github.com/llvm-mirror/llgo@v0.0.0-20190322182713-bf6f0a60fce1/third_party/gotools/go/ssa/ssa.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This package defines a high-level intermediate representation for
     8  // Go programs using static single-assignment (SSA) form.
     9  
    10  import (
    11  	"fmt"
    12  	"go/ast"
    13  	"go/token"
    14  	"sync"
    15  
    16  	"llvm.org/llgo/third_party/gotools/go/exact"
    17  	"llvm.org/llgo/third_party/gotools/go/loader"
    18  	"llvm.org/llgo/third_party/gotools/go/types"
    19  	"llvm.org/llgo/third_party/gotools/go/types/typeutil"
    20  )
    21  
    22  // A Program is a partial or complete Go program converted to SSA form.
    23  type Program struct {
    24  	Fset       *token.FileSet              // position information for the files of this Program
    25  	imported   map[string]*Package         // all importable Packages, keyed by import path
    26  	packages   map[*types.Package]*Package // all loaded Packages, keyed by object
    27  	mode       BuilderMode                 // set of mode bits for SSA construction
    28  	MethodSets types.MethodSetCache        // cache of type-checker's method-sets
    29  
    30  	methodsMu    sync.Mutex                 // guards the following maps:
    31  	methodSets   typeutil.Map               // maps type to its concrete methodSet
    32  	runtimeTypes typeutil.Map               // types for which rtypes are needed
    33  	canon        typeutil.Map               // type canonicalization map
    34  	bounds       map[*types.Func]*Function  // bounds for curried x.Method closures
    35  	thunks       map[selectionKey]*Function // thunks for T.Method expressions
    36  }
    37  
    38  // A Package is a single analyzed Go package containing Members for
    39  // all package-level functions, variables, constants and types it
    40  // declares.  These may be accessed directly via Members, or via the
    41  // type-specific accessor methods Func, Type, Var and Const.
    42  //
    43  // Members also contains entries for "init" (the synthetic package
    44  // initializer) and "init#%d", the nth declared init function,
    45  // and unspecified other things too.
    46  //
    47  type Package struct {
    48  	Prog    *Program               // the owning program
    49  	Object  *types.Package         // the type checker's package object for this package
    50  	Members map[string]Member      // all package members keyed by name (incl. init and init#%d)
    51  	values  map[types.Object]Value // package members (incl. types and methods), keyed by object
    52  	init    *Function              // Func("init"); the package's init function
    53  	debug   bool                   // include full debug info in this package
    54  
    55  	// The following fields are set transiently, then cleared
    56  	// after building.
    57  	started int32               // atomically tested and set at start of build phase
    58  	ninit   int32               // number of init functions
    59  	info    *loader.PackageInfo // package ASTs and type information
    60  }
    61  
    62  // A Member is a member of a Go package, implemented by *NamedConst,
    63  // *Global, *Function, or *Type; they are created by package-level
    64  // const, var, func and type declarations respectively.
    65  //
    66  type Member interface {
    67  	Name() string                    // declared name of the package member
    68  	String() string                  // package-qualified name of the package member
    69  	RelString(*types.Package) string // like String, but relative refs are unqualified
    70  	Object() types.Object            // typechecker's object for this member, if any
    71  	Pos() token.Pos                  // position of member's declaration, if known
    72  	Type() types.Type                // type of the package member
    73  	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
    74  	Package() *Package               // the containing package
    75  }
    76  
    77  // A Type is a Member of a Package representing a package-level named type.
    78  //
    79  // Type() returns a *types.Named.
    80  //
    81  type Type struct {
    82  	object *types.TypeName
    83  	pkg    *Package
    84  }
    85  
    86  // A NamedConst is a Member of a Package representing a package-level
    87  // named constant.
    88  //
    89  // Pos() returns the position of the declaring ast.ValueSpec.Names[*]
    90  // identifier.
    91  //
    92  // NB: a NamedConst is not a Value; it contains a constant Value, which
    93  // it augments with the name and position of its 'const' declaration.
    94  //
    95  type NamedConst struct {
    96  	object *types.Const
    97  	Value  *Const
    98  	pos    token.Pos
    99  	pkg    *Package
   100  }
   101  
   102  // A Value is an SSA value that can be referenced by an instruction.
   103  type Value interface {
   104  	// Name returns the name of this value, and determines how
   105  	// this Value appears when used as an operand of an
   106  	// Instruction.
   107  	//
   108  	// This is the same as the source name for Parameters,
   109  	// Builtins, Functions, FreeVars, Globals.
   110  	// For constants, it is a representation of the constant's value
   111  	// and type.  For all other Values this is the name of the
   112  	// virtual register defined by the instruction.
   113  	//
   114  	// The name of an SSA Value is not semantically significant,
   115  	// and may not even be unique within a function.
   116  	Name() string
   117  
   118  	// If this value is an Instruction, String returns its
   119  	// disassembled form; otherwise it returns unspecified
   120  	// human-readable information about the Value, such as its
   121  	// kind, name and type.
   122  	String() string
   123  
   124  	// Type returns the type of this value.  Many instructions
   125  	// (e.g. IndexAddr) change their behaviour depending on the
   126  	// types of their operands.
   127  	Type() types.Type
   128  
   129  	// Parent returns the function to which this Value belongs.
   130  	// It returns nil for named Functions, Builtin, Const and Global.
   131  	Parent() *Function
   132  
   133  	// Referrers returns the list of instructions that have this
   134  	// value as one of their operands; it may contain duplicates
   135  	// if an instruction has a repeated operand.
   136  	//
   137  	// Referrers actually returns a pointer through which the
   138  	// caller may perform mutations to the object's state.
   139  	//
   140  	// Referrers is currently only defined if Parent()!=nil,
   141  	// i.e. for the function-local values FreeVar, Parameter,
   142  	// Functions (iff anonymous) and all value-defining instructions.
   143  	// It returns nil for named Functions, Builtin, Const and Global.
   144  	//
   145  	// Instruction.Operands contains the inverse of this relation.
   146  	Referrers() *[]Instruction
   147  
   148  	// Pos returns the location of the AST token most closely
   149  	// associated with the operation that gave rise to this value,
   150  	// or token.NoPos if it was not explicit in the source.
   151  	//
   152  	// For each ast.Node type, a particular token is designated as
   153  	// the closest location for the expression, e.g. the Lparen
   154  	// for an *ast.CallExpr.  This permits a compact but
   155  	// approximate mapping from Values to source positions for use
   156  	// in diagnostic messages, for example.
   157  	//
   158  	// (Do not use this position to determine which Value
   159  	// corresponds to an ast.Expr; use Function.ValueForExpr
   160  	// instead.  NB: it requires that the function was built with
   161  	// debug information.)
   162  	Pos() token.Pos
   163  }
   164  
   165  // An Instruction is an SSA instruction that computes a new Value or
   166  // has some effect.
   167  //
   168  // An Instruction that defines a value (e.g. BinOp) also implements
   169  // the Value interface; an Instruction that only has an effect (e.g. Store)
   170  // does not.
   171  //
   172  type Instruction interface {
   173  	// String returns the disassembled form of this value.
   174  	//
   175  	// Examples of Instructions that are Values:
   176  	//       "x + y"     (BinOp)
   177  	//       "len([])"   (Call)
   178  	// Note that the name of the Value is not printed.
   179  	//
   180  	// Examples of Instructions that are not Values:
   181  	//       "return x"  (Return)
   182  	//       "*y = x"    (Store)
   183  	//
   184  	// (The separation Value.Name() from Value.String() is useful
   185  	// for some analyses which distinguish the operation from the
   186  	// value it defines, e.g., 'y = local int' is both an allocation
   187  	// of memory 'local int' and a definition of a pointer y.)
   188  	String() string
   189  
   190  	// Parent returns the function to which this instruction
   191  	// belongs.
   192  	Parent() *Function
   193  
   194  	// Block returns the basic block to which this instruction
   195  	// belongs.
   196  	Block() *BasicBlock
   197  
   198  	// setBlock sets the basic block to which this instruction belongs.
