github.com/looshlee/beatles@v0.0.0-20220727174639-742810ab631c/bpf/include/linux/bpf.h (about) 1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef __LINUX_BPF_H__ 9 #define __LINUX_BPF_H__ 10 11 #include <linux/type_mapper.h> 12 #include <linux/bpf_common.h> 13 14 /* Define BIT() here to avoid pulling in more headers */ 15 #define BIT(nr) (1UL << (nr)) 16 17 /* Extended instruction set based on top of classic BPF */ 18 19 /* instruction classes */ 20 #define BPF_ALU64 0x07 /* alu mode in double word width */ 21 22 /* ld/ldx fields */ 23 #define BPF_DW 0x18 /* double word (64-bit) */ 24 #define BPF_XADD 0xc0 /* exclusive add */ 25 26 /* alu/jmp fields */ 27 #define BPF_MOV 0xb0 /* mov reg to reg */ 28 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 29 30 /* change endianness of a register */ 31 #define BPF_END 0xd0 /* flags for endianness conversion: */ 32 #define BPF_TO_LE 0x00 /* convert to little-endian */ 33 #define BPF_TO_BE 0x08 /* convert to big-endian */ 34 #define BPF_FROM_LE BPF_TO_LE 35 #define BPF_FROM_BE BPF_TO_BE 36 37 /* jmp encodings */ 38 #define BPF_JNE 0x50 /* jump != */ 39 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 40 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 41 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 42 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 43 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 44 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 45 #define BPF_CALL 0x80 /* function call */ 46 #define BPF_EXIT 0x90 /* function return */ 47 48 /* Register numbers */ 49 enum { 50 BPF_REG_0 = 0, 51 BPF_REG_1, 52 BPF_REG_2, 53 BPF_REG_3, 54 BPF_REG_4, 55 BPF_REG_5, 56 BPF_REG_6, 57 BPF_REG_7, 58 BPF_REG_8, 59 BPF_REG_9, 60 BPF_REG_10, 61 __MAX_BPF_REG, 62 }; 63 64 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 65 #define MAX_BPF_REG __MAX_BPF_REG 66 67 struct bpf_insn { 68 __u8 code; /* opcode */ 69 __u8 dst_reg:4; /* dest register */ 70 __u8 src_reg:4; /* source register */ 71 __s16 off; /* signed offset */ 72 __s32 imm; /* signed immediate constant */ 73 }; 74 75 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 76 struct bpf_lpm_trie_key { 77 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 78 __u8 data[0]; /* Arbitrary size */ 79 }; 80 81 struct bpf_cgroup_storage_key { 82 __u64 cgroup_inode_id; /* cgroup inode id */ 83 __u32 attach_type; /* program attach type */ 84 }; 85 86 /* BPF syscall commands, see bpf(2) man-page for details. */ 87 enum bpf_cmd { 88 BPF_MAP_CREATE, 89 BPF_MAP_LOOKUP_ELEM, 90 BPF_MAP_UPDATE_ELEM, 91 BPF_MAP_DELETE_ELEM, 92 BPF_MAP_GET_NEXT_KEY, 93 BPF_PROG_LOAD, 94 BPF_OBJ_PIN, 95 BPF_OBJ_GET, 96 BPF_PROG_ATTACH, 97 BPF_PROG_DETACH, 98 BPF_PROG_TEST_RUN, 99 BPF_PROG_GET_NEXT_ID, 100 BPF_MAP_GET_NEXT_ID, 101 BPF_PROG_GET_FD_BY_ID, 102 BPF_MAP_GET_FD_BY_ID, 103 BPF_OBJ_GET_INFO_BY_FD, 104 BPF_PROG_QUERY, 105 BPF_RAW_TRACEPOINT_OPEN, 106 BPF_BTF_LOAD, 107 BPF_BTF_GET_FD_BY_ID, 108 BPF_TASK_FD_QUERY, 109 }; 110 111 enum bpf_map_type { 112 BPF_MAP_TYPE_UNSPEC, 113 BPF_MAP_TYPE_HASH, 114 BPF_MAP_TYPE_ARRAY, 115 BPF_MAP_TYPE_PROG_ARRAY, 116 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 117 BPF_MAP_TYPE_PERCPU_HASH, 118 BPF_MAP_TYPE_PERCPU_ARRAY, 119 BPF_MAP_TYPE_STACK_TRACE, 120 BPF_MAP_TYPE_CGROUP_ARRAY, 121 BPF_MAP_TYPE_LRU_HASH, 122 BPF_MAP_TYPE_LRU_PERCPU_HASH, 123 BPF_MAP_TYPE_LPM_TRIE, 124 BPF_MAP_TYPE_ARRAY_OF_MAPS, 125 BPF_MAP_TYPE_HASH_OF_MAPS, 126 BPF_MAP_TYPE_DEVMAP, 127 BPF_MAP_TYPE_SOCKMAP, 128 BPF_MAP_TYPE_CPUMAP, 129 BPF_MAP_TYPE_XSKMAP, 130 BPF_MAP_TYPE_SOCKHASH, 131 BPF_MAP_TYPE_CGROUP_STORAGE, 132 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 133 }; 134 135 enum bpf_prog_type { 136 BPF_PROG_TYPE_UNSPEC, 137 BPF_PROG_TYPE_SOCKET_FILTER, 138 BPF_PROG_TYPE_KPROBE, 139 BPF_PROG_TYPE_SCHED_CLS, 140 BPF_PROG_TYPE_SCHED_ACT, 141 BPF_PROG_TYPE_TRACEPOINT, 142 BPF_PROG_TYPE_XDP, 143 BPF_PROG_TYPE_PERF_EVENT, 144 BPF_PROG_TYPE_CGROUP_SKB, 145 BPF_PROG_TYPE_CGROUP_SOCK, 146 BPF_PROG_TYPE_LWT_IN, 147 BPF_PROG_TYPE_LWT_OUT, 148 BPF_PROG_TYPE_LWT_XMIT, 149 BPF_PROG_TYPE_SOCK_OPS, 150 BPF_PROG_TYPE_SK_SKB, 151 BPF_PROG_TYPE_CGROUP_DEVICE, 152 BPF_PROG_TYPE_SK_MSG, 153 BPF_PROG_TYPE_RAW_TRACEPOINT, 154 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 155 BPF_PROG_TYPE_LWT_SEG6LOCAL, 156 BPF_PROG_TYPE_LIRC_MODE2, 157 BPF_PROG_TYPE_SK_REUSEPORT, 158 }; 159 160 enum bpf_attach_type { 161 BPF_CGROUP_INET_INGRESS, 162 BPF_CGROUP_INET_EGRESS, 163 BPF_CGROUP_INET_SOCK_CREATE, 164 BPF_CGROUP_SOCK_OPS, 165 BPF_SK_SKB_STREAM_PARSER, 166 BPF_SK_SKB_STREAM_VERDICT, 167 BPF_CGROUP_DEVICE, 168 BPF_SK_MSG_VERDICT, 169 BPF_CGROUP_INET4_BIND, 170 BPF_CGROUP_INET6_BIND, 171 BPF_CGROUP_INET4_CONNECT, 172 BPF_CGROUP_INET6_CONNECT, 173 BPF_CGROUP_INET4_POST_BIND, 174 BPF_CGROUP_INET6_POST_BIND, 175 BPF_CGROUP_UDP4_SENDMSG, 176 BPF_CGROUP_UDP6_SENDMSG, 177 BPF_LIRC_MODE2, 178 __MAX_BPF_ATTACH_TYPE 179 }; 180 181 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 182 183 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 184 * 185 * NONE(default): No further bpf programs allowed in the subtree. 186 * 187 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 188 * the program in this cgroup yields to sub-cgroup program. 189 * 190 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 191 * that cgroup program gets run in addition to the program in this cgroup. 192 * 193 * Only one program is allowed to be attached to a cgroup with 194 * NONE or BPF_F_ALLOW_OVERRIDE flag. 195 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 196 * release old program and attach the new one. Attach flags has to match. 197 * 198 * Multiple programs are allowed to be attached to a cgroup with 199 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 200 * (those that were attached first, run first) 201 * The programs of sub-cgroup are executed first, then programs of 202 * this cgroup and then programs of parent cgroup. 203 * When children program makes decision (like picking TCP CA or sock bind) 204 * parent program has a chance to override it. 205 * 206 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 207 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 208 * Ex1: 209 * cgrp1 (MULTI progs A, B) -> 210 * cgrp2 (OVERRIDE prog C) -> 211 * cgrp3 (MULTI prog D) -> 212 * cgrp4 (OVERRIDE prog E) -> 213 * cgrp5 (NONE prog F) 214 * the event in cgrp5 triggers execution of F,D,A,B in that order. 215 * if prog F is detached, the execution is E,D,A,B 216 * if prog F and D are detached, the execution is E,A,B 217 * if prog F, E and D are detached, the execution is C,A,B 218 * 219 * All eligible programs are executed regardless of return code from 220 * earlier programs. 221 */ 222 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 223 #define BPF_F_ALLOW_MULTI (1U << 1) 224 225 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 226 * verifier will perform strict alignment checking as if the kernel 227 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 228 * and NET_IP_ALIGN defined to 2. 229 */ 230 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 231 232 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */ 233 #define BPF_PSEUDO_MAP_FD 1 234 235 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 236 * offset to another bpf function 237 */ 238 #define BPF_PSEUDO_CALL 1 239 240 /* flags for BPF_MAP_UPDATE_ELEM command */ 241 #define BPF_ANY 0 /* create new element or update existing */ 242 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 243 #define BPF_EXIST 2 /* update existing element */ 244 245 /* flags for BPF_MAP_CREATE command */ 246 #define BPF_F_NO_PREALLOC (1U << 0) 247 /* Instead of having one common LRU list in the 248 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 249 * which can scale and perform better. 250 * Note, the LRU nodes (including free nodes) cannot be moved 251 * across different LRU lists. 252 */ 253 #define BPF_F_NO_COMMON_LRU (1U << 1) 254 /* Specify numa node during map creation */ 255 #define BPF_F_NUMA_NODE (1U << 2) 256 257 /* flags for BPF_PROG_QUERY */ 258 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 259 260 #define BPF_OBJ_NAME_LEN 16U 261 262 /* Flags for accessing BPF object */ 263 #define BPF_F_RDONLY (1U << 3) 264 #define BPF_F_WRONLY (1U << 4) 265 266 /* Flag for stack_map, store build_id+offset instead of pointer */ 267 #define BPF_F_STACK_BUILD_ID (1U << 5) 268 269 enum bpf_stack_build_id_status { 270 /* user space need an empty entry to identify end of a trace */ 271 BPF_STACK_BUILD_ID_EMPTY = 0, 272 /* with valid build_id and offset */ 273 BPF_STACK_BUILD_ID_VALID = 1, 274 /* couldn't get build_id, fallback to ip */ 275 BPF_STACK_BUILD_ID_IP = 2, 276 }; 277 278 #define BPF_BUILD_ID_SIZE 20 279 struct bpf_stack_build_id { 280 __s32 status; 281 unsigned char build_id[BPF_BUILD_ID_SIZE]; 282 union { 283 __u64 offset; 284 __u64 ip; 285 }; 286 }; 287 288 union bpf_attr { 289 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 290 __u32 map_type; /* one of enum bpf_map_type */ 291 __u32 key_size; /* size of key in bytes */ 292 __u32 value_size; /* size of value in bytes */ 293 __u32 max_entries; /* max number of entries in a map */ 294 __u32 map_flags; /* BPF_MAP_CREATE related 295 * flags defined above. 296 */ 297 __u32 inner_map_fd; /* fd pointing to the inner map */ 298 __u32 numa_node; /* numa node (effective only if 299 * BPF_F_NUMA_NODE is set). 300 */ 301 char map_name[BPF_OBJ_NAME_LEN]; 302 __u32 map_ifindex; /* ifindex of netdev to create on */ 303 __u32 btf_fd; /* fd pointing to a BTF type data */ 304 __u32 btf_key_type_id; /* BTF type_id of the key */ 305 __u32 btf_value_type_id; /* BTF type_id of the value */ 306 }; 307 308 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 309 __u32 map_fd; 310 __aligned_u64 key; 311 union { 312 __aligned_u64 value; 313 __aligned_u64 next_key; 314 }; 315 __u64 flags; 316 }; 317 318 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 319 __u32 prog_type; /* one of enum bpf_prog_type */ 320 __u32 insn_cnt; 321 __aligned_u64 insns; 322 __aligned_u64 license; 323 __u32 log_level; /* verbosity level of verifier */ 324 __u32 log_size; /* size of user buffer */ 325 __aligned_u64 log_buf; /* user supplied buffer */ 326 __u32 kern_version; /* checked when prog_type=kprobe */ 327 __u32 prog_flags; 328 char prog_name[BPF_OBJ_NAME_LEN]; 329 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 330 /* For some prog types expected attach type must be known at 331 * load time to verify attach type specific parts of prog 332 * (context accesses, allowed helpers, etc). 333 */ 334 __u32 expected_attach_type; 335 }; 336 337 struct { /* anonymous struct used by BPF_OBJ_* commands */ 338 __aligned_u64 pathname; 339 __u32 bpf_fd; 340 __u32 file_flags; 341 }; 342 343 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 344 __u32 target_fd; /* container object to attach to */ 345 __u32 attach_bpf_fd; /* eBPF program to attach */ 346 __u32 attach_type; 347 __u32 attach_flags; 348 }; 349 350 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 351 __u32 prog_fd; 352 __u32 retval; 353 __u32 data_size_in; 354 __u32 data_size_out; 355 __aligned_u64 data_in; 356 __aligned_u64 data_out; 357 __u32 repeat; 358 __u32 duration; 359 } test; 360 361 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 362 union { 363 __u32 start_id; 364 __u32 prog_id; 365 __u32 map_id; 366 __u32 btf_id; 367 }; 368 __u32 next_id; 369 __u32 open_flags; 370 }; 371 372 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 373 __u32 bpf_fd; 374 __u32 info_len; 375 __aligned_u64 info; 376 } info; 377 378 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 379 __u32 target_fd; /* container object to query */ 380 __u32 attach_type; 381 __u32 query_flags; 382 __u32 attach_flags; 383 __aligned_u64 prog_ids; 384 __u32 prog_cnt; 385 } query; 386 387 struct { 388 __u64 name; 389 __u32 prog_fd; 390 } raw_tracepoint; 391 392 struct { /* anonymous struct for BPF_BTF_LOAD */ 393 __aligned_u64 btf; 394 __aligned_u64 btf_log_buf; 395 __u32 btf_size; 396 __u32 btf_log_size; 397 __u32 btf_log_level; 398 }; 399 400 struct { 401 __u32 pid; /* input: pid */ 402 __u32 fd; /* input: fd */ 403 __u32 flags; /* input: flags */ 404 __u32 buf_len; /* input/output: buf len */ 405 __aligned_u64 buf; /* input/output: 406 * tp_name for tracepoint 407 * symbol for kprobe 408 * filename for uprobe 409 */ 410 __u32 prog_id; /* output: prod_id */ 411 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 412 __u64 probe_offset; /* output: probe_offset */ 413 __u64 probe_addr; /* output: probe_addr */ 414 } task_fd_query; 415 } __attribute__((aligned(8))); 416 417 /* The description below is an attempt at providing documentation to eBPF 418 * developers about the multiple available eBPF helper functions. It can be 419 * parsed and used to produce a manual page. The workflow is the following, 420 * and requires the rst2man utility: 421 * 422 * $ ./scripts/bpf_helpers_doc.py \ 423 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 424 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 425 * $ man /tmp/bpf-helpers.7 426 * 427 * Note that in order to produce this external documentation, some RST 428 * formatting is used in the descriptions to get "bold" and "italics" in 429 * manual pages. Also note that the few trailing white spaces are 430 * intentional, removing them would break paragraphs for rst2man. 431 * 432 * Start of BPF helper function descriptions: 433 * 434 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 435 * Description 436 * Perform a lookup in *map* for an entry associated to *key*. 437 * Return 438 * Map value associated to *key*, or **NULL** if no entry was 439 * found. 440 * 441 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 442 * Description 443 * Add or update the value of the entry associated to *key* in 444 * *map* with *value*. *flags* is one of: 445 * 446 * **BPF_NOEXIST** 447 * The entry for *key* must not exist in the map. 448 * **BPF_EXIST** 449 * The entry for *key* must already exist in the map. 450 * **BPF_ANY** 451 * No condition on the existence of the entry for *key*. 