229  			// Anonymous receiver?  No need to spill.
   230  			if field.Names == nil {
   231  				f.addParamObj(f.Signature.Recv())
   232  			}
   233  		}
   234  	}
   235  
   236  	// Parameters.
   237  	if functype.Params != nil {
   238  		n := len(f.Params) // 1 if has recv, 0 otherwise
   239  		for _, field := range functype.Params.List {
   240  			for _, n := range field.Names {
   241  				f.addSpilledParam(f.Pkg.info.Defs[n])
   242  			}
   243  			// Anonymous parameter?  No need to spill.
   244  			if field.Names == nil {
   245  				f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
   246  			}
   247  		}
   248  	}
   249  
   250  	// Named results.
   251  	if functype.Results != nil {
   252  		for _, field := range functype.Results.List {
   253  			// Implicit "var" decl of locals for named results.
   254  			for _, n := range field.Names {
   255  				f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
   256  			}
   257  		}
   258  	}
   259  }
   260  
   261  // numberRegisters assigns numbers to all SSA registers
   262  // (value-defining Instructions) in f, to aid debugging.
   263  // (Non-Instruction Values are named at construction.)
   264  //
   265  func numberRegisters(f *Function) {
   266  	v := 0
   267  	for _, b := range f.Blocks {
   268  		for _, instr := range b.Instrs {
   269  			switch instr.(type) {
   270  			case Value:
   271  				instr.(interface {
   272  					setNum(int)
   273  				}).setNum(v)
   274  				v++
   275  			}
   276  		}
   277  	}
   278  }
   279  
   280  // buildReferrers populates the def/use information in all non-nil
   281  // Value.Referrers slice.
   282  // Precondition: all such slices are initially empty.
   283  func buildReferrers(f *Function) {
   284  	var rands []*Value
   285  	for _, b := range f.Blocks {
   286  		for _, instr := range b.Instrs {
   287  			rands = instr.Operands(rands[:0]) // recycle storage
   288  			for _, rand := range rands {
   289  				if r := *rand; r != nil {
   290  					if ref := r.Referrers(); ref != nil {
   291  						*ref = append(*ref, instr)
   292  					}
   293  				}
   294  			}
   295  		}
   296  	}
   297  }
   298  
   299  // finishBody() finalizes the function after SSA code generation of its body.
   300  func (f *Function) finishBody() {
   301  	f.objects = nil
   302  	f.currentBlock = nil
   303  	f.lblocks = nil
   304  
   305  	// Don't pin the AST in memory (except in debug mode).
   306  	if n := f.syntax; n != nil && !f.debugInfo() {
   307  		f.syntax = extentNode{n.Pos(), n.End()}
   308  	}
   309  
   310  	// Remove from f.Locals any Allocs that escape to the heap.
   311  	j := 0
   312  	for _, l := range f.Locals {
   313  		if !l.Heap {
   314  			f.Locals[j] = l
   315  			j++
   316  		}
   317  	}
   318  	// Nil out f.Locals[j:] to aid GC.
   319  	for i := j; i < len(f.Locals); i++ {
   320  		f.Locals[i] = nil
   321  	}
   322  	f.Locals = f.Locals[:j]
   323  
   324  	optimizeBlocks(f)
   325  
   326  	buildReferrers(f)
   327  
   328  	buildDomTree(f)
   329  
   330  	if f.Prog.mode&NaiveForm == 0 {
   331  		// For debugging pre-state of lifting pass:
   332  		// numberRegisters(f)
   333  		// f.WriteTo(os.Stderr)
   334  		lift(f)
   335  	}
   336  
   337  	f.namedResults = nil // (used by lifting)
   338  
   339  	numberRegisters(f)
   340  
   341  	if f.Prog.mode&PrintFunctions != 0 {
   342  		printMu.Lock()
   343  		f.WriteTo(os.Stdout)
   344  		printMu.Unlock()
   345  	}
   346  
   347  	if f.Prog.mode&SanityCheckFunctions != 0 {
   348  		mustSanityCheck(f, nil)
   349  	}
   350  }
   351  
   352  // removeNilBlocks eliminates nils from f.Blocks and updates each
   353  // BasicBlock.Index.  Use this after any pass that may delete blocks.