   199  	setBlock(*BasicBlock)
   200  
   201  	// Operands returns the operands of this instruction: the
   202  	// set of Values it references.
   203  	//
   204  	// Specifically, it appends their addresses to rands, a
   205  	// user-provided slice, and returns the resulting slice,
   206  	// permitting avoidance of memory allocation.
   207  	//
   208  	// The operands are appended in undefined order, but the order
   209  	// is consistent for a given Instruction; the addresses are
   210  	// always non-nil but may point to a nil Value.  Clients may
   211  	// store through the pointers, e.g. to effect a value
   212  	// renaming.
   213  	//
   214  	// Value.Referrers is a subset of the inverse of this
   215  	// relation.  (Referrers are not tracked for all types of
   216  	// Values.)
   217  	Operands(rands []*Value) []*Value
   218  
   219  	// Pos returns the location of the AST token most closely
   220  	// associated with the operation that gave rise to this
   221  	// instruction, or token.NoPos if it was not explicit in the
   222  	// source.
   223  	//
   224  	// For each ast.Node type, a particular token is designated as
   225  	// the closest location for the expression, e.g. the Go token
   226  	// for an *ast.GoStmt.  This permits a compact but approximate
   227  	// mapping from Instructions to source positions for use in
   228  	// diagnostic messages, for example.
   229  	//
   230  	// (Do not use this position to determine which Instruction
   231  	// corresponds to an ast.Expr; see the notes for Value.Pos.
   232  	// This position may be used to determine which non-Value
   233  	// Instruction corresponds to some ast.Stmts, but not all: If
   234  	// and Jump instructions have no Pos(), for example.)
   235  	Pos() token.Pos
   236  }
   237  
   238  // A Node is a node in the SSA value graph.  Every concrete type that
   239  // implements Node is also either a Value, an Instruction, or both.
   240  //
   241  // Node contains the methods common to Value and Instruction, plus the
   242  // Operands and Referrers methods generalized to return nil for
   243  // non-Instructions and non-Values, respectively.
   244  //
   245  // Node is provided to simplify SSA graph algorithms.  Clients should
   246  // use the more specific and informative Value or Instruction
   247  // interfaces where appropriate.
   248  //
   249  type Node interface {
   250  	// Common methods:
   251  	String() string
   252  	Pos() token.Pos
   253  	Parent() *Function
   254  
   255  	// Partial methods:
   256  	Operands(rands []*Value) []*Value // nil for non-Instructions
   257  	Referrers() *[]Instruction        // nil for non-Values
   258  }
   259  
   260  // Function represents the parameters, results, and code of a function
   261  // or method.
   262  //
   263  // If Blocks is nil, this indicates an external function for which no
   264  // Go source code is available.  In this case, FreeVars and Locals
   265  // are nil too.  Clients performing whole-program analysis must
   266  // handle external functions specially.
   267  //
   268  // Blocks contains the function's control-flow graph (CFG).
   269  // Blocks[0] is the function entry point; block order is not otherwise
   270  // semantically significant, though it may affect the readability of
   271  // the disassembly.
   272  // To iterate over the blocks in dominance order, use DomPreorder().
   273  //
   274  // Recover is an optional second entry point to which control resumes
   275  // after a recovered panic.  The Recover block may contain only a return
   276  // statement, preceded by a load of the function's named return
   277  // parameters, if any.
   278  //
   279  // A nested function (Parent()!=nil) that refers to one or more
   280  // lexically enclosing local variables ("free variables") has FreeVars.
   281  // Such functions cannot be called directly but require a
   282  // value created by MakeClosure which, via its Bindings, supplies
   283  // values for these parameters.
   284  //
   285  // If the function is a method (Signature.Recv() != nil) then the first
   286  // element of Params is the receiver parameter.
   287  //
   288  // A Go package may declare many functions called "init".
   289  // For each one, Object().Name() returns "init" but Name() returns
   290  // "init#1", etc, in declaration order.
   291  //
   292  // Pos() returns the declaring ast.FuncLit.Type.Func or the position
   293  // of the ast.FuncDecl.Name, if the function was explicit in the
   294  // source.  Synthetic wrappers, for which Synthetic != "", may share
   295  // the same position as the function they wrap.
   296  // Syntax.Pos() always returns the position of the declaring "func" token.
   297  //
   298  // Type() returns the function's Signature.
   299  //
   300  type Function struct {
   301  	name      string
   302  	object    types.Object     // a declared *types.Func or one of its wrappers
   303  	method    *types.Selection // info about provenance of synthetic methods
   304  	Signature *types.Signature
   305  	pos       token.Pos
   306  
   307  	Synthetic string        // provenance of synthetic function; "" for true source functions
   308  	syntax    ast.Node      // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
   309  	parent    *Function     // enclosing function if anon; nil if global
   310  	Pkg       *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
   311  	Prog      *Program      // enclosing program
   312  	Params    []*Parameter  // function parameters; for methods, includes receiver
   313  	FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
   314  	Locals    []*Alloc      // local variables of this function
   315  	Blocks    []*BasicBlock // basic blocks of the function; nil => external
   316  	Recover   *BasicBlock   // optional; control transfers here after recovered panic
   317  	AnonFuncs []*Function   // anonymous functions directly beneath this one
   318  	referrers []Instruction // referring instructions (iff Parent() != nil)
   319  
   320  	// The following fields are set transiently during building,
   321  	// then cleared.
   322  	currentBlock *BasicBlock             // where to emit code
   323  	objects      map[types.Object]Value  // addresses of local variables
   324  	namedResults []*Alloc                // tuple of named results
   325  	targets      *targets                // linked stack of branch targets
   326  	lblocks      map[*ast.Object]*lblock // labelled blocks
   327  }
   328  
   329  // BasicBlock represents an SSA basic block.
   330  //
   331  // The final element of Instrs is always an explicit transfer of
   332  // control (If, Jump, Return, or Panic).
   333  //
   334  // A block may contain no Instructions only if it is unreachable,
   335  // i.e., Preds is nil.  Empty blocks are typically pruned.
   336  //
   337  // BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
   338  // graph independent of the SSA Value graph: the control-flow graph or
   339  // CFG.  It is illegal for multiple edges to exist between the same
   340  // pair of blocks.
   341  //
   342  // Each BasicBlock is also a node in the dominator tree of the CFG.
   343  // The tree may be navigated using Idom()/Dominees() and queried using
   344  // Dominates().
   345  //
   346  // The order of Preds and Succs is significant (to Phi and If
   347  // instructions, respectively).
   348  //
   349  type BasicBlock struct {
   350  	Index        int            // index of this block within Parent().Blocks
   351  	Comment      string         // optional label; no semantic significance
   352  	parent       *Function      // parent function
   353  	Instrs       []Instruction  // instructions in order
   354  	Preds, Succs []*BasicBlock  // predecessors and successors
   355  	succs2       [2]*BasicBlock // initial space for Succs
   356  	dom          domInfo        // dominator tree info
   357  	gaps         int            // number of nil Instrs (transient)
   358  	rundefers    int            // number of rundefers (transient)
   359  }
   360  
   361  // Pure values ----------------------------------------
   362  
   363  // A FreeVar represents a free variable of the function to which it
   364  // belongs.
   365  //
   366  // FreeVars are used to implement anonymous functions, whose free
   367  // variables are lexically captured in a closure formed by
   368  // MakeClosure.  The value of such a free var is an Alloc or another
   369  // FreeVar and is considered a potentially escaping heap address, with
   370  // pointer type.
   371  //
   372  // FreeVars are also used to implement bound method closures.  Such a
   373  // free var represents the receiver value and may be of any type that
   374  // has concrete methods.
   375  //
   376  // Pos() returns the position of the value that was captured, which
   377  // belongs to an enclosing function.
   378  //
   379  type FreeVar struct {
   380  	name      string
   381  	typ       types.Type
   382  	pos       token.Pos
   383  	parent    *Function
   384  	referrers []Instruction
   385  
   386  	// Transiently needed during building.
   387  	outer Value // the Value captured from the enclosing context.