452 * 453 * Flag value **BPF_NOEXIST** cannot be used for maps of types 454 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 455 * elements always exist), the helper would return an error. 456 * Return 457 * 0 on success, or a negative error in case of failure. 458 * 459 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 460 * Description 461 * Delete entry with *key* from *map*. 462 * Return 463 * 0 on success, or a negative error in case of failure. 464 * 465 * int bpf_probe_read(void *dst, u32 size, const void *src) 466 * Description 467 * For tracing programs, safely attempt to read *size* bytes from 468 * address *src* and store the data in *dst*. 469 * Return 470 * 0 on success, or a negative error in case of failure. 471 * 472 * u64 bpf_ktime_get_ns(void) 473 * Description 474 * Return the time elapsed since system boot, in nanoseconds. 475 * Return 476 * Current *ktime*. 477 * 478 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 479 * Description 480 * This helper is a "printk()-like" facility for debugging. It 481 * prints a message defined by format *fmt* (of size *fmt_size*) 482 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 483 * available. It can take up to three additional **u64** 484 * arguments (as an eBPF helpers, the total number of arguments is 485 * limited to five). 486 * 487 * Each time the helper is called, it appends a line to the trace. 488 * The format of the trace is customizable, and the exact output 489 * one will get depends on the options set in 490 * *\/sys/kernel/debug/tracing/trace_options* (see also the 491 * *README* file under the same directory). However, it usually 492 * defaults to something like: 493 * 494 * :: 495 * 496 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 497 * 498 * In the above: 499 * 500 * * ``telnet`` is the name of the current task. 501 * * ``470`` is the PID of the current task. 502 * * ``001`` is the CPU number on which the task is 503 * running. 504 * * In ``.N..``, each character refers to a set of 505 * options (whether irqs are enabled, scheduling 506 * options, whether hard/softirqs are running, level of 507 * preempt_disabled respectively). **N** means that 508 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 509 * are set. 510 * * ``419421.045894`` is a timestamp. 511 * * ``0x00000001`` is a fake value used by BPF for the 512 * instruction pointer register. 513 * * ``<formatted msg>`` is the message formatted with 514 * *fmt*. 515 * 516 * The conversion specifiers supported by *fmt* are similar, but 517 * more limited than for printk(). They are **%d**, **%i**, 518 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 519 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 520 * of field, padding with zeroes, etc.) is available, and the 521 * helper will return **-EINVAL** (but print nothing) if it 522 * encounters an unknown specifier. 523 * 524 * Also, note that **bpf_trace_printk**\ () is slow, and should 525 * only be used for debugging purposes. For this reason, a notice 526 * bloc (spanning several lines) is printed to kernel logs and 527 * states that the helper should not be used "for production use" 528 * the first time this helper is used (or more precisely, when 529 * **trace_printk**\ () buffers are allocated). For passing values 530 * to user space, perf events should be preferred. 531 * Return 532 * The number of bytes written to the buffer, or a negative error 533 * in case of failure. 534 * 535 * u32 bpf_get_prandom_u32(void) 536 * Description 537 * Get a pseudo-random number. 538 * 539 * From a security point of view, this helper uses its own 540 * pseudo-random internal state, and cannot be used to infer the 541 * seed of other random functions in the kernel. However, it is 542 * essential to note that the generator used by the helper is not 543 * cryptographically secure. 544 * Return 545 * A random 32-bit unsigned value. 546 * 547 * u32 bpf_get_smp_processor_id(void) 548 * Description 549 * Get the SMP (symmetric multiprocessing) processor id. Note that 550 * all programs run with preemption disabled, which means that the 551 * SMP processor id is stable during all the execution of the 552 * program. 553 * Return 554 * The SMP id of the processor running the program. 555 * 556 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 557 * Description 558 * Store *len* bytes from address *from* into the packet 559 * associated to *skb*, at *offset*. *flags* are a combination of 560 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 561 * checksum for the packet after storing the bytes) and 562 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 563 * **->swhash** and *skb*\ **->l4hash** to 0). 564 * 565 * A call to this helper is susceptible to change the underlaying 566 * packet buffer. Therefore, at load time, all checks on pointers 567 * previously done by the verifier are invalidated and must be 568 * performed again, if the helper is used in combination with 569 * direct packet access. 570 * Return 571 * 0 on success, or a negative error in case of failure. 572 * 573 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 574 * Description 575 * Recompute the layer 3 (e.g. IP) checksum for the packet 576 * associated to *skb*. Computation is incremental, so the helper 577 * must know the former value of the header field that was 578 * modified (*from*), the new value of this field (*to*), and the 579 * number of bytes (2 or 4) for this field, stored in *size*. 580 * Alternatively, it is possible to store the difference between 581 * the previous and the new values of the header field in *to*, by 582 * setting *from* and *size* to 0. For both methods, *offset* 583 * indicates the location of the IP checksum within the packet. 584 * 585 * This helper works in combination with **bpf_csum_diff**\ (), 586 * which does not update the checksum in-place, but offers more 587 * flexibility and can handle sizes larger than 2 or 4 for the 588 * checksum to update. 589 * 590 * A call to this helper is susceptible to change the underlaying 591 * packet buffer. Therefore, at load time, all checks on pointers 592 * previously done by the verifier are invalidated and must be 593 * performed again, if the helper is used in combination with 594 * direct packet access. 595 * Return 596 * 0 on success, or a negative error in case of failure. 597 * 598 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 599 * Description 600 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 601 * packet associated to *skb*. Computation is incremental, so the 602 * helper must know the former value of the header field that was 603 * modified (*from*), the new value of this field (*to*), and the 604 * number of bytes (2 or 4) for this field, stored on the lowest 605 * four bits of *flags*. Alternatively, it is possible to store 606 * the difference between the previous and the new values of the 607 * header field in *to*, by setting *from* and the four lowest 608 * bits of *flags* to 0. For both methods, *offset* indicates the 609 * location of the IP checksum within the packet. In addition to 610 * the size of the field, *flags* can be added (bitwise OR) actual 611 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 612 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 613 * for updates resulting in a null checksum the value is set to 614 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 615 * the checksum is to be computed against a pseudo-header. 616 * 617 * This helper works in combination with **bpf_csum_diff**\ (), 618 * which does not update the checksum in-place, but offers more 619 * flexibility and can handle sizes larger than 2 or 4 for the 620 * checksum to update. 621 * 622 * A call to this helper is susceptible to change the underlaying 623 * packet buffer. Therefore, at load time, all checks on pointers 624 * previously done by the verifier are invalidated and must be 625 * performed again, if the helper is used in combination with 626 * direct packet access. 627 * Return 628 * 0 on success, or a negative error in case of failure. 629 * 630 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 631 * Description 632 * This special helper is used to trigger a "tail call", or in 633 * other words, to jump into another eBPF program. The same stack 634 * frame is used (but values on stack and in registers for the 635 * caller are not accessible to the callee). This mechanism allows 636 * for program chaining, either for raising the maximum number of 637 * available eBPF instructions, or to execute given programs in 638 * conditional blocks. For security reasons, there is an upper 639 * limit to the number of successive tail calls that can be 640 * performed. 641 * 642 * Upon call of this helper, the program attempts to jump into a 643 * program referenced at index *index* in *prog_array_map*, a 644 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 645 * *ctx*, a pointer to the context. 646 * 647 * If the call succeeds, the kernel immediately runs the first 648 * instruction of the new program. This is not a function call, 649 * and it never returns to the previous program. If the call 650 * fails, then the helper has no effect, and the caller continues 651 * to run its subsequent instructions. A call can fail if the 652 * destination program for the jump does not exist (i.e. *index* 653 * is superior to the number of entries in *prog_array_map*), or 654 * if the maximum number of tail calls has been reached for this 655 * chain of programs. This limit is defined in the kernel by the 656 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 657 * which is currently set to 32. 658 * Return 659 * 0 on success, or a negative error in case of failure. 660 * 661 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 662 * Description 663 * Clone and redirect the packet associated to *skb* to another 664 * net device of index *ifindex*. Both ingress and egress 665 * interfaces can be used for redirection. The **BPF_F_INGRESS** 666 * value in *flags* is used to make the distinction (ingress path 667 * is selected if the flag is present, egress path otherwise). 668 * This is the only flag supported for now. 669 * 670 * In comparison with **bpf_redirect**\ () helper, 671 * **bpf_clone_redirect**\ () has the associated cost of 672 * duplicating the packet buffer, but this can be executed out of 673 * the eBPF program. Conversely, **bpf_redirect**\ () is more 674 * efficient, but it is handled through an action code where the 675 * redirection happens only after the eBPF program has returned. 676 * 677 * A call to this helper is susceptible to change the underlaying 678 * packet buffer. Therefore, at load time, all checks on pointers 679 * previously done by the verifier are invalidated and must be 680 * performed again, if the helper is used in combination with 681 * direct packet access. 682 * Return 683 * 0 on success, or a negative error in case of failure. 684 * 685 * u64 bpf_get_current_pid_tgid(void) 686 * Return 687 * A 64-bit integer containing the current tgid and pid, and 688 * created as such: 689 * *current_task*\ **->tgid << 32 \|** 690 * *current_task*\ **->pid**. 691 * 692 * u64 bpf_get_current_uid_gid(void) 693 * Return 694 * A 64-bit integer containing the current GID and UID, and 695 * created as such: *current_gid* **<< 32 \|** *current_uid*. 696 * 697 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 698 * Description 699 * Copy the **comm** attribute of the current task into *buf* of 700 * *size_of_buf*. The **comm** attribute contains the name of 701 * the executable (excluding the path) for the current task. The 702 * *size_of_buf* must be strictly positive. On success, the 703 * helper makes sure that the *buf* is NUL-terminated. On failure, 704 * it is filled with zeroes. 705 * Return 706 * 0 on success, or a negative error in case of failure. 707 * 708 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 709 * Description 710 * Retrieve the classid for the current task, i.e. for the net_cls 711 * cgroup to which *skb* belongs. 712 * 713 * This helper can be used on TC egress path, but not on ingress. 714 * 715 * The net_cls cgroup provides an interface to tag network packets 716 * based on a user-provided identifier for all traffic coming from 717 * the tasks belonging to the related cgroup. See also the related 718 * kernel documentation, available from the Linux sources in file 719 * *Documentation/cgroup-v1/net_cls.txt*. 720 * 721 * The Linux kernel has two versions for cgroups: there are 722 * cgroups v1 and cgroups v2. Both are available to users, who can 723 * use a mixture of them, but note that the net_cls cgroup is for 724 * cgroup v1 only. This makes it incompatible with BPF programs 725 * run on cgroups, which is a cgroup-v2-only feature (a socket can 726 * only hold data for one version of cgroups at a time). 727 * 728 * This helper is only available is the kernel was compiled with 729 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 730 * "**y**" or to "**m**". 731 * Return 732 * The classid, or 0 for the default unconfigured classid. 733 * 734 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 735 * Description 736 * Push a *vlan_tci* (VLAN tag control information) of protocol 737 * *vlan_proto* to the packet associated to *skb*, then update 738 * the checksum. Note that if *vlan_proto* is different from 739 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 740 * be **ETH_P_8021Q**. 741 * 742 * A call to this helper is susceptible to change the underlaying 743 * packet buffer. Therefore, at load time, all checks on pointers 744 * previously done by the verifier are invalidated and must be 745 * performed again, if the helper is used in combination with 746 * direct packet access. 