   354  //
   355  func (f *Function) removeNilBlocks() {
   356  	j := 0
   357  	for _, b := range f.Blocks {
   358  		if b != nil {
   359  			b.Index = j
   360  			f.Blocks[j] = b
   361  			j++
   362  		}
   363  	}
   364  	// Nil out f.Blocks[j:] to aid GC.
   365  	for i := j; i < len(f.Blocks); i++ {
   366  		f.Blocks[i] = nil
   367  	}
   368  	f.Blocks = f.Blocks[:j]
   369  }
   370  
   371  // SetDebugMode sets the debug mode for package pkg.  If true, all its
   372  // functions will include full debug info.  This greatly increases the
   373  // size of the instruction stream, and causes Functions to depend upon
   374  // the ASTs, potentially keeping them live in memory for longer.
   375  //
   376  func (pkg *Package) SetDebugMode(debug bool) {
   377  	// TODO(adonovan): do we want ast.File granularity?
   378  	pkg.debug = debug
   379  }
   380  
   381  // debugInfo reports whether debug info is wanted for this function.
   382  func (f *Function) debugInfo() bool {
   383  	return f.Pkg != nil && f.Pkg.debug
   384  }
   385  
   386  // addNamedLocal creates a local variable, adds it to function f and
   387  // returns it.  Its name and type are taken from obj.  Subsequent
   388  // calls to f.lookup(obj) will return the same local.
   389  //
   390  func (f *Function) addNamedLocal(obj types.Object) *Alloc {
   391  	l := f.addLocal(obj.Type(), obj.Pos())
   392  	l.Comment = obj.Name()
   393  	f.objects[obj] = l
   394  	return l
   395  }
   396  
   397  func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
   398  	return f.addNamedLocal(f.Pkg.info.Defs[id])
   399  }
   400  
   401  // addLocal creates an anonymous local variable of type typ, adds it
   402  // to function f and returns it.  pos is the optional source location.
   403  //
   404  func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
   405  	v := &Alloc{}
   406  	v.setType(types.NewPointer(typ))
   407  	v.setPos(pos)
   408  	f.Locals = append(f.Locals, v)
   409  	f.emit(v)
   410  	return v
   411  }
   412  
   413  // lookup returns the address of the named variable identified by obj
   414  // that is local to function f or one of its enclosing functions.
   415  // If escaping, the reference comes from a potentially escaping pointer
   416  // expression and the referent must be heap-allocated.
   417  //
   418  func (f *Function) lookup(obj types.Object, escaping bool) Value {
   419  	if v, ok := f.objects[obj]; ok {
   420  		if alloc, ok := v.(*Alloc); ok && escaping {
   421  			alloc.Heap = true
   422  		}
   423  		return v // function-local var (address)
   424  	}
   425  
   426  	// Definition must be in an enclosing function;
   427  	// plumb it through intervening closures.
   428  	if f.parent == nil {
   429  		panic("no ssa.Value for " + obj.String())
   430  	}
   431  	outer := f.parent.lookup(obj, true) // escaping
   432  	v := &FreeVar{
   433  		name:   obj.Name(),
   434  		typ:    outer.Type(),
   435  		pos:    outer.Pos(),
   436  		outer:  outer,
   437  		parent: f,
   438  	}
   439  	f.objects[obj] = v
   440  	f.FreeVars = append(f.FreeVars, v)
   441  	return v
   442  }
   443  
   444  // emit emits the specified instruction to function f.
   445  func (f *Function) emit(instr Instruction) Value {
   446  	return f.currentBlock.emit(instr)
   447  }
   448  
   449  // RelString returns the full name of this function, qualified by
   450  // package name, receiver type, etc.
   451  //
   452  // The specific formatting rules are not guaranteed and may change.
   453  //
   454  // Examples:
   455  //      "math.IsNaN"                  // a package-level function
   456  //      "(*bytes.Buffer).Bytes"       // a declared method or a wrapper
   457  //      "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
   458  //      "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
   459  //      "main.main$1"                 // an anonymous function in main
   460  //      "main.init#1"                 // a declared init function
   461  //      "main.init"                   // the synthesized package initializer
   462  //
   463  // When these functions are referred to from within the same package
   464  // (i.e. from == f.Pkg.Object), they are rendered without the package path.