   388  }
   389  
   390  // A Parameter represents an input parameter of a function.
   391  //
   392  type Parameter struct {
   393  	name      string
   394  	object    types.Object // a *types.Var; nil for non-source locals
   395  	typ       types.Type
   396  	pos       token.Pos
   397  	parent    *Function
   398  	referrers []Instruction
   399  }
   400  
   401  // A Const represents the value of a constant expression.
   402  //
   403  // The underlying type of a constant may be any boolean, numeric, or
   404  // string type.  In addition, a Const may represent the nil value of
   405  // any reference type---interface, map, channel, pointer, slice, or
   406  // function---but not "untyped nil".
   407  //
   408  // All source-level constant expressions are represented by a Const
   409  // of the same type and value.
   410  //
   411  // Value holds the exact value of the constant, independent of its
   412  // Type(), using the same representation as package go/exact uses for
   413  // constants, or nil for a typed nil value.
   414  //
   415  // Pos() returns token.NoPos.
   416  //
   417  // Example printed form:
   418  // 	42:int
   419  //	"hello":untyped string
   420  //	3+4i:MyComplex
   421  //
   422  type Const struct {
   423  	typ   types.Type
   424  	Value exact.Value
   425  }
   426  
   427  // A Global is a named Value holding the address of a package-level
   428  // variable.
   429  //
   430  // Pos() returns the position of the ast.ValueSpec.Names[*]
   431  // identifier.
   432  //
   433  type Global struct {
   434  	name   string
   435  	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
   436  	typ    types.Type
   437  	pos    token.Pos
   438  
   439  	Pkg *Package
   440  }
   441  
   442  // A Builtin represents a specific use of a built-in function, e.g. len.
   443  //
   444  // Builtins are immutable values.  Builtins do not have addresses.
   445  // Builtins can only appear in CallCommon.Func.
   446  //
   447  // Name() indicates the function: one of the built-in functions from the
   448  // Go spec (excluding "make" and "new") or one of these ssa-defined
   449  // intrinsics:
   450  //
   451  //   // wrapnilchk returns ptr if non-nil, panics otherwise.
   452  //   // (For use in indirection wrappers.)
   453  //   func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
   454  //
   455  // Object() returns a *types.Builtin for built-ins defined by the spec,
   456  // nil for others.
   457  //
   458  // Type() returns a *types.Signature representing the effective
   459  // signature of the built-in for this call.
   460  //
   461  type Builtin struct {
   462  	name string
   463  	sig  *types.Signature
   464  }
   465  
   466  // Value-defining instructions  ----------------------------------------
   467  
   468  // The Alloc instruction reserves space for a variable of the given type,
   469  // zero-initializes it, and yields its address.
   470  //
   471  // Alloc values are always addresses, and have pointer types, so the
   472  // type of the allocated variable is actually
   473  // Type().Underlying().(*types.Pointer).Elem().
   474  //
   475  // If Heap is false, Alloc allocates space in the function's
   476  // activation record (frame); we refer to an Alloc(Heap=false) as a
   477  // "local" alloc.  Each local Alloc returns the same address each time
   478  // it is executed within the same activation; the space is
   479  // re-initialized to zero.
   480  //
   481  // If Heap is true, Alloc allocates space in the heap; we
   482  // refer to an Alloc(Heap=true) as a "new" alloc.  Each new Alloc
   483  // returns a different address each time it is executed.
   484  //
   485  // When Alloc is applied to a channel, map or slice type, it returns
   486  // the address of an uninitialized (nil) reference of that kind; store
   487  // the result of MakeSlice, MakeMap or MakeChan in that location to
   488  // instantiate these types.
   489  //
   490  // Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
   491  // or the ast.CallExpr.Rparen for a call to new() or for a call that
   492  // allocates a varargs slice.
   493  //
   494  // Example printed form:
   495  // 	t0 = local int
   496  // 	t1 = new int
   497  //
   498  type Alloc struct {
   499  	register
   500  	Comment string
   501  	Heap    bool
   502  	index   int // dense numbering; for lifting
   503  }
   504  
   505  // The Phi instruction represents an SSA φ-node, which combines values
   506  // that differ across incoming control-flow edges and yields a new
   507  // value.  Within a block, all φ-nodes must appear before all non-φ
   508  // nodes.
   509  //
   510  // Pos() returns the position of the && or || for short-circuit
   511  // control-flow joins, or that of the *Alloc for φ-nodes inserted
   512  // during SSA renaming.
   513  //
   514  // Example printed form:
   515  // 	t2 = phi [0: t0, 1: t1]
   516  //
   517  type Phi struct {
   518  	register
   519  	Comment string  // a hint as to its purpose
   520  	Edges   []Value // Edges[i] is value for Block().Preds[i]
   521  }
   522  
   523  // The Call instruction represents a function or method call.
   524  //
   525  // The Call instruction yields the function result if there is exactly
   526  // one.  Otherwise it returns a tuple, the components of which are
   527  // accessed via Extract.
   528  //
   529  // See CallCommon for generic function call documentation.
   530  //
   531  // Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
   532  //
   533  // Example printed form:
   534  // 	t2 = println(t0, t1)
   535  // 	t4 = t3()
   536  // 	t7 = invoke t5.Println(...t6)
   537  //
   538  type Call struct {
   539  	register
   540  	Call CallCommon
   541  }
   542  
   543  // The BinOp instruction yields the result of binary operation X Op Y.
   544  //
   545  // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
   546  //
   547  // Example printed form:
   548  // 	t1 = t0 + 1:int
   549  //
   550  type BinOp struct {
   551  	register
   552  	// One of:
   553  	// ADD SUB MUL QUO REM          + - * / %
   554  	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &~
   555  	// EQL LSS GTR NEQ LEQ GEQ      == != < <= < >=
   556  	Op   token.Token
   557  	X, Y Value
   558  }
   559  
   560  // The UnOp instruction yields the result of Op X.
   561  // ARROW is channel receive.
   562  // MUL is pointer indirection (load).
   563  // XOR is bitwise complement.
   564  // SUB is negation.
   565  // NOT is logical negation.
   566  //
   567  // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
   568  // and a boolean indicating the success of the receive.  The
   569  // components of the tuple are accessed using Extract.
   570  //
   571  // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
   572  // For receive operations (ARROW) implicit in ranging over a channel,
   573  // Pos() returns the ast.RangeStmt.For.
   574  // For implicit memory loads (STAR), Pos() returns the position of the
   575  // most closely associated source-level construct; the details are not
   576  // specified.
   577  //
   578  // Example printed form:
   579  // 	t0 = *x
   580  // 	t2 = <-t1,ok
   581  //
   582  type UnOp struct {
   583  	register
   584  	Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
   585  	X       Value
   586  	CommaOk bool
   587  }
   588  
   589  // The ChangeType instruction applies to X a value-preserving type
   590  // change to Type().
   591  //
   592  // Type changes are permitted:
   593  //    - between a named type and its underlying type.
   594  //    - between two named types of the same underlying type.
   595  //    - between (possibly named) pointers to identical base types.
   596  //    - from a bidirectional channel to a read- or write-channel,
   597  //      optionally adding/removing a name.
   598  //
   599  // This operation cannot fail dynamically.
   600  //
   601  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   602  // from an explicit conversion in the source.
   603  //
   604  // Example printed form:
   605  // 	t1 = changetype *int <- IntPtr (t0)
   606  //
   607  type ChangeType struct {
   608  	register
   609  	X Value
   610  }
   611  
   612  // The Convert instruction yields the conversion of value X to type
   613  // Type().  One or both of those types is basic (but possibly named).
   614  //
   615  // A conversion may change the value and representation of its operand.
   616  // Conversions are permitted:
   617  //    - between real numeric types.
   618  //    - between complex numeric types.
   619  //    - between string and []byte or []rune.
   620  //    - between pointers and unsafe.Pointer.
   621  //    - between unsafe.Pointer and uintptr.
   622  //    - from (Unicode) integer to (UTF-8) string.
   623  // A conversion may imply a type name change also.