747 * Return 748 * 0 on success, or a negative error in case of failure. 749 * 750 * int bpf_skb_vlan_pop(struct sk_buff *skb) 751 * Description 752 * Pop a VLAN header from the packet associated to *skb*. 753 * 754 * A call to this helper is susceptible to change the underlaying 755 * packet buffer. Therefore, at load time, all checks on pointers 756 * previously done by the verifier are invalidated and must be 757 * performed again, if the helper is used in combination with 758 * direct packet access. 759 * Return 760 * 0 on success, or a negative error in case of failure. 761 * 762 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 763 * Description 764 * Get tunnel metadata. This helper takes a pointer *key* to an 765 * empty **struct bpf_tunnel_key** of **size**, that will be 766 * filled with tunnel metadata for the packet associated to *skb*. 767 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 768 * indicates that the tunnel is based on IPv6 protocol instead of 769 * IPv4. 770 * 771 * The **struct bpf_tunnel_key** is an object that generalizes the 772 * principal parameters used by various tunneling protocols into a 773 * single struct. This way, it can be used to easily make a 774 * decision based on the contents of the encapsulation header, 775 * "summarized" in this struct. In particular, it holds the IP 776 * address of the remote end (IPv4 or IPv6, depending on the case) 777 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 778 * this struct exposes the *key*\ **->tunnel_id**, which is 779 * generally mapped to a VNI (Virtual Network Identifier), making 780 * it programmable together with the **bpf_skb_set_tunnel_key**\ 781 * () helper. 782 * 783 * Let's imagine that the following code is part of a program 784 * attached to the TC ingress interface, on one end of a GRE 785 * tunnel, and is supposed to filter out all messages coming from 786 * remote ends with IPv4 address other than 10.0.0.1: 787 * 788 * :: 789 * 790 * int ret; 791 * struct bpf_tunnel_key key = {}; 792 * 793 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 794 * if (ret < 0) 795 * return TC_ACT_SHOT; // drop packet 796 * 797 * if (key.remote_ipv4 != 0x0a000001) 798 * return TC_ACT_SHOT; // drop packet 799 * 800 * return TC_ACT_OK; // accept packet 801 * 802 * This interface can also be used with all encapsulation devices 803 * that can operate in "collect metadata" mode: instead of having 804 * one network device per specific configuration, the "collect 805 * metadata" mode only requires a single device where the 806 * configuration can be extracted from this helper. 807 * 808 * This can be used together with various tunnels such as VXLan, 809 * Geneve, GRE or IP in IP (IPIP). 810 * Return 811 * 0 on success, or a negative error in case of failure. 812 * 813 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 814 * Description 815 * Populate tunnel metadata for packet associated to *skb.* The 816 * tunnel metadata is set to the contents of *key*, of *size*. The 817 * *flags* can be set to a combination of the following values: 818 * 819 * **BPF_F_TUNINFO_IPV6** 820 * Indicate that the tunnel is based on IPv6 protocol 821 * instead of IPv4. 822 * **BPF_F_ZERO_CSUM_TX** 823 * For IPv4 packets, add a flag to tunnel metadata 824 * indicating that checksum computation should be skipped 825 * and checksum set to zeroes. 826 * **BPF_F_DONT_FRAGMENT** 827 * Add a flag to tunnel metadata indicating that the 828 * packet should not be fragmented. 829 * **BPF_F_SEQ_NUMBER** 830 * Add a flag to tunnel metadata indicating that a 831 * sequence number should be added to tunnel header before 832 * sending the packet. This flag was added for GRE 833 * encapsulation, but might be used with other protocols 834 * as well in the future. 835 * 836 * Here is a typical usage on the transmit path: 837 * 838 * :: 839 * 840 * struct bpf_tunnel_key key; 841 * populate key ... 842 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 843 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 844 * 845 * See also the description of the **bpf_skb_get_tunnel_key**\ () 846 * helper for additional information. 847 * Return 848 * 0 on success, or a negative error in case of failure. 849 * 850 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 851 * Description 852 * Read the value of a perf event counter. This helper relies on a 853 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 854 * the perf event counter is selected when *map* is updated with 855 * perf event file descriptors. The *map* is an array whose size 856 * is the number of available CPUs, and each cell contains a value 857 * relative to one CPU. The value to retrieve is indicated by 858 * *flags*, that contains the index of the CPU to look up, masked 859 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 860 * **BPF_F_CURRENT_CPU** to indicate that the value for the 861 * current CPU should be retrieved. 862 * 863 * Note that before Linux 4.13, only hardware perf event can be 864 * retrieved. 865 * 866 * Also, be aware that the newer helper 867 * **bpf_perf_event_read_value**\ () is recommended over 868 * **bpf_perf_event_read**\ () in general. The latter has some ABI 869 * quirks where error and counter value are used as a return code 870 * (which is wrong to do since ranges may overlap). This issue is 871 * fixed with **bpf_perf_event_read_value**\ (), which at the same 872 * time provides more features over the **bpf_perf_event_read**\ 873 * () interface. Please refer to the description of 874 * **bpf_perf_event_read_value**\ () for details. 875 * Return 876 * The value of the perf event counter read from the map, or a 877 * negative error code in case of failure. 878 * 879 * int bpf_redirect(u32 ifindex, u64 flags) 880 * Description 881 * Redirect the packet to another net device of index *ifindex*. 882 * This helper is somewhat similar to **bpf_clone_redirect**\ 883 * (), except that the packet is not cloned, which provides 884 * increased performance. 885 * 886 * Except for XDP, both ingress and egress interfaces can be used 887 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 888 * to make the distinction (ingress path is selected if the flag 889 * is present, egress path otherwise). Currently, XDP only 890 * supports redirection to the egress interface, and accepts no 891 * flag at all. 892 * 893 * The same effect can be attained with the more generic 894 * **bpf_redirect_map**\ (), which requires specific maps to be 895 * used but offers better performance. 896 * Return 897 * For XDP, the helper returns **XDP_REDIRECT** on success or 898 * **XDP_ABORTED** on error. For other program types, the values 899 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 900 * error. 901 * 902 * u32 bpf_get_route_realm(struct sk_buff *skb) 903 * Description 904 * Retrieve the realm or the route, that is to say the 905 * **tclassid** field of the destination for the *skb*. The 906 * indentifier retrieved is a user-provided tag, similar to the 907 * one used with the net_cls cgroup (see description for 908 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 909 * held by a route (a destination entry), not by a task. 910 * 911 * Retrieving this identifier works with the clsact TC egress hook 912 * (see also **tc-bpf(8)**), or alternatively on conventional 913 * classful egress qdiscs, but not on TC ingress path. In case of 914 * clsact TC egress hook, this has the advantage that, internally, 915 * the destination entry has not been dropped yet in the transmit 916 * path. Therefore, the destination entry does not need to be 917 * artificially held via **netif_keep_dst**\ () for a classful 918 * qdisc until the *skb* is freed. 919 * 920 * This helper is available only if the kernel was compiled with 921 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 922 * Return 923 * The realm of the route for the packet associated to *skb*, or 0 924 * if none was found. 925 * 926 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 927 * Description 928 * Write raw *data* blob into a special BPF perf event held by 929 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 930 * event must have the following attributes: **PERF_SAMPLE_RAW** 931 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 932 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 933 * 934 * The *flags* are used to indicate the index in *map* for which 935 * the value must be put, masked with **BPF_F_INDEX_MASK**. 936 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 937 * to indicate that the index of the current CPU core should be 938 * used. 939 * 940 * The value to write, of *size*, is passed through eBPF stack and 941 * pointed by *data*. 942 * 943 * The context of the program *ctx* needs also be passed to the 944 * helper. 945 * 946 * On user space, a program willing to read the values needs to 947 * call **perf_event_open**\ () on the perf event (either for 948 * one or for all CPUs) and to store the file descriptor into the 949 * *map*. This must be done before the eBPF program can send data 950 * into it. An example is available in file 951 * *samples/bpf/trace_output_user.c* in the Linux kernel source 952 * tree (the eBPF program counterpart is in 953 * *samples/bpf/trace_output_kern.c*). 954 * 955 * **bpf_perf_event_output**\ () achieves better performance 956 * than **bpf_trace_printk**\ () for sharing data with user 957 * space, and is much better suitable for streaming data from eBPF 958 * programs. 959 * 960 * Note that this helper is not restricted to tracing use cases 961 * and can be used with programs attached to TC or XDP as well, 962 * where it allows for passing data to user space listeners. Data 963 * can be: 964 * 965 * * Only custom structs, 966 * * Only the packet payload, or 967 * * A combination of both. 968 * Return 969 * 0 on success, or a negative error in case of failure. 970 * 971 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 972 * Description 973 * This helper was provided as an easy way to load data from a 974 * packet. It can be used to load *len* bytes from *offset* from 975 * the packet associated to *skb*, into the buffer pointed by 976 * *to*. 977 * 978 * Since Linux 4.7, usage of this helper has mostly been replaced 979 * by "direct packet access", enabling packet data to be 980 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 981 * pointing respectively to the first byte of packet data and to 982 * the byte after the last byte of packet data. However, it 983 * remains useful if one wishes to read large quantities of data 984 * at once from a packet into the eBPF stack. 985 * Return 986 * 0 on success, or a negative error in case of failure. 987 * 988 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 989 * Description 990 * Walk a user or a kernel stack and return its id. To achieve 991 * this, the helper needs *ctx*, which is a pointer to the context 992 * on which the tracing program is executed, and a pointer to a 993 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 994 * 995 * The last argument, *flags*, holds the number of stack frames to 996 * skip (from 0 to 255), masked with 997 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 998 * a combination of the following flags: 999 * 1000 * **BPF_F_USER_STACK** 1001 * Collect a user space stack instead of a kernel stack. 1002 * **BPF_F_FAST_STACK_CMP** 1003 * Compare stacks by hash only. 1004 * **BPF_F_REUSE_STACKID** 1005 * If two different stacks hash into the same *stackid*, 1006 * discard the old one. 1007 * 1008 * The stack id retrieved is a 32 bit long integer handle which 1009 * can be further combined with other data (including other stack 1010 * ids) and used as a key into maps. This can be useful for 1011 * generating a variety of graphs (such as flame graphs or off-cpu 1012 * graphs). 1013 * 1014 * For walking a stack, this helper is an improvement over 1015 * **bpf_probe_read**\ (), which can be used with unrolled loops 1016 * but is not efficient and consumes a lot of eBPF instructions. 1017 * Instead, **bpf_get_stackid**\ () can collect up to 1018 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1019 * this limit can be controlled with the **sysctl** program, and 1020 * that it should be manually increased in order to profile long 1021 * user stacks (such as stacks for Java programs). To do so, use: 1022 * 1023 * :: 1024 * 1025 * # sysctl kernel.perf_event_max_stack=<new value> 1026 * Return 1027 * The positive or null stack id on success, or a negative error 1028 * in case of failure. 1029 * 1030 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1031 * Description 1032 * Compute a checksum difference, from the raw buffer pointed by 1033 * *from*, of length *from_size* (that must be a multiple of 4), 1034 * towards the raw buffer pointed by *to*, of size *to_size* 1035 * (same remark). An optional *seed* can be added to the value 1036 * (this can be cascaded, the seed may come from a previous call 1037 * to the helper). 1038 * 1039 * This is flexible enough to be used in several ways: 1040 * 1041 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1042 * checksum, it can be used when pushing new data. 1043 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1044 * checksum, it can be used when removing data from a packet. 1045 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1046 * can be used to compute a diff. Note that *from_size* and 1047 * *to_size* do not need to be equal. 1048 * 1049 * This helper can be used in combination with 1050 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1051 * which one can feed in the difference computed with 1052 * **bpf_csum_diff**\ (). 1053 * Return 1054 * The checksum result, or a negative error code in case of 1055 * failure. 