   465  // For example: "IsNaN", "(*Buffer).Bytes", etc.
   466  //
   467  // All non-synthetic functions have distinct package-qualified names.
   468  // (But two methods may have the same name "(T).f" if one is a synthetic
   469  // wrapper promoting a non-exported method "f" from another package; in
   470  // that case, the strings are equal but the identifiers "f" are distinct.)
   471  //
   472  func (f *Function) RelString(from *types.Package) string {
   473  	// Anonymous?
   474  	if f.parent != nil {
   475  		// An anonymous function's Name() looks like "parentName$1",
   476  		// but its String() should include the type/package/etc.
   477  		parent := f.parent.RelString(from)
   478  		for i, anon := range f.parent.AnonFuncs {
   479  			if anon == f {
   480  				return fmt.Sprintf("%s$%d", parent, 1+i)
   481  			}
   482  		}
   483  
   484  		return f.name // should never happen
   485  	}
   486  
   487  	// Method (declared or wrapper)?
   488  	if recv := f.Signature.Recv(); recv != nil {
   489  		return f.relMethod(from, recv.Type())
   490  	}
   491  
   492  	// Thunk?
   493  	if f.method != nil {
   494  		return f.relMethod(from, f.method.Recv())
   495  	}
   496  
   497  	// Bound?
   498  	if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
   499  		return f.relMethod(from, f.FreeVars[0].Type())
   500  	}
   501  
   502  	// Package-level function?
   503  	// Prefix with package name for cross-package references only.
   504  	if p := f.pkgobj(); p != nil && p != from {
   505  		return fmt.Sprintf("%s.%s", p.Path(), f.name)
   506  	}
   507  
   508  	// Unknown.
   509  	return f.name
   510  }
   511  
   512  func (f *Function) relMethod(from *types.Package, recv types.Type) string {
   513  	return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
   514  }
   515  
   516  // writeSignature writes to buf the signature sig in declaration syntax.
   517  func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
   518  	buf.WriteString("func ")
   519  	if recv := sig.Recv(); recv != nil {
   520  		buf.WriteString("(")
   521  		if n := params[0].Name(); n != "" {
   522  			buf.WriteString(n)
   523  			buf.WriteString(" ")
   524  		}
   525  		types.WriteType(buf, from, params[0].Type())
   526  		buf.WriteString(") ")
   527  	}
   528  	buf.WriteString(name)
   529  	types.WriteSignature(buf, from, sig)
   530  }
   531  
   532  func (f *Function) pkgobj() *types.Package {
   533  	if f.Pkg != nil {
   534  		return f.Pkg.Object
   535  	}
   536  	return nil
   537  }
   538  
   539  var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
   540  
   541  func (f *Function) WriteTo(w io.Writer) (int64, error) {
   542  	var buf bytes.Buffer
   543  	WriteFunction(&buf, f)
   544  	n, err := w.Write(buf.Bytes())
   545  	return int64(n), err
   546  }
   547  
   548  // WriteFunction writes to buf a human-readable "disassembly" of f.
   549  func WriteFunction(buf *bytes.Buffer, f *Function) {
   550  	fmt.Fprintf(buf, "# Name: %s\n", f.String())
   551  	if f.Pkg != nil {
   552  		fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Object.Path())
   553  	}
   554  	if syn := f.Synthetic; syn != "" {
   555  		fmt.Fprintln(buf, "# Synthetic:", syn)
   556  	}
   557  	if pos := f.Pos(); pos.IsValid() {
   558  		fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
   559  	}
   560  
   561  	if f.parent != nil {
   562  		fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
   563  	}
   564  
   565  	if f.Recover != nil {
   566  		fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
   567  	}
   568  
   569  	from := f.pkgobj()
   570  
   571  	if f.FreeVars != nil {
   572  		buf.WriteString("# Free variables:\n")
   573  		for i, fv := range f.FreeVars {
   574  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
   575  		}
   576  	}
   577  
   578  	if len(f.Locals) > 0 {
   579  		buf.WriteString("# Locals:\n")
   580  		for i, l := range f.Locals {
   581  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
   582  		}
   583  	}
   584  	writeSignature(buf, from, f.Name(), f.Signature, f.Params)
   585  	buf.WriteString(":\n")
   586  
   587  	if f.Blocks == nil {
   588  		buf.WriteString("\t(external)\n")
   589  	}
   590  
   591  	// NB. column calculations are confused by non-ASCII
   592  	// characters and assume 8-space tabs.