   624  //
   625  // This operation cannot fail dynamically.
   626  //
   627  // Conversions of untyped string/number/bool constants to a specific
   628  // representation are eliminated during SSA construction.
   629  //
   630  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   631  // from an explicit conversion in the source.
   632  //
   633  // Example printed form:
   634  // 	t1 = convert []byte <- string (t0)
   635  //
   636  type Convert struct {
   637  	register
   638  	X Value
   639  }
   640  
   641  // ChangeInterface constructs a value of one interface type from a
   642  // value of another interface type known to be assignable to it.
   643  // This operation cannot fail.
   644  //
   645  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   646  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   647  // instruction arose from an explicit e.(T) operation; or token.NoPos
   648  // otherwise.
   649  //
   650  // Example printed form:
   651  // 	t1 = change interface interface{} <- I (t0)
   652  //
   653  type ChangeInterface struct {
   654  	register
   655  	X Value
   656  }
   657  
   658  // MakeInterface constructs an instance of an interface type from a
   659  // value of a concrete type.
   660  //
   661  // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
   662  // of X, and Program.Method(m) to find the implementation of a method.
   663  //
   664  // To construct the zero value of an interface type T, use:
   665  // 	NewConst(exact.MakeNil(), T, pos)
   666  //
   667  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   668  // from an explicit conversion in the source.
   669  //
   670  // Example printed form:
   671  // 	t1 = make interface{} <- int (42:int)
   672  // 	t2 = make Stringer <- t0
   673  //
   674  type MakeInterface struct {
   675  	register
   676  	X Value
   677  }
   678  
   679  // The MakeClosure instruction yields a closure value whose code is
   680  // Fn and whose free variables' values are supplied by Bindings.
   681  //
   682  // Type() returns a (possibly named) *types.Signature.
   683  //
   684  // Pos() returns the ast.FuncLit.Type.Func for a function literal
   685  // closure or the ast.SelectorExpr.Sel for a bound method closure.
   686  //
   687  // Example printed form:
   688  // 	t0 = make closure anon@1.2 [x y z]
   689  // 	t1 = make closure bound$(main.I).add [i]
   690  //
   691  type MakeClosure struct {
   692  	register
   693  	Fn       Value   // always a *Function
   694  	Bindings []Value // values for each free variable in Fn.FreeVars
   695  }
   696  
   697  // The MakeMap instruction creates a new hash-table-based map object
   698  // and yields a value of kind map.
   699  //
   700  // Type() returns a (possibly named) *types.Map.
   701  //
   702  // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
   703  // the ast.CompositeLit.Lbrack if created by a literal.
   704  //
   705  // Example printed form:
   706  // 	t1 = make map[string]int t0
   707  // 	t1 = make StringIntMap t0
   708  //
   709  type MakeMap struct {
   710  	register
   711  	Reserve Value // initial space reservation; nil => default
   712  }
   713  
   714  // The MakeChan instruction creates a new channel object and yields a
   715  // value of kind chan.
   716  //
   717  // Type() returns a (possibly named) *types.Chan.
   718  //
   719  // Pos() returns the ast.CallExpr.Lparen for the make(chan) that
   720  // created it.
   721  //
   722  // Example printed form:
   723  // 	t0 = make chan int 0
   724  // 	t0 = make IntChan 0
   725  //
   726  type MakeChan struct {
   727  	register
   728  	Size Value // int; size of buffer; zero => synchronous.
   729  }
   730  
   731  // The MakeSlice instruction yields a slice of length Len backed by a
   732  // newly allocated array of length Cap.
   733  //
   734  // Both Len and Cap must be non-nil Values of integer type.
   735  //
   736  // (Alloc(types.Array) followed by Slice will not suffice because
   737  // Alloc can only create arrays of constant length.)
   738  //
   739  // Type() returns a (possibly named) *types.Slice.
   740  //
   741  // Pos() returns the ast.CallExpr.Lparen for the make([]T) that
   742  // created it.
   743  //
   744  // Example printed form:
   745  // 	t1 = make []string 1:int t0
   746  // 	t1 = make StringSlice 1:int t0
   747  //
   748  type MakeSlice struct {
   749  	register
   750  	Len Value
   751  	Cap Value
   752  }
   753  
   754  // The Slice instruction yields a slice of an existing string, slice
   755  // or *array X between optional integer bounds Low and High.
   756  //
   757  // Dynamically, this instruction panics if X evaluates to a nil *array
   758  // pointer.
   759  //
   760  // Type() returns string if the type of X was string, otherwise a
   761  // *types.Slice with the same element type as X.
   762  //
   763  // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
   764  // operation, the ast.CompositeLit.Lbrace if created by a literal, or
   765  // NoPos if not explicit in the source (e.g. a variadic argument slice).
   766  //
   767  // Example printed form:
   768  // 	t1 = slice t0[1:]
   769  //
   770  type Slice struct {
   771  	register
   772  	X              Value // slice, string, or *array
   773  	Low, High, Max Value // each may be nil
   774  }
   775  
   776  // The FieldAddr instruction yields the address of Field of *struct X.
   777  //
   778  // The field is identified by its index within the field list of the
   779  // struct type of X.
   780  //
   781  // Dynamically, this instruction panics if X evaluates to a nil
   782  // pointer.
   783  //
   784  // Type() returns a (possibly named) *types.Pointer.
   785  //
   786  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   787  // field, if explicit in the source.
   788  //
   789  // Example printed form:
   790  // 	t1 = &t0.name [#1]
   791  //
   792  type FieldAddr struct {
   793  	register
   794  	X     Value // *struct
   795  	Field int   // index into X.Type().Deref().(*types.Struct).Fields
   796  }
   797  
   798  // The Field instruction yields the Field of struct X.
   799  //
   800  // The field is identified by its index within the field list of the
   801  // struct type of X; by using numeric indices we avoid ambiguity of
   802  // package-local identifiers and permit compact representations.
   803  //
   804  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   805  // field, if explicit in the source.
   806  //
   807  // Example printed form:
   808  // 	t1 = t0.name [#1]
   809  //
   810  type Field struct {
   811  	register
   812  	X     Value // struct
   813  	Field int   // index into X.Type().(*types.Struct).Fields
   814  }
   815  
   816  // The IndexAddr instruction yields the address of the element at
   817  // index Index of collection X.  Index is an integer expression.
   818  //
   819  // The elements of maps and strings are not addressable; use Lookup or
   820  // MapUpdate instead.
   821  //
   822  // Dynamically, this instruction panics if X evaluates to a nil *array
   823  // pointer.
   824  //
   825  // Type() returns a (possibly named) *types.Pointer.
   826  //
   827  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   828  // explicit in the source.
   829  //
   830  // Example printed form:
   831  // 	t2 = &t0[t1]
   832  //
   833  type IndexAddr struct {
   834  	register
   835  	X     Value // slice or *array,
   836  	Index Value // numeric index
   837  }
   838  
   839  // The Index instruction yields element Index of array X.
   840  //
   841  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   842  // explicit in the source.
   843  //
   844  // Example printed form:
   845  // 	t2 = t0[t1]
   846  //
   847  type Index struct {
   848  	register
   849  	X     Value // array
   850  	Index Value // integer index
   851  }
   852  
   853  // The Lookup instruction yields element Index of collection X, a map
   854  // or string.  Index is an integer expression if X is a string or the
   855  // appropriate key type if X is a map.
   856  //
   857  // If CommaOk, the result is a 2-tuple of the value above and a
   858  // boolean indicating the result of a map membership test for the key.
   859  // The components of the tuple are accessed using Extract.
   860  //
   861  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
   862  //
   863  // Example printed form:
   864  // 	t2 = t0[t1]
   865  // 	t5 = t3[t4],ok
   866  //
   867  type Lookup struct {
   868  	register
   869  	X       Value // string or map
   870  	Index   Value // numeric or key-typed index
   871  	CommaOk bool  // return a value,ok pair
   872  }
   873  
   874  // SelectState is a helper for Select.
   875  // It represents one goal state and its corresponding communication.