1056 * 1057 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1058 * Description 1059 * Retrieve tunnel options metadata for the packet associated to 1060 * *skb*, and store the raw tunnel option data to the buffer *opt* 1061 * of *size*. 1062 * 1063 * This helper can be used with encapsulation devices that can 1064 * operate in "collect metadata" mode (please refer to the related 1065 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1066 * more details). A particular example where this can be used is 1067 * in combination with the Geneve encapsulation protocol, where it 1068 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1069 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1070 * the eBPF program. This allows for full customization of these 1071 * headers. 1072 * Return 1073 * The size of the option data retrieved. 1074 * 1075 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1076 * Description 1077 * Set tunnel options metadata for the packet associated to *skb* 1078 * to the option data contained in the raw buffer *opt* of *size*. 1079 * 1080 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1081 * helper for additional information. 1082 * Return 1083 * 0 on success, or a negative error in case of failure. 1084 * 1085 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1086 * Description 1087 * Change the protocol of the *skb* to *proto*. Currently 1088 * supported are transition from IPv4 to IPv6, and from IPv6 to 1089 * IPv4. The helper takes care of the groundwork for the 1090 * transition, including resizing the socket buffer. The eBPF 1091 * program is expected to fill the new headers, if any, via 1092 * **skb_store_bytes**\ () and to recompute the checksums with 1093 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1094 * (). The main case for this helper is to perform NAT64 1095 * operations out of an eBPF program. 1096 * 1097 * Internally, the GSO type is marked as dodgy so that headers are 1098 * checked and segments are recalculated by the GSO/GRO engine. 1099 * The size for GSO target is adapted as well. 1100 * 1101 * All values for *flags* are reserved for future usage, and must 1102 * be left at zero. 1103 * 1104 * A call to this helper is susceptible to change the underlaying 1105 * packet buffer. Therefore, at load time, all checks on pointers 1106 * previously done by the verifier are invalidated and must be 1107 * performed again, if the helper is used in combination with 1108 * direct packet access. 1109 * Return 1110 * 0 on success, or a negative error in case of failure. 1111 * 1112 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1113 * Description 1114 * Change the packet type for the packet associated to *skb*. This 1115 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1116 * the eBPF program does not have a write access to *skb*\ 1117 * **->pkt_type** beside this helper. Using a helper here allows 1118 * for graceful handling of errors. 1119 * 1120 * The major use case is to change incoming *skb*s to 1121 * **PACKET_HOST** in a programmatic way instead of having to 1122 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1123 * example. 1124 * 1125 * Note that *type* only allows certain values. At this time, they 1126 * are: 1127 * 1128 * **PACKET_HOST** 1129 * Packet is for us. 1130 * **PACKET_BROADCAST** 1131 * Send packet to all. 1132 * **PACKET_MULTICAST** 1133 * Send packet to group. 1134 * **PACKET_OTHERHOST** 1135 * Send packet to someone else. 1136 * Return 1137 * 0 on success, or a negative error in case of failure. 1138 * 1139 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1140 * Description 1141 * Check whether *skb* is a descendant of the cgroup2 held by 1142 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1143 * Return 1144 * The return value depends on the result of the test, and can be: 1145 * 1146 * * 0, if the *skb* failed the cgroup2 descendant test. 1147 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1148 * * A negative error code, if an error occurred. 1149 * 1150 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1151 * Description 1152 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1153 * not set, in particular if the hash was cleared due to mangling, 1154 * recompute this hash. Later accesses to the hash can be done 1155 * directly with *skb*\ **->hash**. 1156 * 1157 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1158 * prototype with **bpf_skb_change_proto**\ (), or calling 1159 * **bpf_skb_store_bytes**\ () with the 1160 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1161 * the hash and to trigger a new computation for the next call to 1162 * **bpf_get_hash_recalc**\ (). 1163 * Return 1164 * The 32-bit hash. 1165 * 1166 * u64 bpf_get_current_task(void) 1167 * Return 1168 * A pointer to the current task struct. 1169 * 1170 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1171 * Description 1172 * Attempt in a safe way to write *len* bytes from the buffer 1173 * *src* to *dst* in memory. It only works for threads that are in 1174 * user context, and *dst* must be a valid user space address. 1175 * 1176 * This helper should not be used to implement any kind of 1177 * security mechanism because of TOC-TOU attacks, but rather to 1178 * debug, divert, and manipulate execution of semi-cooperative 1179 * processes. 1180 * 1181 * Keep in mind that this feature is meant for experiments, and it 1182 * has a risk of crashing the system and running programs. 1183 * Therefore, when an eBPF program using this helper is attached, 1184 * a warning including PID and process name is printed to kernel 1185 * logs. 1186 * Return 1187 * 0 on success, or a negative error in case of failure. 1188 * 1189 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1190 * Description 1191 * Check whether the probe is being run is the context of a given 1192 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1193 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1194 * Return 1195 * The return value depends on the result of the test, and can be: 1196 * 1197 * * 0, if the *skb* task belongs to the cgroup2. 1198 * * 1, if the *skb* task does not belong to the cgroup2. 1199 * * A negative error code, if an error occurred. 1200 * 1201 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1202 * Description 1203 * Resize (trim or grow) the packet associated to *skb* to the 1204 * new *len*. The *flags* are reserved for future usage, and must 1205 * be left at zero. 1206 * 1207 * The basic idea is that the helper performs the needed work to 1208 * change the size of the packet, then the eBPF program rewrites 1209 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1210 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1211 * and others. This helper is a slow path utility intended for 1212 * replies with control messages. And because it is targeted for 1213 * slow path, the helper itself can afford to be slow: it 1214 * implicitly linearizes, unclones and drops offloads from the 1215 * *skb*. 1216 * 1217 * A call to this helper is susceptible to change the underlaying 1218 * packet buffer. Therefore, at load time, all checks on pointers 1219 * previously done by the verifier are invalidated and must be 1220 * performed again, if the helper is used in combination with 1221 * direct packet access. 1222 * Return 1223 * 0 on success, or a negative error in case of failure. 1224 * 1225 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1226 * Description 1227 * Pull in non-linear data in case the *skb* is non-linear and not 1228 * all of *len* are part of the linear section. Make *len* bytes 1229 * from *skb* readable and writable. If a zero value is passed for 1230 * *len*, then the whole length of the *skb* is pulled. 1231 * 1232 * This helper is only needed for reading and writing with direct 1233 * packet access. 1234 * 1235 * For direct packet access, testing that offsets to access 1236 * are within packet boundaries (test on *skb*\ **->data_end**) is 1237 * susceptible to fail if offsets are invalid, or if the requested 1238 * data is in non-linear parts of the *skb*. On failure the 1239 * program can just bail out, or in the case of a non-linear 1240 * buffer, use a helper to make the data available. The 1241 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1242 * the data. Another one consists in using **bpf_skb_pull_data** 1243 * to pull in once the non-linear parts, then retesting and 1244 * eventually access the data. 1245 * 1246 * At the same time, this also makes sure the *skb* is uncloned, 1247 * which is a necessary condition for direct write. As this needs 1248 * to be an invariant for the write part only, the verifier 1249 * detects writes and adds a prologue that is calling 1250 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1251 * the very beginning in case it is indeed cloned. 1252 * 1253 * A call to this helper is susceptible to change the underlaying 1254 * packet buffer. Therefore, at load time, all checks on pointers 1255 * previously done by the verifier are invalidated and must be 1256 * performed again, if the helper is used in combination with 1257 * direct packet access. 1258 * Return 1259 * 0 on success, or a negative error in case of failure. 1260 * 1261 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1262 * Description 1263 * Add the checksum *csum* into *skb*\ **->csum** in case the 1264 * driver has supplied a checksum for the entire packet into that 1265 * field. Return an error otherwise. This helper is intended to be 1266 * used in combination with **bpf_csum_diff**\ (), in particular 1267 * when the checksum needs to be updated after data has been 1268 * written into the packet through direct packet access. 1269 * Return 1270 * The checksum on success, or a negative error code in case of 1271 * failure. 1272 * 1273 * void bpf_set_hash_invalid(struct sk_buff *skb) 1274 * Description 1275 * Invalidate the current *skb*\ **->hash**. It can be used after 1276 * mangling on headers through direct packet access, in order to 1277 * indicate that the hash is outdated and to trigger a 1278 * recalculation the next time the kernel tries to access this 1279 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1280 * 1281 * int bpf_get_numa_node_id(void) 1282 * Description 1283 * Return the id of the current NUMA node. The primary use case 1284 * for this helper is the selection of sockets for the local NUMA 1285 * node, when the program is attached to sockets using the 1286 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1287 * but the helper is also available to other eBPF program types, 1288 * similarly to **bpf_get_smp_processor_id**\ (). 1289 * Return 1290 * The id of current NUMA node. 1291 * 1292 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1293 * Description 1294 * Grows headroom of packet associated to *skb* and adjusts the 1295 * offset of the MAC header accordingly, adding *len* bytes of 1296 * space. It automatically extends and reallocates memory as 1297 * required. 1298 * 1299 * This helper can be used on a layer 3 *skb* to push a MAC header 1300 * for redirection into a layer 2 device. 1301 * 1302 * All values for *flags* are reserved for future usage, and must 1303 * be left at zero. 1304 * 1305 * A call to this helper is susceptible to change the underlaying 1306 * packet buffer. Therefore, at load time, all checks on pointers 1307 * previously done by the verifier are invalidated and must be 1308 * performed again, if the helper is used in combination with 1309 * direct packet access. 1310 * Return 1311 * 0 on success, or a negative error in case of failure. 1312 * 1313 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1314 * Description 1315 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1316 * it is possible to use a negative value for *delta*. This helper 1317 * can be used to prepare the packet for pushing or popping 1318 * headers. 1319 * 1320 * A call to this helper is susceptible to change the underlaying 1321 * packet buffer. Therefore, at load time, all checks on pointers 1322 * previously done by the verifier are invalidated and must be 1323 * performed again, if the helper is used in combination with 1324 * direct packet access. 1325 * Return 1326 * 0 on success, or a negative error in case of failure. 1327 * 1328 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1329 * Description 1330 * Copy a NUL terminated string from an unsafe address 1331 * *unsafe_ptr* to *dst*. The *size* should include the 1332 * terminating NUL byte. In case the string length is smaller than 1333 * *size*, the target is not padded with further NUL bytes. If the 1334 * string length is larger than *size*, just *size*-1 bytes are 1335 * copied and the last byte is set to NUL. 1336 * 1337 * On success, the length of the copied string is returned. This 1338 * makes this helper useful in tracing programs for reading 1339 * strings, and more importantly to get its length at runtime. See 1340 * the following snippet: 1341 * 1342 * :: 1343 * 1344 * SEC("kprobe/sys_open") 1345 * void bpf_sys_open(struct pt_regs *ctx) 1346 * { 1347 * char buf[PATHLEN]; // PATHLEN is defined to 256 1348 * int res = bpf_probe_read_str(buf, sizeof(buf), 1349 * ctx->di); 1350 * 1351 * // Consume buf, for example push it to 1352 * // userspace via bpf_perf_event_output(); we 1353 * // can use res (the string length) as event 1354 * // size, after checking its boundaries. 1355 * } 1356 * 1357 * In comparison, using **bpf_probe_read()** helper here instead 1358 * to read the string would require to estimate the length at 1359 * compile time, and would often result in copying more memory 1360 * than necessary. 1361 * 1362 * Another useful use case is when parsing individual process 1363 * arguments or individual environment variables navigating 1364 * *current*\ **->mm->arg_start** and *current*\ 1365 * **->mm->env_start**: using this helper and the return value, 1366 * one can quickly iterate at the right offset of the memory area. 1367 * Return 1368 * On success, the strictly positive length of the string, 1369 * including the trailing NUL character. On error, a negative 1370 * value. 