   593  	const punchcard = 80 // for old time's sake.
   594  	const tabwidth = 8
   595  	for _, b := range f.Blocks {
   596  		if b == nil {
   597  			// Corrupt CFG.
   598  			fmt.Fprintf(buf, ".nil:\n")
   599  			continue
   600  		}
   601  		n, _ := fmt.Fprintf(buf, "%d:", b.Index)
   602  		bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
   603  		fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)
   604  
   605  		if false { // CFG debugging
   606  			fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
   607  		}
   608  		for _, instr := range b.Instrs {
   609  			buf.WriteString("\t")
   610  			switch v := instr.(type) {
   611  			case Value:
   612  				l := punchcard - tabwidth
   613  				// Left-align the instruction.
   614  				if name := v.Name(); name != "" {
   615  					n, _ := fmt.Fprintf(buf, "%s = ", name)
   616  					l -= n
   617  				}
   618  				n, _ := buf.WriteString(instr.String())
   619  				l -= n
   620  				// Right-align the type if there's space.
   621  				if t := v.Type(); t != nil {
   622  					buf.WriteByte(' ')
   623  					ts := relType(t, from)
   624  					l -= len(ts) + len("  ") // (spaces before and after type)
   625  					if l > 0 {
   626  						fmt.Fprintf(buf, "%*s", l, "")
   627  					}
   628  					buf.WriteString(ts)
   629  				}
   630  			case nil:
   631  				// Be robust against bad transforms.
   632  				buf.WriteString("<deleted>")
   633  			default:
   634  				buf.WriteString(instr.String())
   635  			}
   636  			buf.WriteString("\n")
   637  		}
   638  	}
   639  	fmt.Fprintf(buf, "\n")
   640  }
   641  
   642  // newBasicBlock adds to f a new basic block and returns it.  It does
   643  // not automatically become the current block for subsequent calls to emit.
   644  // comment is an optional string for more readable debugging output.
   645  //
   646  func (f *Function) newBasicBlock(comment string) *BasicBlock {
   647  	b := &BasicBlock{
   648  		Index:   len(f.Blocks),
   649  		Comment: comment,
   650  		parent:  f,
   651  	}
   652  	b.Succs = b.succs2[:0]
   653  	f.Blocks = append(f.Blocks, b)
   654  	return b
   655  }
   656  
   657  // NewFunction returns a new synthetic Function instance belonging to
   658  // prog, with its name and signature fields set as specified.
   659  //
   660  // The caller is responsible for initializing the remaining fields of
   661  // the function object, e.g. Pkg, Params, Blocks.
   662  //
   663  // It is practically impossible for clients to construct well-formed
   664  // SSA functions/packages/programs directly, so we assume this is the
   665  // job of the Builder alone.  NewFunction exists to provide clients a
   666  // little flexibility.  For example, analysis tools may wish to
   667  // construct fake Functions for the root of the callgraph, a fake
   668  // "reflect" package, etc.
   669  //
   670  // TODO(adonovan): think harder about the API here.
   671  //
   672  func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
   673  	return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
   674  }
   675  
   676  type extentNode [2]token.Pos
   677  
   678  func (n extentNode) Pos() token.Pos { return n[0] }
   679  func (n extentNode) End() token.Pos { return n[1] }
   680  
   681  // Syntax returns an ast.Node whose Pos/End methods provide the
   682  // lexical extent of the function if it was defined by Go source code
   683  // (f.Synthetic==""), or nil otherwise.
   684  //
   685  // If f was built with debug information (see Package.SetDebugRef),
   686  // the result is the *ast.FuncDecl or *ast.FuncLit that declared the
   687  // function.  Otherwise, it is an opaque Node providing only position
   688  // information; this avoids pinning the AST in memory.
   689  //
   690  func (f *Function) Syntax() ast.Node { return f.syntax }