   876  //
   877  type SelectState struct {
   878  	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
   879  	Chan      Value         // channel to use (for send or receive)
   880  	Send      Value         // value to send (for send)
   881  	Pos       token.Pos     // position of token.ARROW
   882  	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
   883  }
   884  
   885  // The Select instruction tests whether (or blocks until) one
   886  // of the specified sent or received states is entered.
   887  //
   888  // Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
   889  // be the element type of each such state's Chan.
   890  // Select returns an n+2-tuple
   891  //    (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
   892  // The tuple's components, described below, must be accessed via the
   893  // Extract instruction.
   894  //
   895  // If Blocking, select waits until exactly one state holds, i.e. a
   896  // channel becomes ready for the designated operation of sending or
   897  // receiving; select chooses one among the ready states
   898  // pseudorandomly, performs the send or receive operation, and sets
   899  // 'index' to the index of the chosen channel.
   900  //
   901  // If !Blocking, select doesn't block if no states hold; instead it
   902  // returns immediately with index equal to -1.
   903  //
   904  // If the chosen channel was used for a receive, the r_i component is
   905  // set to the received value, where i is the index of that state among
   906  // all n receive states; otherwise r_i has the zero value of type T_i.
   907  // Note that the receive index i is not the same as the state
   908  // index index.
   909  //
   910  // The second component of the triple, recvOk, is a boolean whose value
   911  // is true iff the selected operation was a receive and the receive
   912  // successfully yielded a value.
   913  //
   914  // Pos() returns the ast.SelectStmt.Select.
   915  //
   916  // Example printed form:
   917  // 	t3 = select nonblocking [<-t0, t1<-t2]
   918  // 	t4 = select blocking []
   919  //
   920  type Select struct {
   921  	register
   922  	States   []*SelectState
   923  	Blocking bool
   924  }
   925  
   926  // The Range instruction yields an iterator over the domain and range
   927  // of X, which must be a string or map.
   928  //
   929  // Elements are accessed via Next.
   930  //
   931  // Type() returns an opaque and degenerate "rangeIter" type.
   932  //
   933  // Pos() returns the ast.RangeStmt.For.
   934  //
   935  // Example printed form:
   936  // 	t0 = range "hello":string
   937  //
   938  type Range struct {
   939  	register
   940  	X Value // string or map
   941  }
   942  
   943  // The Next instruction reads and advances the (map or string)
   944  // iterator Iter and returns a 3-tuple value (ok, k, v).  If the
   945  // iterator is not exhausted, ok is true and k and v are the next
   946  // elements of the domain and range, respectively.  Otherwise ok is
   947  // false and k and v are undefined.
   948  //
   949  // Components of the tuple are accessed using Extract.
   950  //
   951  // The IsString field distinguishes iterators over strings from those
   952  // over maps, as the Type() alone is insufficient: consider
   953  // map[int]rune.
   954  //
   955  // Type() returns a *types.Tuple for the triple (ok, k, v).
   956  // The types of k and/or v may be types.Invalid.
   957  //
   958  // Example printed form:
   959  // 	t1 = next t0
   960  //
   961  type Next struct {
   962  	register
   963  	Iter     Value
   964  	IsString bool // true => string iterator; false => map iterator.
   965  }
   966  
   967  // The TypeAssert instruction tests whether interface value X has type
   968  // AssertedType.
   969  //
   970  // If !CommaOk, on success it returns v, the result of the conversion
   971  // (defined below); on failure it panics.
   972  //
   973  // If CommaOk: on success it returns a pair (v, true) where v is the
   974  // result of the conversion; on failure it returns (z, false) where z
   975  // is AssertedType's zero value.  The components of the pair must be
   976  // accessed using the Extract instruction.
   977  //
   978  // If AssertedType is a concrete type, TypeAssert checks whether the
   979  // dynamic type in interface X is equal to it, and if so, the result
   980  // of the conversion is a copy of the value in the interface.
   981  //
   982  // If AssertedType is an interface, TypeAssert checks whether the
   983  // dynamic type of the interface is assignable to it, and if so, the
   984  // result of the conversion is a copy of the interface value X.
   985  // If AssertedType is a superinterface of X.Type(), the operation will
   986  // fail iff the operand is nil.  (Contrast with ChangeInterface, which
   987  // performs no nil-check.)
   988  //
   989  // Type() reflects the actual type of the result, possibly a
   990  // 2-types.Tuple; AssertedType is the asserted type.
   991  //
   992  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   993  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   994  // instruction arose from an explicit e.(T) operation; or the
   995  // ast.CaseClause.Case if the instruction arose from a case of a
   996  // type-switch statement.
   997  //
   998  // Example printed form:
   999  // 	t1 = typeassert t0.(int)
  1000  // 	t3 = typeassert,ok t2.(T)
  1001  //
  1002  type TypeAssert struct {
  1003  	register
  1004  	X            Value
  1005  	AssertedType types.Type
  1006  	CommaOk      bool
  1007  }
  1008  
  1009  // The Extract instruction yields component Index of Tuple.
  1010  //
  1011  // This is used to access the results of instructions with multiple
  1012  // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
  1013  // IndexExpr(Map).
  1014  //
  1015  // Example printed form:
  1016  // 	t1 = extract t0 #1
  1017  //
  1018  type Extract struct {
  1019  	register
  1020  	Tuple Value
  1021  	Index int
  1022  }
  1023  
  1024  // Instructions executed for effect.  They do not yield a value. --------------------
  1025  
  1026  // The Jump instruction transfers control to the sole successor of its
  1027  // owning block.
  1028  //
  1029  // A Jump must be the last instruction of its containing BasicBlock.
  1030  //
  1031  // Pos() returns NoPos.
  1032  //
  1033  // Example printed form:
  1034  // 	jump done
  1035  //
  1036  type Jump struct {
  1037  	anInstruction
  1038  }
  1039  
  1040  // The If instruction transfers control to one of the two successors
  1041  // of its owning block, depending on the boolean Cond: the first if
  1042  // true, the second if false.
  1043  //
  1044  // An If instruction must be the last instruction of its containing
  1045  // BasicBlock.
  1046  //
  1047  // Pos() returns NoPos.
  1048  //
  1049  // Example printed form:
  1050  // 	if t0 goto done else body
  1051  //
  1052  type If struct {
  1053  	anInstruction
  1054  	Cond Value
  1055  }
  1056  
  1057  // The Return instruction returns values and control back to the calling
  1058  // function.
  1059  //
  1060  // len(Results) is always equal to the number of results in the
  1061  // function's signature.
  1062  //
  1063  // If len(Results) > 1, Return returns a tuple value with the specified
  1064  // components which the caller must access using Extract instructions.
  1065  //
  1066  // There is no instruction to return a ready-made tuple like those
  1067  // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
  1068  // a tail-call to a function with multiple result parameters.
  1069  //
  1070  // Return must be the last instruction of its containing BasicBlock.
  1071  // Such a block has no successors.
  1072  //
  1073  // Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
  1074  //
  1075  // Example printed form:
  1076  // 	return
  1077  // 	return nil:I, 2:int
  1078  //
  1079  type Return struct {
  1080  	anInstruction
  1081  	Results []Value
  1082  	pos     token.Pos
  1083  }
  1084  
  1085  // The RunDefers instruction pops and invokes the entire stack of
  1086  // procedure calls pushed by Defer instructions in this function.
  1087  //
  1088  // It is legal to encounter multiple 'rundefers' instructions in a
  1089  // single control-flow path through a function; this is useful in
  1090  // the combined init() function, for example.
  1091  //
  1092  // Pos() returns NoPos.
  1093  //
  1094  // Example printed form:
  1095  //	rundefers
  1096  //
  1097  type RunDefers struct {
  1098  	anInstruction
  1099  }
  1100  
  1101  // The Panic instruction initiates a panic with value X.
  1102  //
  1103  // A Panic instruction must be the last instruction of its containing
  1104  // BasicBlock, which must have no successors.
  1105  //
  1106  // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
  1107  // they are treated as calls to a built-in function.