1371 * 1372 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1373 * Description 1374 * If the **struct sk_buff** pointed by *skb* has a known socket, 1375 * retrieve the cookie (generated by the kernel) of this socket. 1376 * If no cookie has been set yet, generate a new cookie. Once 1377 * generated, the socket cookie remains stable for the life of the 1378 * socket. This helper can be useful for monitoring per socket 1379 * networking traffic statistics as it provides a unique socket 1380 * identifier per namespace. 1381 * Return 1382 * A 8-byte long non-decreasing number on success, or 0 if the 1383 * socket field is missing inside *skb*. 1384 * 1385 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1386 * Description 1387 * Equivalent to bpf_get_socket_cookie() helper that accepts 1388 * *skb*, but gets socket from **struct bpf_sock_addr** contex. 1389 * Return 1390 * A 8-byte long non-decreasing number. 1391 * 1392 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1393 * Description 1394 * Equivalent to bpf_get_socket_cookie() helper that accepts 1395 * *skb*, but gets socket from **struct bpf_sock_ops** contex. 1396 * Return 1397 * A 8-byte long non-decreasing number. 1398 * 1399 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1400 * Return 1401 * The owner UID of the socket associated to *skb*. If the socket 1402 * is **NULL**, or if it is not a full socket (i.e. if it is a 1403 * time-wait or a request socket instead), **overflowuid** value 1404 * is returned (note that **overflowuid** might also be the actual 1405 * UID value for the socket). 1406 * 1407 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1408 * Description 1409 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1410 * to value *hash*. 1411 * Return 1412 * 0 1413 * 1414 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1415 * Description 1416 * Emulate a call to **setsockopt()** on the socket associated to 1417 * *bpf_socket*, which must be a full socket. The *level* at 1418 * which the option resides and the name *optname* of the option 1419 * must be specified, see **setsockopt(2)** for more information. 1420 * The option value of length *optlen* is pointed by *optval*. 1421 * 1422 * This helper actually implements a subset of **setsockopt()**. 1423 * It supports the following *level*\ s: 1424 * 1425 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1426 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1427 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1428 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1429 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1430 * **TCP_BPF_SNDCWND_CLAMP**. 1431 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1432 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1433 * Return 1434 * 0 on success, or a negative error in case of failure. 1435 * 1436 * int bpf_skb_adjust_room(struct sk_buff *skb, u32 len_diff, u32 mode, u64 flags) 1437 * Description 1438 * Grow or shrink the room for data in the packet associated to 1439 * *skb* by *len_diff*, and according to the selected *mode*. 1440 * 1441 * There is a single supported mode at this time: 1442 * 1443 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1444 * (room space is added or removed below the layer 3 header). 1445 * 1446 * All values for *flags* are reserved for future usage, and must 1447 * be left at zero. 1448 * 1449 * A call to this helper is susceptible to change the underlaying 1450 * packet buffer. Therefore, at load time, all checks on pointers 1451 * previously done by the verifier are invalidated and must be 1452 * performed again, if the helper is used in combination with 1453 * direct packet access. 1454 * Return 1455 * 0 on success, or a negative error in case of failure. 1456 * 1457 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1458 * Description 1459 * Redirect the packet to the endpoint referenced by *map* at 1460 * index *key*. Depending on its type, this *map* can contain 1461 * references to net devices (for forwarding packets through other 1462 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1463 * but this is only implemented for native XDP (with driver 1464 * support) as of this writing). 1465 * 1466 * All values for *flags* are reserved for future usage, and must 1467 * be left at zero. 1468 * 1469 * When used to redirect packets to net devices, this helper 1470 * provides a high performance increase over **bpf_redirect**\ (). 1471 * This is due to various implementation details of the underlying 1472 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1473 * () tries to send packet as a "bulk" to the device. 1474 * Return 1475 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1476 * 1477 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1478 * Description 1479 * Redirect the packet to the socket referenced by *map* (of type 1480 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1481 * egress interfaces can be used for redirection. The 1482 * **BPF_F_INGRESS** value in *flags* is used to make the 1483 * distinction (ingress path is selected if the flag is present, 1484 * egress path otherwise). This is the only flag supported for now. 1485 * Return 1486 * **SK_PASS** on success, or **SK_DROP** on error. 1487 * 1488 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1489 * Description 1490 * Add an entry to, or update a *map* referencing sockets. The 1491 * *skops* is used as a new value for the entry associated to 1492 * *key*. *flags* is one of: 1493 * 1494 * **BPF_NOEXIST** 1495 * The entry for *key* must not exist in the map. 1496 * **BPF_EXIST** 1497 * The entry for *key* must already exist in the map. 1498 * **BPF_ANY** 1499 * No condition on the existence of the entry for *key*. 1500 * 1501 * If the *map* has eBPF programs (parser and verdict), those will 1502 * be inherited by the socket being added. If the socket is 1503 * already attached to eBPF programs, this results in an error. 1504 * Return 1505 * 0 on success, or a negative error in case of failure. 1506 * 1507 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1508 * Description 1509 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1510 * *delta* (which can be positive or negative). Note that this 1511 * operation modifies the address stored in *xdp_md*\ **->data**, 1512 * so the latter must be loaded only after the helper has been 1513 * called. 1514 * 1515 * The use of *xdp_md*\ **->data_meta** is optional and programs 1516 * are not required to use it. The rationale is that when the 1517 * packet is processed with XDP (e.g. as DoS filter), it is 1518 * possible to push further meta data along with it before passing 1519 * to the stack, and to give the guarantee that an ingress eBPF 1520 * program attached as a TC classifier on the same device can pick 1521 * this up for further post-processing. Since TC works with socket 1522 * buffers, it remains possible to set from XDP the **mark** or 1523 * **priority** pointers, or other pointers for the socket buffer. 1524 * Having this scratch space generic and programmable allows for 1525 * more flexibility as the user is free to store whatever meta 1526 * data they need. 1527 * 1528 * A call to this helper is susceptible to change the underlaying 1529 * packet buffer. Therefore, at load time, all checks on pointers 1530 * previously done by the verifier are invalidated and must be 1531 * performed again, if the helper is used in combination with 1532 * direct packet access. 1533 * Return 1534 * 0 on success, or a negative error in case of failure. 1535 * 1536 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1537 * Description 1538 * Read the value of a perf event counter, and store it into *buf* 1539 * of size *buf_size*. This helper relies on a *map* of type 1540 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1541 * counter is selected when *map* is updated with perf event file 1542 * descriptors. The *map* is an array whose size is the number of 1543 * available CPUs, and each cell contains a value relative to one 1544 * CPU. The value to retrieve is indicated by *flags*, that 1545 * contains the index of the CPU to look up, masked with 1546 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1547 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1548 * current CPU should be retrieved. 1549 * 1550 * This helper behaves in a way close to 1551 * **bpf_perf_event_read**\ () helper, save that instead of 1552 * just returning the value observed, it fills the *buf* 1553 * structure. This allows for additional data to be retrieved: in 1554 * particular, the enabled and running times (in *buf*\ 1555 * **->enabled** and *buf*\ **->running**, respectively) are 1556 * copied. In general, **bpf_perf_event_read_value**\ () is 1557 * recommended over **bpf_perf_event_read**\ (), which has some 1558 * ABI issues and provides fewer functionalities. 1559 * 1560 * These values are interesting, because hardware PMU (Performance 1561 * Monitoring Unit) counters are limited resources. When there are 1562 * more PMU based perf events opened than available counters, 1563 * kernel will multiplex these events so each event gets certain 1564 * percentage (but not all) of the PMU time. In case that 1565 * multiplexing happens, the number of samples or counter value 1566 * will not reflect the case compared to when no multiplexing 1567 * occurs. This makes comparison between different runs difficult. 1568 * Typically, the counter value should be normalized before 1569 * comparing to other experiments. The usual normalization is done 1570 * as follows. 1571 * 1572 * :: 1573 * 1574 * normalized_counter = counter * t_enabled / t_running 1575 * 1576 * Where t_enabled is the time enabled for event and t_running is 1577 * the time running for event since last normalization. The 1578 * enabled and running times are accumulated since the perf event 1579 * open. To achieve scaling factor between two invocations of an 1580 * eBPF program, users can can use CPU id as the key (which is 1581 * typical for perf array usage model) to remember the previous 1582 * value and do the calculation inside the eBPF program. 1583 * Return 1584 * 0 on success, or a negative error in case of failure. 1585 * 1586 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1587 * Description 1588 * For en eBPF program attached to a perf event, retrieve the 1589 * value of the event counter associated to *ctx* and store it in 1590 * the structure pointed by *buf* and of size *buf_size*. Enabled 1591 * and running times are also stored in the structure (see 1592 * description of helper **bpf_perf_event_read_value**\ () for 1593 * more details). 1594 * Return 1595 * 0 on success, or a negative error in case of failure. 1596 * 1597 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1598 * Description 1599 * Emulate a call to **getsockopt()** on the socket associated to 1600 * *bpf_socket*, which must be a full socket. The *level* at 1601 * which the option resides and the name *optname* of the option 1602 * must be specified, see **getsockopt(2)** for more information. 1603 * The retrieved value is stored in the structure pointed by 1604 * *opval* and of length *optlen*. 1605 * 1606 * This helper actually implements a subset of **getsockopt()**. 1607 * It supports the following *level*\ s: 1608 * 1609 * * **IPPROTO_TCP**, which supports *optname* 1610 * **TCP_CONGESTION**. 1611 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1612 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1613 * Return 1614 * 0 on success, or a negative error in case of failure. 1615 * 1616 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1617 * Description 1618 * Used for error injection, this helper uses kprobes to override 1619 * the return value of the probed function, and to set it to *rc*. 1620 * The first argument is the context *regs* on which the kprobe 1621 * works. 1622 * 1623 * This helper works by setting setting the PC (program counter) 1624 * to an override function which is run in place of the original 1625 * probed function. This means the probed function is not run at 1626 * all. The replacement function just returns with the required 1627 * value. 1628 * 1629 * This helper has security implications, and thus is subject to 1630 * restrictions. It is only available if the kernel was compiled 1631 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1632 * option, and in this case it only works on functions tagged with 1633 * **ALLOW_ERROR_INJECTION** in the kernel code. 1634 * 1635 * Also, the helper is only available for the architectures having 1636 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1637 * x86 architecture is the only one to support this feature. 1638 * Return 1639 * 0 1640 * 1641 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1642 * Description 1643 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1644 * for the full TCP socket associated to *bpf_sock_ops* to 1645 * *argval*. 1646 * 1647 * The primary use of this field is to determine if there should 1648 * be calls to eBPF programs of type 1649 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1650 * code. A program of the same type can change its value, per 1651 * connection and as necessary, when the connection is 1652 * established. This field is directly accessible for reading, but 1653 * this helper must be used for updates in order to return an 1654 * error if an eBPF program tries to set a callback that is not 1655 * supported in the current kernel. 1656 * 1657 * The supported callback values that *argval* can combine are: 1658 * 1659 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1660 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1661 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1662 * 1663 * Here are some examples of where one could call such eBPF 1664 * program: 1665 * 1666 * * When RTO fires. 1667 * * When a packet is retransmitted. 1668 * * When the connection terminates. 1669 * * When a packet is sent. 1670 * * When a packet is received. 1671 * Return 1672 * Code **-EINVAL** if the socket is not a full TCP socket; 1673 * otherwise, a positive number containing the bits that could not 1674 * be set is returned (which comes down to 0 if all bits were set 1675 * as required). 1676 * 1677 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1678 * Description 1679 * This helper is used in programs implementing policies at the 1680 * socket level. If the message *msg* is allowed to pass (i.e. if 1681 * the verdict eBPF program returns **SK_PASS**), redirect it to 1682 * the socket referenced by *map* (of type 1683 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1684 * egress interfaces can be used for redirection. The 1685 * **BPF_F_INGRESS** value in *flags* is used to make the 1686 * distinction (ingress path is selected if the flag is present, 1687 * egress path otherwise). This is the only flag supported for now. 1688 * Return 1689 * **SK_PASS** on success, or **SK_DROP** on error. 1690 * 1691 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1692 * Description 1693 * For socket policies, apply the verdict of the eBPF program to 1694 * the next *bytes* (number of bytes) of message *msg*. 1695 * 1696 * For example, this helper can be used in the following cases: 1697 * 1698 * * A single **sendmsg**\ () or **sendfile**\ () system call 1699 * contains multiple logical messages that the eBPF program is 1700 * supposed to read and for which it should apply a verdict. 1701 * * An eBPF program only cares to read the first *bytes* of a 1702 * *msg*. If the message has a large payload, then setting up 1703 * and calling the eBPF program repeatedly for all bytes, even 1704 * though the verdict is already known, would create unnecessary 1705 * overhead. 1706 * 1707 * When called from within an eBPF program, the helper sets a 1708 * counter internal to the BPF infrastructure, that is used to 1709 * apply the last verdict to the next *bytes*. If *bytes* is 1710 * smaller than the current data being processed from a 1711 * **sendmsg**\ () or **sendfile**\ () system call, the first 1712 * *bytes* will be sent and the eBPF program will be re-run with 1713 * the pointer for start of data pointing to byte number *bytes* 1714 * **+ 1**. If *bytes* is larger than the current data being 1715 * processed, then the eBPF verdict will be applied to multiple 1716 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1717 * consumed. 1718 * 1719 * Note that if a socket closes with the internal counter holding 1720 * a non-zero value, this is not a problem because data is not 1721 * being buffered for *bytes* and is sent as it is received. 1722 * Return 1723 * 0 1724 * 1725 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1726 * Description 1727 * For socket policies, prevent the execution of the verdict eBPF 1728 * program for message *msg* until *bytes* (byte number) have been 1729 * accumulated. 1730 * 1731 * This can be used when one needs a specific number of bytes 1732 * before a verdict can be assigned, even if the data spans 1733 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1734 * case would be a user calling **sendmsg**\ () repeatedly with 1735 * 1-byte long message segments. Obviously, this is bad for 1736 * performance, but it is still valid. If the eBPF program needs 1737 * *bytes* bytes to validate a header, this helper can be used to 1738 * prevent the eBPF program to be called again until *bytes* have 1739 * been accumulated. 1740 * Return 1741 * 0 1742 * 1743 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1744 * Description 1745 * For socket policies, pull in non-linear data from user space 1746 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1747 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1748 * respectively. 1749 * 1750 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1751 * *msg* it can only parse data that the (**data**, **data_end**) 1752 * pointers have already consumed. For **sendmsg**\ () hooks this 1753 * is likely the first scatterlist element. But for calls relying 1754 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1755 * be the range (**0**, **0**) because the data is shared with 1756 * user space and by default the objective is to avoid allowing 1757 * user space to modify data while (or after) eBPF verdict is 1758 * being decided. This helper can be used to pull in data and to 1759 * set the start and end pointer to given values. Data will be 1760 * copied if necessary (i.e. if data was not linear and if start 1761 * and end pointers do not point to the same chunk). 1762 * 1763 * A call to this helper is susceptible to change the underlaying 1764 * packet buffer. Therefore, at load time, all checks on pointers 1765 * previously done by the verifier are invalidated and must be 1766 * performed again, if the helper is used in combination with 1767 * direct packet access. 1768 * 1769 * All values for *flags* are reserved for future usage, and must 1770 * be left at zero. 1771 * Return 1772 * 0 on success, or a negative error in case of failure. 1773 * 1774 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1775 * Description 1776 * Bind the socket associated to *ctx* to the address pointed by 1777 * *addr*, of length *addr_len*. This allows for making outgoing 1778 * connection from the desired IP address, which can be useful for 1779 * example when all processes inside a cgroup should use one 1780 * single IP address on a host that has multiple IP configured. 1781 * 1782 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1783 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1784 * **AF_INET6**). Looking for a free port to bind to can be 1785 * expensive, therefore binding to port is not permitted by the 1786 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1787 * must be set to zero. 1788 * Return 1789 * 0 on success, or a negative error in case of failure. 1790 * 1791 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1792 * Description 1793 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1794 * only possible to shrink the packet as of this writing, 1795 * therefore *delta* must be a negative integer. 1796 * 1797 * A call to this helper is susceptible to change the underlaying 1798 * packet buffer. Therefore, at load time, all checks on pointers 1799 * previously done by the verifier are invalidated and must be 1800 * performed again, if the helper is used in combination with 1801 * direct packet access. 1802 * Return 1803 * 0 on success, or a negative error in case of failure. 1804 * 1805 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1806 * Description 1807 * Retrieve the XFRM state (IP transform framework, see also 1808 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1809 * 1810 * The retrieved value is stored in the **struct bpf_xfrm_state** 1811 * pointed by *xfrm_state* and of length *size*. 1812 * 1813 * All values for *flags* are reserved for future usage, and must 1814 * be left at zero. 1815 * 1816 * This helper is available only if the kernel was compiled with 1817 * **CONFIG_XFRM** configuration option. 1818 * Return 1819 * 0 on success, or a negative error in case of failure. 1820 * 1821 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1822 * Description 1823 * Return a user or a kernel stack in bpf program provided buffer. 1824 * To achieve this, the helper needs *ctx*, which is a pointer 1825 * to the context on which the tracing program is executed. 1826 * To store the stacktrace, the bpf program provides *buf* with 1827 * a nonnegative *size*. 1828 * 1829 * The last argument, *flags*, holds the number of stack frames to 1830 * skip (from 0 to 255), masked with 1831 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1832 * the following flags: 1833 * 1834 * **BPF_F_USER_STACK** 1835 * Collect a user space stack instead of a kernel stack. 1836 * **BPF_F_USER_BUILD_ID** 1837 * Collect buildid+offset instead of ips for user stack, 1838 * only valid if **BPF_F_USER_STACK** is also specified. 1839 * 1840 * **bpf_get_stack**\ () can collect up to 1841 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1842 * to sufficient large buffer size. Note that 1843 * this limit can be controlled with the **sysctl** program, and 1844 * that it should be manually increased in order to profile long 1845 * user stacks (such as stacks for Java programs). To do so, use: 1846 * 1847 * :: 1848 * 1849 * # sysctl kernel.perf_event_max_stack=<new value> 1850 * Return 1851 * A non-negative value equal to or less than *size* on success, 1852 * or a negative error in case of failure. 1853 * 1854 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1855 * Description 1856 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1857 * it provides an easy way to load *len* bytes from *offset* 1858 * from the packet associated to *skb*, into the buffer pointed 1859 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1860 * a fifth argument *start_header* exists in order to select a 1861 * base offset to start from. *start_header* can be one of: 1862 * 1863 * **BPF_HDR_START_MAC** 1864 * Base offset to load data from is *skb*'s mac header. 1865 * **BPF_HDR_START_NET** 1866 * Base offset to load data from is *skb*'s network header. 1867 * 1868 * In general, "direct packet access" is the preferred method to 1869 * access packet data, however, this helper is in particular useful 1870 * in socket filters where *skb*\ **->data** does not always point 1871 * to the start of the mac header and where "direct packet access" 1872 * is not available. 1873 * Return 1874 * 0 on success, or a negative error in case of failure. 1875 * 1876 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1877 * Description 1878 * Do FIB lookup in kernel tables using parameters in *params*. 1879 * If lookup is successful and result shows packet is to be 1880 * forwarded, the neighbor tables are searched for the nexthop. 1881 * If successful (ie., FIB lookup shows forwarding and nexthop 1882 * is resolved), the nexthop address is returned in ipv4_dst 1883 * or ipv6_dst based on family, smac is set to mac address of 1884 * egress device, dmac is set to nexthop mac address, rt_metric 1885 * is set to metric from route (IPv4/IPv6 only), and ifindex 1886 * is set to the device index of the nexthop from the FIB lookup. 1887 * 1888 * *plen* argument is the size of the passed in struct. 1889 * *flags* argument can be a combination of one or more of the 1890 * following values: 1891 * 1892 * **BPF_FIB_LOOKUP_DIRECT** 1893 * Do a direct table lookup vs full lookup using FIB 1894 * rules. 1895 * **BPF_FIB_LOOKUP_OUTPUT** 1896 * Perform lookup from an egress perspective (default is 1897 * ingress). 1898 * 1899 * *ctx* is either **struct xdp_md** for XDP programs or 1900 * **struct sk_buff** tc cls_act programs. 1901 * Return 1902 * * < 0 if any input argument is invalid 1903 * * 0 on success (packet is forwarded, nexthop neighbor exists) 1904 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 1905 * packet is not forwarded or needs assist from full stack 1906 * 1907 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 1908 * Description 1909 * Add an entry to, or update a sockhash *map* referencing sockets. 1910 * The *skops* is used as a new value for the entry associated to 1911 * *key*. *flags* is one of: 1912 * 1913 * **BPF_NOEXIST** 1914 * The entry for *key* must not exist in the map. 1915 * **BPF_EXIST** 1916 * The entry for *key* must already exist in the map. 1917 * **BPF_ANY** 1918 * No condition on the existence of the entry for *key*. 1919 * 1920 * If the *map* has eBPF programs (parser and verdict), those will 1921 * be inherited by the socket being added. If the socket is 1922 * already attached to eBPF programs, this results in an error. 1923 * Return 1924 * 0 on success, or a negative error in case of failure. 1925 * 1926 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 1927 * Description 1928 * This helper is used in programs implementing policies at the 1929 * socket level. If the message *msg* is allowed to pass (i.e. if 1930 * the verdict eBPF program returns **SK_PASS**), redirect it to 1931 * the socket referenced by *map* (of type 1932 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1933 * egress interfaces can be used for redirection. The 1934 * **BPF_F_INGRESS** value in *flags* is used to make the 1935 * distinction (ingress path is selected if the flag is present, 1936 * egress path otherwise). This is the only flag supported for now. 1937 * Return 1938 * **SK_PASS** on success, or **SK_DROP** on error. 1939 * 1940 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 1941 * Description 1942 * This helper is used in programs implementing policies at the 1943 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 1944 * if the verdeict eBPF program returns **SK_PASS**), redirect it 1945 * to the socket referenced by *map* (of type 1946 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1947 * egress interfaces can be used for redirection. The 1948 * **BPF_F_INGRESS** value in *flags* is used to make the 1949 * distinction (ingress path is selected if the flag is present, 1950 * egress otherwise). This is the only flag supported for now. 1951 * Return 1952 * **SK_PASS** on success, or **SK_DROP** on error. 1953 * 1954 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 1955 * Description 1956 * Encapsulate the packet associated to *skb* within a Layer 3 1957 * protocol header. This header is provided in the buffer at 1958 * address *hdr*, with *len* its size in bytes. *type* indicates 1959 * the protocol of the header and can be one of: 1960 * 1961 * **BPF_LWT_ENCAP_SEG6** 1962 * IPv6 encapsulation with Segment Routing Header 1963 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 1964 * the IPv6 header is computed by the kernel. 