  1108  //
  1109  // Pos() returns the ast.CallExpr.Lparen if this panic was explicit
  1110  // in the source.
  1111  //
  1112  // Example printed form:
  1113  // 	panic t0
  1114  //
  1115  type Panic struct {
  1116  	anInstruction
  1117  	X   Value // an interface{}
  1118  	pos token.Pos
  1119  }
  1120  
  1121  // The Go instruction creates a new goroutine and calls the specified
  1122  // function within it.
  1123  //
  1124  // See CallCommon for generic function call documentation.
  1125  //
  1126  // Pos() returns the ast.GoStmt.Go.
  1127  //
  1128  // Example printed form:
  1129  // 	go println(t0, t1)
  1130  // 	go t3()
  1131  // 	go invoke t5.Println(...t6)
  1132  //
  1133  type Go struct {
  1134  	anInstruction
  1135  	Call CallCommon
  1136  	pos  token.Pos
  1137  }
  1138  
  1139  // The Defer instruction pushes the specified call onto a stack of
  1140  // functions to be called by a RunDefers instruction or by a panic.
  1141  //
  1142  // See CallCommon for generic function call documentation.
  1143  //
  1144  // Pos() returns the ast.DeferStmt.Defer.
  1145  //
  1146  // Example printed form:
  1147  // 	defer println(t0, t1)
  1148  // 	defer t3()
  1149  // 	defer invoke t5.Println(...t6)
  1150  //
  1151  type Defer struct {
  1152  	anInstruction
  1153  	Call CallCommon
  1154  	pos  token.Pos
  1155  }
  1156  
  1157  // The Send instruction sends X on channel Chan.
  1158  //
  1159  // Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
  1160  //
  1161  // Example printed form:
  1162  // 	send t0 <- t1
  1163  //
  1164  type Send struct {
  1165  	anInstruction
  1166  	Chan, X Value
  1167  	pos     token.Pos
  1168  }
  1169  
  1170  // The Store instruction stores Val at address Addr.
  1171  // Stores can be of arbitrary types.
  1172  //
  1173  // Pos() returns the position of the source-level construct most closely
  1174  // associated with the memory store operation.
  1175  // Since implicit memory stores are numerous and varied and depend upon
  1176  // implementation choices, the details are not specified.
  1177  //
  1178  // Example printed form:
  1179  // 	*x = y
  1180  //
  1181  type Store struct {
  1182  	anInstruction
  1183  	Addr Value
  1184  	Val  Value
  1185  	pos  token.Pos
  1186  }
  1187  
  1188  // The MapUpdate instruction updates the association of Map[Key] to
  1189  // Value.
  1190  //
  1191  // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
  1192  // if explicit in the source.
  1193  //
  1194  // Example printed form:
  1195  //	t0[t1] = t2
  1196  //
  1197  type MapUpdate struct {
  1198  	anInstruction
  1199  	Map   Value
  1200  	Key   Value
  1201  	Value Value
  1202  	pos   token.Pos
  1203  }
  1204  
  1205  // A DebugRef instruction maps a source-level expression Expr to the
  1206  // SSA value X that represents the value (!IsAddr) or address (IsAddr)
  1207  // of that expression.
  1208  //
  1209  // DebugRef is a pseudo-instruction: it has no dynamic effect.
  1210  //
  1211  // Pos() returns Expr.Pos(), the start position of the source-level
  1212  // expression.  This is not the same as the "designated" token as
  1213  // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
  1214  // position of the ("designated") Lparen token.
  1215  //
  1216  // If Expr is an *ast.Ident denoting a var or func, Object() returns
  1217  // the object; though this information can be obtained from the type
  1218  // checker, including it here greatly facilitates debugging.
  1219  // For non-Ident expressions, Object() returns nil.
  1220  //
  1221  // DebugRefs are generated only for functions built with debugging
  1222  // enabled; see Package.SetDebugMode() and the GlobalDebug builder
  1223  // mode flag.
  1224  //
  1225  // DebugRefs are not emitted for ast.Idents referring to constants or
  1226  // predeclared identifiers, since they are trivial and numerous.
  1227  // Nor are they emitted for ast.ParenExprs.
  1228  //
  1229  // (By representing these as instructions, rather than out-of-band,
  1230  // consistency is maintained during transformation passes by the
  1231  // ordinary SSA renaming machinery.)
  1232  //
  1233  // Example printed form:
  1234  //      ; *ast.CallExpr @ 102:9 is t5
  1235  //      ; var x float64 @ 109:72 is x
  1236  //      ; address of *ast.CompositeLit @ 216:10 is t0
  1237  //
  1238  type DebugRef struct {
  1239  	anInstruction
  1240  	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
  1241  	object types.Object // the identity of the source var/func
  1242  	IsAddr bool         // Expr is addressable and X is the address it denotes
  1243  	X      Value        // the value or address of Expr
  1244  }
  1245  
  1246  // Embeddable mix-ins and helpers for common parts of other structs. -----------
  1247  
  1248  // register is a mix-in embedded by all SSA values that are also
  1249  // instructions, i.e. virtual registers, and provides a uniform
  1250  // implementation of most of the Value interface: Value.Name() is a
  1251  // numbered register (e.g. "t0"); the other methods are field accessors.
  1252  //
  1253  // Temporary names are automatically assigned to each register on
  1254  // completion of building a function in SSA form.
  1255  //
  1256  // Clients must not assume that the 'id' value (and the Name() derived
  1257  // from it) is unique within a function.  As always in this API,
  1258  // semantics are determined only by identity; names exist only to
  1259  // facilitate debugging.
  1260  //
  1261  type register struct {
  1262  	anInstruction
  1263  	num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
  1264  	typ       types.Type // type of virtual register
  1265  	pos       token.Pos  // position of source expression, or NoPos
  1266  	referrers []Instruction
  1267  }
  1268  
  1269  // anInstruction is a mix-in embedded by all Instructions.
  1270  // It provides the implementations of the Block and setBlock methods.
  1271  type anInstruction struct {
  1272  	block *BasicBlock // the basic block of this instruction
  1273  }
  1274  
  1275  // CallCommon is contained by Go, Defer and Call to hold the
  1276  // common parts of a function or method call.
  1277  //
  1278  // Each CallCommon exists in one of two modes, function call and
  1279  // interface method invocation, or "call" and "invoke" for short.
  1280  //
  1281  // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
  1282  // represents an ordinary function call of the value in Value,
  1283  // which may be a *Builtin, a *Function or any other value of kind
  1284  // 'func'.
  1285  //
  1286  // Value may be one of:
  1287  //    (a) a *Function, indicating a statically dispatched call
  1288  //        to a package-level function, an anonymous function, or
  1289  //        a method of a named type.
  1290  //    (b) a *MakeClosure, indicating an immediately applied
  1291  //        function literal with free variables.
  1292  //    (c) a *Builtin, indicating a statically dispatched call
  1293  //        to a built-in function.
  1294  //    (d) any other value, indicating a dynamically dispatched
  1295  //        function call.
  1296  // StaticCallee returns the identity of the callee in cases
  1297  // (a) and (b), nil otherwise.
  1298  //
  1299  // Args contains the arguments to the call.  If Value is a method,
  1300  // Args[0] contains the receiver parameter.
  1301  //
  1302  // Example printed form:
  1303  // 	t2 = println(t0, t1)
  1304  // 	go t3()
  1305  //	defer t5(...t6)
  1306  //
  1307  // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
  1308  // represents a dynamically dispatched call to an interface method.
  1309  // In this mode, Value is the interface value and Method is the
  1310  // interface's abstract method.  Note: an abstract method may be
  1311  // shared by multiple interfaces due to embedding; Value.Type()
  1312  // provides the specific interface used for this call.
  1313  //
  1314  // Value is implicitly supplied to the concrete method implementation
  1315  // as the receiver parameter; in other words, Args[0] holds not the
  1316  // receiver but the first true argument.
  1317  //
  1318  // Example printed form:
  1319  // 	t1 = invoke t0.String()
  1320  // 	go invoke t3.Run(t2)
  1321  // 	defer invoke t4.Handle(...t5)
  1322  //
  1323  // For all calls to variadic functions (Signature().Variadic()),
  1324  // the last element of Args is a slice.