1965 * **BPF_LWT_ENCAP_SEG6_INLINE** 1966 * Only works if *skb* contains an IPv6 packet. Insert a 1967 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 1968 * the IPv6 header. 1969 * 1970 * A call to this helper is susceptible to change the underlaying 1971 * packet buffer. Therefore, at load time, all checks on pointers 1972 * previously done by the verifier are invalidated and must be 1973 * performed again, if the helper is used in combination with 1974 * direct packet access. 1975 * Return 1976 * 0 on success, or a negative error in case of failure. 1977 * 1978 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 1979 * Description 1980 * Store *len* bytes from address *from* into the packet 1981 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 1982 * inside the outermost IPv6 Segment Routing Header can be 1983 * modified through this helper. 1984 * 1985 * A call to this helper is susceptible to change the underlaying 1986 * packet buffer. Therefore, at load time, all checks on pointers 1987 * previously done by the verifier are invalidated and must be 1988 * performed again, if the helper is used in combination with 1989 * direct packet access. 1990 * Return 1991 * 0 on success, or a negative error in case of failure. 1992 * 1993 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 1994 * Description 1995 * Adjust the size allocated to TLVs in the outermost IPv6 1996 * Segment Routing Header contained in the packet associated to 1997 * *skb*, at position *offset* by *delta* bytes. Only offsets 1998 * after the segments are accepted. *delta* can be as well 1999 * positive (growing) as negative (shrinking). 2000 * 2001 * A call to this helper is susceptible to change the underlaying 2002 * packet buffer. Therefore, at load time, all checks on pointers 2003 * previously done by the verifier are invalidated and must be 2004 * performed again, if the helper is used in combination with 2005 * direct packet access. 2006 * Return 2007 * 0 on success, or a negative error in case of failure. 2008 * 2009 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2010 * Description 2011 * Apply an IPv6 Segment Routing action of type *action* to the 2012 * packet associated to *skb*. Each action takes a parameter 2013 * contained at address *param*, and of length *param_len* bytes. 2014 * *action* can be one of: 2015 * 2016 * **SEG6_LOCAL_ACTION_END_X** 2017 * End.X action: Endpoint with Layer-3 cross-connect. 2018 * Type of *param*: **struct in6_addr**. 2019 * **SEG6_LOCAL_ACTION_END_T** 2020 * End.T action: Endpoint with specific IPv6 table lookup. 2021 * Type of *param*: **int**. 2022 * **SEG6_LOCAL_ACTION_END_B6** 2023 * End.B6 action: Endpoint bound to an SRv6 policy. 2024 * Type of param: **struct ipv6_sr_hdr**. 2025 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2026 * End.B6.Encap action: Endpoint bound to an SRv6 2027 * encapsulation policy. 2028 * Type of param: **struct ipv6_sr_hdr**. 2029 * 2030 * A call to this helper is susceptible to change the underlaying 2031 * packet buffer. Therefore, at load time, all checks on pointers 2032 * previously done by the verifier are invalidated and must be 2033 * performed again, if the helper is used in combination with 2034 * direct packet access. 2035 * Return 2036 * 0 on success, or a negative error in case of failure. 2037 * 2038 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2039 * Description 2040 * This helper is used in programs implementing IR decoding, to 2041 * report a successfully decoded key press with *scancode*, 2042 * *toggle* value in the given *protocol*. The scancode will be 2043 * translated to a keycode using the rc keymap, and reported as 2044 * an input key down event. After a period a key up event is 2045 * generated. This period can be extended by calling either 2046 * **bpf_rc_keydown** () again with the same values, or calling 2047 * **bpf_rc_repeat** (). 2048 * 2049 * Some protocols include a toggle bit, in case the button was 2050 * released and pressed again between consecutive scancodes. 2051 * 2052 * The *ctx* should point to the lirc sample as passed into 2053 * the program. 2054 * 2055 * The *protocol* is the decoded protocol number (see 2056 * **enum rc_proto** for some predefined values). 2057 * 2058 * This helper is only available is the kernel was compiled with 2059 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2060 * "**y**". 2061 * Return 2062 * 0 2063 * 2064 * int bpf_rc_repeat(void *ctx) 2065 * Description 2066 * This helper is used in programs implementing IR decoding, to 2067 * report a successfully decoded repeat key message. This delays 2068 * the generation of a key up event for previously generated 2069 * key down event. 2070 * 2071 * Some IR protocols like NEC have a special IR message for 2072 * repeating last button, for when a button is held down. 2073 * 2074 * The *ctx* should point to the lirc sample as passed into 2075 * the program. 2076 * 2077 * This helper is only available is the kernel was compiled with 2078 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2079 * "**y**". 2080 * Return 2081 * 0 2082 * 2083 * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb) 2084 * Description 2085 * Return the cgroup v2 id of the socket associated with the *skb*. 2086 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2087 * helper for cgroup v1 by providing a tag resp. identifier that 2088 * can be matched on or used for map lookups e.g. to implement 2089 * policy. The cgroup v2 id of a given path in the hierarchy is 2090 * exposed in user space through the f_handle API in order to get 2091 * to the same 64-bit id. 2092 * 2093 * This helper can be used on TC egress path, but not on ingress, 2094 * and is available only if the kernel was compiled with the 2095 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2096 * Return 2097 * The id is returned or 0 in case the id could not be retrieved. 2098 * 2099 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2100 * Description 2101 * Return id of cgroup v2 that is ancestor of cgroup associated 2102 * with the *skb* at the *ancestor_level*. The root cgroup is at 2103 * *ancestor_level* zero and each step down the hierarchy 2104 * increments the level. If *ancestor_level* == level of cgroup 2105 * associated with *skb*, then return value will be same as that 2106 * of **bpf_skb_cgroup_id**\ (). 2107 * 2108 * The helper is useful to implement policies based on cgroups 2109 * that are upper in hierarchy than immediate cgroup associated 2110 * with *skb*. 2111 * 2112 * The format of returned id and helper limitations are same as in 2113 * **bpf_skb_cgroup_id**\ (). 2114 * Return 2115 * The id is returned or 0 in case the id could not be retrieved. 2116 * 2117 * u64 bpf_get_current_cgroup_id(void) 2118 * Return 2119 * A 64-bit integer containing the current cgroup id based 2120 * on the cgroup within which the current task is running. 2121 * 2122 * void* get_local_storage(void *map, u64 flags) 2123 * Description 2124 * Get the pointer to the local storage area. 2125 * The type and the size of the local storage is defined 2126 * by the *map* argument. 2127 * The *flags* meaning is specific for each map type, 2128 * and has to be 0 for cgroup local storage. 2129 * 2130 * Depending on the bpf program type, a local storage area 2131 * can be shared between multiple instances of the bpf program, 2132 * running simultaneously. 2133 * 2134 * A user should care about the synchronization by himself. 2135 * For example, by using the BPF_STX_XADD instruction to alter 2136 * the shared data. 2137 * Return 2138 * Pointer to the local storage area. 2139 * 2140 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2141 * Description 2142 * Select a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY map 2143 * It checks the selected sk is matching the incoming 2144 * request in the skb. 2145 * Return 2146 * 0 on success, or a negative error in case of failure. 2147 */ 2148 #define __BPF_FUNC_MAPPER(FN) \ 2149 FN(unspec), \ 2150 FN(map_lookup_elem), \ 2151 FN(map_update_elem), \ 2152 FN(map_delete_elem), \ 2153 FN(probe_read), \ 2154 FN(ktime_get_ns), \ 2155 FN(trace_printk), \ 2156 FN(get_prandom_u32), \ 2157 FN(get_smp_processor_id), \ 2158 FN(skb_store_bytes), \ 2159 FN(l3_csum_replace), \ 2160 FN(l4_csum_replace), \ 2161 FN(tail_call), \ 2162 FN(clone_redirect), \ 2163 FN(get_current_pid_tgid), \ 2164 FN(get_current_uid_gid), \ 2165 FN(get_current_comm), \ 2166 FN(get_cgroup_classid), \ 2167 FN(skb_vlan_push), \ 2168 FN(skb_vlan_pop), \ 2169 FN(skb_get_tunnel_key), \ 2170 FN(skb_set_tunnel_key), \ 2171 FN(perf_event_read), \ 2172 FN(redirect), \ 2173 FN(get_route_realm), \ 2174 FN(perf_event_output), \ 2175 FN(skb_load_bytes), \ 2176 FN(get_stackid), \ 2177 FN(csum_diff), \ 2178 FN(skb_get_tunnel_opt), \ 2179 FN(skb_set_tunnel_opt), \ 2180 FN(skb_change_proto), \ 2181 FN(skb_change_type), \ 2182 FN(skb_under_cgroup), \ 2183 FN(get_hash_recalc), \ 2184 FN(get_current_task), \ 2185 FN(probe_write_user), \ 2186 FN(current_task_under_cgroup), \ 2187 FN(skb_change_tail), \ 2188 FN(skb_pull_data), \ 2189 FN(csum_update), \ 2190 FN(set_hash_invalid), \ 2191 FN(get_numa_node_id), \ 2192 FN(skb_change_head), \ 2193 FN(xdp_adjust_head), \ 2194 FN(probe_read_str), \ 2195 FN(get_socket_cookie), \ 2196 FN(get_socket_uid), \ 2197 FN(set_hash), \ 2198 FN(setsockopt), \ 2199 FN(skb_adjust_room), \ 2200 FN(redirect_map), \ 2201 FN(sk_redirect_map), \ 2202 FN(sock_map_update), \ 2203 FN(xdp_adjust_meta), \ 2204 FN(perf_event_read_value), \ 2205 FN(perf_prog_read_value), \ 2206 FN(getsockopt), \ 2207 FN(override_return), \ 2208 FN(sock_ops_cb_flags_set), \ 2209 FN(msg_redirect_map), \ 2210 FN(msg_apply_bytes), \ 2211 FN(msg_cork_bytes), \ 2212 FN(msg_pull_data), \ 2213 FN(bind), \ 2214 FN(xdp_adjust_tail), \ 2215 FN(skb_get_xfrm_state), \ 2216 FN(get_stack), \ 2217 FN(skb_load_bytes_relative), \ 2218 FN(fib_lookup), \ 2219 FN(sock_hash_update), \ 2220 FN(msg_redirect_hash), \ 2221 FN(sk_redirect_hash), \ 2222 FN(lwt_push_encap), \ 2223 FN(lwt_seg6_store_bytes), \ 2224 FN(lwt_seg6_adjust_srh), \ 2225 FN(lwt_seg6_action), \ 2226 FN(rc_repeat), \ 2227 FN(rc_keydown), \ 2228 FN(skb_cgroup_id), \ 2229 FN(get_current_cgroup_id), \ 2230 FN(get_local_storage), \ 2231 FN(sk_select_reuseport), \ 2232 FN(skb_ancestor_cgroup_id), 2233 2234 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2235 * function eBPF program intends to call 2236 */ 2237 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2238 enum bpf_func_id { 2239 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2240 __BPF_FUNC_MAX_ID, 2241 }; 2242 #undef __BPF_ENUM_FN 2243 2244 /* All flags used by eBPF helper functions, placed here. */ 2245 2246 /* BPF_FUNC_skb_store_bytes flags. */ 2247 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2248 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2249 2250 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2251 * First 4 bits are for passing the header field size. 2252 */ 2253 #define BPF_F_HDR_FIELD_MASK 0xfULL 2254 2255 /* BPF_FUNC_l4_csum_replace flags. */ 2256 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2257 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2258 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2259 2260 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2261 #define BPF_F_INGRESS (1ULL << 0) 2262 2263 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2264 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2265 2266 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2267 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2268 #define BPF_F_USER_STACK (1ULL << 8) 2269 /* flags used by BPF_FUNC_get_stackid only. */ 2270 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2271 #define BPF_F_REUSE_STACKID (1ULL << 10) 2272 /* flags used by BPF_FUNC_get_stack only. */ 2273 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2274 2275 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2276 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2277 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2278 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2279 2280 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2281 * BPF_FUNC_perf_event_read_value flags. 2282 */ 2283 #define BPF_F_INDEX_MASK 0xffffffffULL 2284 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2285 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2286 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2287 2288 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2289 enum bpf_adj_room_mode { 2290 BPF_ADJ_ROOM_NET, 2291 }; 2292 2293 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2294 enum bpf_hdr_start_off { 2295 BPF_HDR_START_MAC, 2296 BPF_HDR_START_NET, 2297 }; 2298 2299 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2300 enum bpf_lwt_encap_mode { 2301 BPF_LWT_ENCAP_SEG6, 2302 BPF_LWT_ENCAP_SEG6_INLINE 2303 }; 2304 2305 /* user accessible mirror of in-kernel sk_buff. 2306 * new fields can only be added to the end of this structure 2307 */ 2308 struct __sk_buff { 2309 __u32 len; 2310 __u32 pkt_type; 2311 __u32 mark; 2312 __u32 queue_mapping; 2313 __u32 protocol; 2314 __u32 vlan_present; 2315 __u32 vlan_tci; 2316 __u32 vlan_proto; 2317 __u32 priority; 2318 __u32 ingress_ifindex; 2319 __u32 ifindex; 2320 __u32 tc_index; 2321 __u32 cb[5]; 2322 __u32 hash; 2323 __u32 tc_classid; 2324 __u32 data; 2325 __u32 data_end; 2326 __u32 napi_id; 2327 2328 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2329 __u32 family; 2330 __u32 remote_ip4; /* Stored in network byte order */ 2331 __u32 local_ip4; /* Stored in network byte order */ 2332 __u32 remote_ip6[4]; /* Stored in network byte order */ 2333 __u32 local_ip6[4]; /* Stored in network byte order */ 2334 __u32 remote_port; /* Stored in network byte order */ 2335 __u32 local_port; /* stored in host byte order */ 2336 /* ... here. */ 2337 2338 __u32 data_meta; 2339 }; 2340 2341 struct bpf_tunnel_key { 2342 __u32 tunnel_id; 2343 union { 2344 __u32 remote_ipv4; 2345 __u32 remote_ipv6[4]; 2346 }; 2347 __u8 tunnel_tos; 2348 __u8 tunnel_ttl; 2349 __u16 tunnel_ext; /* Padding, future use. */ 2350 __u32 tunnel_label; 2351 }; 2352 2353 /* user accessible mirror of in-kernel xfrm_state. 2354 * new fields can only be added to the end of this structure 2355 */ 2356 struct bpf_xfrm_state { 2357 __u32 reqid; 2358 __u32 spi; /* Stored in network byte order */ 2359 __u16 family; 2360 __u16 ext; /* Padding, future use. */ 2361 union { 2362 __u32 remote_ipv4; /* Stored in network byte order */ 2363 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2364 }; 2365 }; 2366 2367 /* Generic BPF return codes which all BPF program types may support. 2368 * The values are binary compatible with their TC_ACT_* counter-part to 2369 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2370 * programs. 2371 * 2372 * XDP is handled seprately, see XDP_*. 2373 */ 2374 enum bpf_ret_code { 2375 BPF_OK = 0, 2376 /* 1 reserved */ 2377 BPF_DROP = 2, 2378 /* 3-6 reserved */ 2379 BPF_REDIRECT = 7, 2380 /* >127 are reserved for prog type specific return codes */ 2381 }; 2382 2383 struct bpf_sock { 2384 __u32 bound_dev_if; 2385 __u32 family; 2386 __u32 type; 2387 __u32 protocol; 2388 __u32 mark; 2389 __u32 priority; 2390 __u32 src_ip4; /* Allows 1,2,4-byte read. 2391 * Stored in network byte order. 2392 */ 2393 __u32 src_ip6[4]; /* Allows 1,2,4-byte read. 2394 * Stored in network byte order. 2395 */ 2396 __u32 src_port; /* Allows 4-byte read. 2397 * Stored in host byte order 2398 */ 2399 }; 2400 2401 #define XDP_PACKET_HEADROOM 256 2402 2403 /* User return codes for XDP prog type. 2404 * A valid XDP program must return one of these defined values. All other 2405 * return codes are reserved for future use. Unknown return codes will 2406 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 2407 */ 2408 enum xdp_action { 2409 XDP_ABORTED = 0, 2410 XDP_DROP, 2411 XDP_PASS, 2412 XDP_TX, 2413 XDP_REDIRECT, 2414 }; 2415 2416 /* user accessible metadata for XDP packet hook 2417 * new fields must be added to the end of this structure 2418 */ 2419 struct xdp_md { 2420 __u32 data; 2421 __u32 data_end; 2422 __u32 data_meta; 2423 /* Below access go through struct xdp_rxq_info */ 2424 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 2425 __u32 rx_queue_index; /* rxq->queue_index */ 2426 }; 2427 2428 enum sk_action { 2429 SK_DROP = 0, 2430 SK_PASS, 2431 }; 2432 2433 /* user accessible metadata for SK_MSG packet hook, new fields must 2434 * be added to the end of this structure 2435 */ 2436 struct sk_msg_md { 2437 void *data; 2438 void *data_end; 2439 2440 __u32 family; 2441 __u32 remote_ip4; /* Stored in network byte order */ 2442 __u32 local_ip4; /* Stored in network byte order */ 2443 __u32 remote_ip6[4]; /* Stored in network byte order */ 2444 __u32 local_ip6[4]; /* Stored in network byte order */ 2445 __u32 remote_port; /* Stored in network byte order */ 2446 __u32 local_port; /* stored in host byte order */ 2447 }; 2448 2449 struct sk_reuseport_md { 2450 /* 2451 * Start of directly accessible data. It begins from 2452 * the tcp/udp header. 2453 */ 2454 void *data; 2455 void *data_end; /* End of directly accessible data */ 2456 /* 2457 * Total length of packet (starting from the tcp/udp header). 2458 * Note that the directly accessible bytes (data_end - data) 2459 * could be less than this "len". Those bytes could be 2460 * indirectly read by a helper "bpf_skb_load_bytes()". 2461 */ 2462 __u32 len; 2463 /* 2464 * Eth protocol in the mac header (network byte order). e.g. 2465 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 2466 */ 2467 __u32 eth_protocol; 2468 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 2469 __u32 bind_inany; /* Is sock bound to an INANY address? */ 2470 __u32 hash; /* A hash of the packet 4 tuples */ 2471 }; 2472 2473 #define BPF_TAG_SIZE 8 2474 2475 struct bpf_prog_info { 2476 __u32 type; 2477 __u32 id; 2478 __u8 tag[BPF_TAG_SIZE]; 2479 __u32 jited_prog_len; 2480 __u32 xlated_prog_len; 2481 __aligned_u64 jited_prog_insns; 2482 __aligned_u64 xlated_prog_insns; 2483 __u64 load_time; /* ns since boottime */ 2484 __u32 created_by_uid; 2485 __u32 nr_map_ids; 2486 __aligned_u64 map_ids; 2487 char name[BPF_OBJ_NAME_LEN]; 2488 __u32 ifindex; 2489 __u32 gpl_compatible:1; 2490 __u64 netns_dev; 2491 __u64 netns_ino; 2492 __u32 nr_jited_ksyms; 2493 __u32 nr_jited_func_lens; 2494 __aligned_u64 jited_ksyms; 2495 __aligned_u64 jited_func_lens; 2496 } __attribute__((aligned(8))); 2497 2498 struct bpf_map_info { 2499 __u32 type; 2500 __u32 id; 2501 __u32 key_size; 2502 __u32 value_size; 2503 __u32 max_entries; 2504 __u32 map_flags; 2505 char name[BPF_OBJ_NAME_LEN]; 2506 __u32 ifindex; 2507 __u32 :32; 2508 __u64 netns_dev; 2509 __u64 netns_ino; 2510 __u32 btf_id; 2511 __u32 btf_key_type_id; 2512 __u32 btf_value_type_id; 2513 } __attribute__((aligned(8))); 2514 2515 struct bpf_btf_info { 2516 __aligned_u64 btf; 2517 __u32 btf_size; 2518 __u32 id; 2519 } __attribute__((aligned(8))); 2520 2521 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 2522 * by user and intended to be used by socket (e.g. to bind to, depends on 2523 * attach attach type). 2524 */ 2525 struct bpf_sock_addr { 2526 __u32 user_family; /* Allows 4-byte read, but no write. */ 2527 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 2528 * Stored in network byte order. 2529 */ 2530 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2531 * Stored in network byte order. 2532 */ 2533 __u32 user_port; /* Allows 4-byte read and write. 2534 * Stored in network byte order 2535 */ 2536 __u32 family; /* Allows 4-byte read, but no write */ 2537 __u32 type; /* Allows 4-byte read, but no write */ 2538 __u32 protocol; /* Allows 4-byte read, but no write */ 2539 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 2540 * Stored in network byte order. 2541 */ 2542 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2543 * Stored in network byte order. 2544 */ 2545 }; 2546 2547 /* User bpf_sock_ops struct to access socket values and specify request ops 2548 * and their replies. 2549 * Some of this fields are in network (bigendian) byte order and may need 2550 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 2551 * New fields can only be added at the end of this structure 2552 */ 2553 struct bpf_sock_ops { 2554 __u32 op; 2555 union { 2556 __u32 args[4]; /* Optionally passed to bpf program */ 2557 __u32 reply; /* Returned by bpf program */ 2558 __u32 replylong[4]; /* Optionally returned by bpf prog */ 2559 }; 2560 __u32 family; 2561 __u32 remote_ip4; /* Stored in network byte order */ 2562 __u32 local_ip4; /* Stored in network byte order */ 2563 __u32 remote_ip6[4]; /* Stored in network byte order */ 2564 __u32 local_ip6[4]; /* Stored in network byte order */ 2565 __u32 remote_port; /* Stored in network byte order */ 2566 __u32 local_port; /* stored in host byte order */ 2567 __u32 is_fullsock; /* Some TCP fields are only valid if 2568 * there is a full socket. If not, the 2569 * fields read as zero. 2570 */ 2571 __u32 snd_cwnd; 2572 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 2573 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 2574 __u32 state; 2575 __u32 rtt_min; 2576 __u32 snd_ssthresh; 2577 __u32 rcv_nxt; 2578 __u32 snd_nxt; 2579 __u32 snd_una; 2580 __u32 mss_cache; 2581 __u32 ecn_flags; 2582 __u32 rate_delivered; 2583 __u32 rate_interval_us; 2584 __u32 packets_out; 2585 __u32 retrans_out; 2586 __u32 total_retrans; 2587 __u32 segs_in; 2588 __u32 data_segs_in; 2589 __u32 segs_out; 2590 __u32 data_segs_out; 2591 __u32 lost_out; 2592 __u32 sacked_out; 2593 __u32 sk_txhash; 2594 __u64 bytes_received; 2595 __u64 bytes_acked; 2596 }; 2597 2598 /* Definitions for bpf_sock_ops_cb_flags */ 2599 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 2600 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 2601 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 2602 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 2603 * supported cb flags 2604 */ 2605 2606 /* List of known BPF sock_ops operators. 2607 * New entries can only be added at the end 2608 */ 2609 enum { 2610 BPF_SOCK_OPS_VOID, 2611 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 2612 * -1 if default value should be used 2613 */ 2614 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 2615 * window (in packets) or -1 if default 2616 * value should be used 2617 */ 2618 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 2619 * active connection is initialized 2620 */ 2621 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 2622 * active connection is 2623 * established 2624 */ 2625 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 2626 * passive connection is 2627 * established 2628 */ 2629 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 2630 * needs ECN 2631 */ 2632 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 2633 * based on the path and may be 2634 * dependent on the congestion control 2635 * algorithm. In general it indicates 2636 * a congestion threshold. RTTs above 2637 * this indicate congestion 2638 */ 2639 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 2640 * Arg1: value of icsk_retransmits 2641 * Arg2: value of icsk_rto 2642 * Arg3: whether RTO has expired 2643 */ 2644 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 2645 * Arg1: sequence number of 1st byte 2646 * Arg2: # segments 2647 * Arg3: return value of 2648 * tcp_transmit_skb (0 => success) 2649 */ 2650 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 2651 * Arg1: old_state 2652 * Arg2: new_state 2653 */ 2654 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 2655 * socket transition to LISTEN state. 2656 */ 2657 }; 2658 2659 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 2660 * changes between the TCP and BPF versions. Ideally this should never happen. 2661 * If it does, we need to add code to convert them before calling 2662 * the BPF sock_ops function. 2663 */ 2664 enum { 2665 BPF_TCP_ESTABLISHED = 1, 2666 BPF_TCP_SYN_SENT, 2667 BPF_TCP_SYN_RECV, 2668 BPF_TCP_FIN_WAIT1, 2669 BPF_TCP_FIN_WAIT2, 2670 BPF_TCP_TIME_WAIT, 2671 BPF_TCP_CLOSE, 2672 BPF_TCP_CLOSE_WAIT, 2673 BPF_TCP_LAST_ACK, 2674 BPF_TCP_LISTEN, 2675 BPF_TCP_CLOSING, /* Now a valid state */ 2676 BPF_TCP_NEW_SYN_RECV, 2677 2678 BPF_TCP_MAX_STATES /* Leave at the end! */ 2679 }; 2680 2681 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 2682 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 2683 2684 struct bpf_perf_event_value { 2685 __u64 counter; 2686 __u64 enabled; 2687 __u64 running; 2688 }; 2689 2690 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 2691 #define BPF_DEVCG_ACC_READ (1ULL << 1) 2692 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 2693 2694 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 2695 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 2696 2697 struct bpf_cgroup_dev_ctx { 2698 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 2699 __u32 access_type; 2700 __u32 major; 2701 __u32 minor; 2702 }; 2703 2704 struct bpf_raw_tracepoint_args { 2705 __u64 args[0]; 2706 }; 2707 2708 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 2709 * OUTPUT: Do lookup from egress perspective; default is ingress 2710 */ 2711 #define BPF_FIB_LOOKUP_DIRECT BIT(0) 2712 #define BPF_FIB_LOOKUP_OUTPUT BIT(1) 2713 2714 enum { 2715 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 2716 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 2717 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 2718 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 2719 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 2720 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 2721 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 2722 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 2723 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 2724 }; 2725 2726 struct bpf_fib_lookup { 2727 /* input: network family for lookup (AF_INET, AF_INET6) 2728 * output: network family of egress nexthop 2729 */ 2730 __u8 family; 2731 2732 /* set if lookup is to consider L4 data - e.g., FIB rules */ 2733 __u8 l4_protocol; 2734 __be16 sport; 2735 __be16 dport; 2736 2737 /* total length of packet from network header - used for MTU check */ 2738 __u16 tot_len; 2739 2740 /* input: L3 device index for lookup 2741 * output: device index from FIB lookup 2742 */ 2743 __u32 ifindex; 2744 2745 union { 2746 /* inputs to lookup */ 2747 __u8 tos; /* AF_INET */ 2748 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 2749 2750 /* output: metric of fib result (IPv4/IPv6 only) */ 2751 __u32 rt_metric; 2752 }; 2753 2754 union { 2755 __be32 ipv4_src; 2756 __u32 ipv6_src[4]; /* in6_addr; network order */ 2757 }; 2758 2759 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 2760 * network header. output: bpf_fib_lookup sets to gateway address 2761 * if FIB lookup returns gateway route 2762 */ 2763 union { 2764 __be32 ipv4_dst; 2765 __u32 ipv6_dst[4]; /* in6_addr; network order */ 2766 }; 2767 2768 /* output */ 2769 __be16 h_vlan_proto; 2770 __be16 h_vlan_TCI; 2771 __u8 smac[6]; /* ETH_ALEN */ 2772 __u8 dmac[6]; /* ETH_ALEN */ 2773 }; 2774 2775 enum bpf_task_fd_type { 2776 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 2777 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 2778 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 2779 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 2780 BPF_FD_TYPE_UPROBE, /* filename + offset */ 2781 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 2782 }; 2783 2784 #endif /* __LINUX_BPF_H__ */