  1325  //
  1326  type CallCommon struct {
  1327  	Value  Value       // receiver (invoke mode) or func value (call mode)
  1328  	Method *types.Func // abstract method (invoke mode)
  1329  	Args   []Value     // actual parameters (in static method call, includes receiver)
  1330  	pos    token.Pos   // position of CallExpr.Lparen, iff explicit in source
  1331  }
  1332  
  1333  // IsInvoke returns true if this call has "invoke" (not "call") mode.
  1334  func (c *CallCommon) IsInvoke() bool {
  1335  	return c.Method != nil
  1336  }
  1337  
  1338  func (c *CallCommon) Pos() token.Pos { return c.pos }
  1339  
  1340  // Signature returns the signature of the called function.
  1341  //
  1342  // For an "invoke"-mode call, the signature of the interface method is
  1343  // returned.
  1344  //
  1345  // In either "call" or "invoke" mode, if the callee is a method, its
  1346  // receiver is represented by sig.Recv, not sig.Params().At(0).
  1347  //
  1348  func (c *CallCommon) Signature() *types.Signature {
  1349  	if c.Method != nil {
  1350  		return c.Method.Type().(*types.Signature)
  1351  	}
  1352  	return c.Value.Type().Underlying().(*types.Signature)
  1353  }
  1354  
  1355  // StaticCallee returns the callee if this is a trivially static
  1356  // "call"-mode call to a function.
  1357  func (c *CallCommon) StaticCallee() *Function {
  1358  	switch fn := c.Value.(type) {
  1359  	case *Function:
  1360  		return fn
  1361  	case *MakeClosure:
  1362  		return fn.Fn.(*Function)
  1363  	}
  1364  	return nil
  1365  }
  1366  
  1367  // Description returns a description of the mode of this call suitable
  1368  // for a user interface, e.g., "static method call".
  1369  func (c *CallCommon) Description() string {
  1370  	switch fn := c.Value.(type) {
  1371  	case *Builtin:
  1372  		return "built-in function call"
  1373  	case *MakeClosure:
  1374  		return "static function closure call"
  1375  	case *Function:
  1376  		if fn.Signature.Recv() != nil {
  1377  			return "static method call"
  1378  		}
  1379  		return "static function call"
  1380  	}
  1381  	if c.IsInvoke() {
  1382  		return "dynamic method call" // ("invoke" mode)
  1383  	}
  1384  	return "dynamic function call"
  1385  }
  1386  
  1387  // The CallInstruction interface, implemented by *Go, *Defer and *Call,
  1388  // exposes the common parts of function-calling instructions,
  1389  // yet provides a way back to the Value defined by *Call alone.
  1390  //
  1391  type CallInstruction interface {
  1392  	Instruction
  1393  	Common() *CallCommon // returns the common parts of the call
  1394  	Value() *Call        // returns the result value of the call (*Call) or nil (*Go, *Defer)
  1395  }
  1396  
  1397  func (s *Call) Common() *CallCommon  { return &s.Call }
  1398  func (s *Defer) Common() *CallCommon { return &s.Call }
  1399  func (s *Go) Common() *CallCommon    { return &s.Call }
  1400  
  1401  func (s *Call) Value() *Call  { return s }
  1402  func (s *Defer) Value() *Call { return nil }
  1403  func (s *Go) Value() *Call    { return nil }
  1404  
  1405  func (v *Builtin) Type() types.Type        { return v.sig }
  1406  func (v *Builtin) Name() string            { return v.name }
  1407  func (*Builtin) Referrers() *[]Instruction { return nil }
  1408  func (v *Builtin) Pos() token.Pos          { return token.NoPos }
  1409  func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
  1410  func (v *Builtin) Parent() *Function       { return nil }
  1411  
  1412  func (v *FreeVar) Type() types.Type          { return v.typ }
  1413  func (v *FreeVar) Name() string              { return v.name }
  1414  func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
  1415  func (v *FreeVar) Pos() token.Pos            { return v.pos }
  1416  func (v *FreeVar) Parent() *Function         { return v.parent }
  1417  
  1418  func (v *Global) Type() types.Type                     { return v.typ }
  1419  func (v *Global) Name() string                         { return v.name }
  1420  func (v *Global) Parent() *Function                    { return nil }
  1421  func (v *Global) Pos() token.Pos                       { return v.pos }
  1422  func (v *Global) Referrers() *[]Instruction            { return nil }
  1423  func (v *Global) Token() token.Token                   { return token.VAR }
  1424  func (v *Global) Object() types.Object                 { return v.object }
  1425  func (v *Global) String() string                       { return v.RelString(nil) }
  1426  func (v *Global) Package() *Package                    { return v.Pkg }
  1427  func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
  1428  
  1429  func (v *Function) Name() string         { return v.name }
  1430  func (v *Function) Type() types.Type     { return v.Signature }
  1431  func (v *Function) Pos() token.Pos       { return v.pos }
  1432  func (v *Function) Token() token.Token   { return token.FUNC }
  1433  func (v *Function) Object() types.Object { return v.object }
  1434  func (v *Function) String() string       { return v.RelString(nil) }
  1435  func (v *Function) Package() *Package    { return v.Pkg }
  1436  func (v *Function) Parent() *Function    { return v.parent }
  1437  func (v *Function) Referrers() *[]Instruction {
  1438  	if v.parent != nil {
  1439  		return &v.referrers
  1440  	}
  1441  	return nil
  1442  }
  1443  
  1444  func (v *Parameter) Type() types.Type          { return v.typ }
  1445  func (v *Parameter) Name() string              { return v.name }
  1446  func (v *Parameter) Object() types.Object      { return v.object }
  1447  func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
  1448  func (v *Parameter) Pos() token.Pos            { return v.pos }
  1449  func (v *Parameter) Parent() *Function         { return v.parent }
  1450  
  1451  func (v *Alloc) Type() types.Type          { return v.typ }
  1452  func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
  1453  func (v *Alloc) Pos() token.Pos            { return v.pos }
  1454  
  1455  func (v *register) Type() types.Type          { return v.typ }
  1456  func (v *register) setType(typ types.Type)    { v.typ = typ }
  1457  func (v *register) Name() string              { return fmt.Sprintf("t%d", v.num) }
  1458  func (v *register) setNum(num int)            { v.num = num }
  1459  func (v *register) Referrers() *[]Instruction { return &v.referrers }
  1460  func (v *register) Pos() token.Pos            { return v.pos }
  1461  func (v *register) setPos(pos token.Pos)      { v.pos = pos }
  1462  
  1463  func (v *anInstruction) Parent() *Function          { return v.block.parent }
  1464  func (v *anInstruction) Block() *BasicBlock         { return v.block }
  1465  func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
  1466  func (v *anInstruction) Referrers() *[]Instruction  { return nil }
  1467  
  1468  func (t *Type) Name() string                         { return t.object.Name() }
  1469  func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
  1470  func (t *Type) Type() types.Type                     { return t.object.Type() }
  1471  func (t *Type) Token() token.Token                   { return token.TYPE }
  1472  func (t *Type) Object() types.Object                 { return t.object }
  1473  func (t *Type) String() string                       { return t.RelString(nil) }
  1474  func (t *Type) Package() *Package                    { return t.pkg }
  1475  func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
  1476  
  1477  func (c *NamedConst) Name() string                         { return c.object.Name() }
  1478  func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
  1479  func (c *NamedConst) String() string                       { return c.RelString(nil) }
  1480  func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
  1481  func (c *NamedConst) Token() token.Token                   { return token.CONST }
  1482  func (c *NamedConst) Object() types.Object                 { return c.object }
  1483  func (c *NamedConst) Package() *Package                    { return c.pkg }
  1484  func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
  1485  
  1486  // Func returns the package-level function of the specified name,
  1487  // or nil if not found.
  1488  //
  1489  func (p *Package) Func(name string) (f *Function) {
  1490  	f, _ = p.Members[name].(*Function)
  1491  	return
  1492  }
  1493  
  1494  // Var returns the package-level variable of the specified name,
  1495  // or nil if not found.
  1496  //
  1497  func (p *Package) Var(name string) (g *Global) {
  1498  	g, _ = p.Members[name].(*Global)
  1499  	return
  1500  }
  1501  
  1502  // Const returns the package-level constant of the specified name,
  1503  // or nil if not found.
  1504  //
  1505  func (p *Package) Const(name string) (c *NamedConst) {
  1506  	c, _ = p.Members[name].(*NamedConst)
  1507  	return
  1508  }
  1509  
  1510  // Type returns the package-level type of the specified name,
  1511  // or nil if not found.
  1512  //
  1513  func (p *Package) Type(name string) (t *Type) {
  1514  	t, _ = p.Members[name].(*Type)
  1515  	return
  1516  }
  1517  
  1518  func (v *Call) Pos() token.Pos      { return v.Call.pos }
  1519  func (s *Defer) Pos() token.Pos     { return s.pos }
  1520  func (s *Go) Pos() token.Pos        { return s.pos }
  1521  func (s *MapUpdate) Pos() token.Pos { return s.pos }
  1522  func (s *Panic) Pos() token.Pos     { return s.pos }
  1523  func (s *Return) Pos() token.Pos    { return s.pos }
  1524  func (s *Send) Pos() token.Pos      { return s.pos }
  1525  func (s *Store) Pos() token.Pos     { return s.pos }
  1526  func (s *If) Pos() token.Pos        { return token.NoPos }
  1527  func (s *Jump) Pos() token.Pos      { return token.NoPos }
  1528  func (s *RunDefers) Pos() token.Pos { return token.NoPos }
  1529  func (s *DebugRef) Pos() token.Pos  { return s.Expr.Pos() }
  1530  
  1531  // Operands.
  1532  
  1533  func (v *Alloc) Operands(rands []*Value) []*Value {
  1534  	return rands
  1535  }
  1536  
  1537  func (v *BinOp) Operands(rands []*Value) []*Value {
  1538  	return append(rands, &v.X, &v.Y)
  1539  }
  1540  
  1541  func (c *CallCommon) Operands(rands []*Value) []*Value {
  1542  	rands = append(rands, &c.Value)
  1543  	for i := range c.Args {
  1544  		rands = append(rands, &c.Args[i])
  1545  	}
  1546  	return rands
  1547  }
  1548  
  1549  func (s *Go) Operands(rands []*Value) []*Value {
  1550  	return s.Call.Operands(rands)
  1551  }
  1552  
  1553  func (s *Call) Operands(rands []*Value) []*Value {
  1554  	return s.Call.Operands(rands)
  1555  }
  1556  
  1557  func (s *Defer) Operands(rands []*Value) []*Value {
  1558  	return s.Call.Operands(rands)
  1559  }
  1560  
  1561  func (v *ChangeInterface) Operands(rands []*Value) []*Value {
  1562  	return append(rands, &v.X)
  1563  }
  1564  
  1565  func (v *ChangeType) Operands(rands []*Value) []*Value {
  1566  	return append(rands, &v.X)
  1567  }
  1568  
  1569  func (v *Convert) Operands(rands []*Value) []*Value {
  1570  	return append(rands, &v.X)
  1571  }
  1572  
  1573  func (s *DebugRef) Operands(rands []*Value) []*Value {
  1574  	return append(rands, &s.X)
  1575  }
  1576  
  1577  func (v *Extract) Operands(rands []*Value) []*Value {
  1578  	return append(rands, &v.Tuple)
  1579  }
  1580  
  1581  func (v *Field) Operands(rands []*Value) []*Value {
  1582  	return append(rands, &v.X)
  1583  }
  1584  
  1585  func (v *FieldAddr) Operands(rands []*Value) []*Value {
  1586  	return append(rands, &v.X)
  1587  }
  1588  
  1589  func (s *If) Operands(rands []*Value) []*Value {
  1590  	return append(rands, &s.Cond)
  1591  }
  1592  
  1593  func (v *Index) Operands(rands []*Value) []*Value {
  1594  	return append(rands, &v.X, &v.Index)
  1595  }
  1596  
  1597  func (v *IndexAddr) Operands(rands []*Value) []*Value {
  1598  	return append(rands, &v.X, &v.Index)
  1599  }
  1600  
  1601  func (*Jump) Operands(rands []*Value) []*Value {
  1602  	return rands
  1603  }
  1604  
  1605  func (v *Lookup) Operands(rands []*Value) []*Value {
  1606  	return append(rands, &v.X, &v.Index)
  1607  }
  1608  
  1609  func (v *MakeChan) Operands(rands []*Value) []*Value {
  1610  	return append(rands, &v.Size)
  1611  }
  1612  
  1613  func (v *MakeClosure) Operands(rands []*Value) []*Value {
  1614  	rands = append(rands, &v.Fn)
  1615  	for i := range v.Bindings {
  1616  		rands = append(rands, &v.Bindings[i])
  1617  	}
  1618  	return rands
  1619  }
  1620  
  1621  func (v *MakeInterface) Operands(rands []*Value) []*Value {
  1622  	return append(rands, &v.X)
  1623  }
  1624  
  1625  func (v *MakeMap) Operands(rands []*Value) []*Value {
  1626  	return append(rands, &v.Reserve)
  1627  }
  1628  
  1629  func (v *MakeSlice) Operands(rands []*Value) []*Value {
  1630  	return append(rands, &v.Len, &v.Cap)
  1631  }
  1632  
  1633  func (v *MapUpdate) Operands(rands []*Value) []*Value {
  1634  	return append(rands, &v.Map, &v.Key, &v.Value)
  1635  }
  1636  
  1637  func (v *Next) Operands(rands []*Value) []*Value {
  1638  	return append(rands, &v.Iter)
  1639  }
  1640  
  1641  func (s *Panic) Operands(rands []*Value) []*Value {
  1642  	return append(rands, &s.X)
  1643  }
  1644  
  1645  func (v *Phi) Operands(rands []*Value) []*Value {
  1646  	for i := range v.Edges {
  1647  		rands = append(rands, &v.Edges[i])
  1648  	}
  1649  	return rands
  1650  }
  1651  
  1652  func (v *Range) Operands(rands []*Value) []*Value {
  1653  	return append(rands, &v.X)
  1654  }
  1655  
  1656  func (s *Return) Operands(rands []*Value) []*Value {
  1657  	for i := range s.Results {
  1658  		rands = append(rands, &s.Results[i])
  1659  	}
  1660  	return rands
  1661  }
  1662  
  1663  func (*RunDefers) Operands(rands []*Value) []*Value {
  1664  	return rands
  1665  }
  1666  
  1667  func (v *Select) Operands(rands []*Value) []*Value {
  1668  	for i := range v.States {
  1669  		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
  1670  	}
  1671  	return rands
  1672  }
  1673  
  1674  func (s *Send) Operands(rands []*Value) []*Value {
  1675  	return append(rands, &s.Chan, &s.X)
  1676  }
  1677  
  1678  func (v *Slice) Operands(rands []*Value) []*Value {
  1679  	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
  1680  }
  1681  
  1682  func (s *Store) Operands(rands []*Value) []*Value {
  1683  	return append(rands, &s.Addr, &s.Val)
  1684  }
  1685  
  1686  func (v *TypeAssert) Operands(rands []*Value) []*Value {
  1687  	return append(rands, &v.X)
  1688  }
  1689  
  1690  func (v *UnOp) Operands(rands []*Value) []*Value {
  1691  	return append(rands, &v.X)
  1692  }
  1693  
  1694  // Non-Instruction Values:
  1695  func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
  1696  func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
  1697  func (v *Const) Operands(rands []*Value) []*Value     { return rands }
  1698  func (v *Function) Operands(rands []*Value) []*Value  { return rands }
  1699  func (v *Global) Operands(rands []*Value) []*Value    { return rands }
  1700  func (v *Parameter) Operands(rands []*Value) []*Value { return rands }