github.com/looshlee/beatles@v0.0.0-20220727174639-742810ab631c/bpf/include/linux/bpf.h (about)

     1  /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
     2  /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
     3   *
     4   * This program is free software; you can redistribute it and/or
     5   * modify it under the terms of version 2 of the GNU General Public
     6   * License as published by the Free Software Foundation.
     7   */
     8  #ifndef __LINUX_BPF_H__
     9  #define __LINUX_BPF_H__
    10  
    11  #include <linux/type_mapper.h>
    12  #include <linux/bpf_common.h>
    13  
    14  /* Define BIT() here to avoid pulling in more headers */
    15  #define BIT(nr) (1UL << (nr))
    16  
    17  /* Extended instruction set based on top of classic BPF */
    18  
    19  /* instruction classes */
    20  #define BPF_ALU64	0x07	/* alu mode in double word width */
    21  
    22  /* ld/ldx fields */
    23  #define BPF_DW		0x18	/* double word (64-bit) */
    24  #define BPF_XADD	0xc0	/* exclusive add */
    25  
    26  /* alu/jmp fields */
    27  #define BPF_MOV		0xb0	/* mov reg to reg */
    28  #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
    29  
    30  /* change endianness of a register */
    31  #define BPF_END		0xd0	/* flags for endianness conversion: */
    32  #define BPF_TO_LE	0x00	/* convert to little-endian */
    33  #define BPF_TO_BE	0x08	/* convert to big-endian */
    34  #define BPF_FROM_LE	BPF_TO_LE
    35  #define BPF_FROM_BE	BPF_TO_BE
    36  
    37  /* jmp encodings */
    38  #define BPF_JNE		0x50	/* jump != */
    39  #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
    40  #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
    41  #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
    42  #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
    43  #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
    44  #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
    45  #define BPF_CALL	0x80	/* function call */
    46  #define BPF_EXIT	0x90	/* function return */
    47  
    48  /* Register numbers */
    49  enum {
    50  	BPF_REG_0 = 0,
    51  	BPF_REG_1,
    52  	BPF_REG_2,
    53  	BPF_REG_3,
    54  	BPF_REG_4,
    55  	BPF_REG_5,
    56  	BPF_REG_6,
    57  	BPF_REG_7,
    58  	BPF_REG_8,
    59  	BPF_REG_9,
    60  	BPF_REG_10,
    61  	__MAX_BPF_REG,
    62  };
    63  
    64  /* BPF has 10 general purpose 64-bit registers and stack frame. */
    65  #define MAX_BPF_REG	__MAX_BPF_REG
    66  
    67  struct bpf_insn {
    68  	__u8	code;		/* opcode */
    69  	__u8	dst_reg:4;	/* dest register */
    70  	__u8	src_reg:4;	/* source register */
    71  	__s16	off;		/* signed offset */
    72  	__s32	imm;		/* signed immediate constant */
    73  };
    74  
    75  /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
    76  struct bpf_lpm_trie_key {
    77  	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
    78  	__u8	data[0];	/* Arbitrary size */
    79  };
    80  
    81  struct bpf_cgroup_storage_key {
    82  	__u64	cgroup_inode_id;	/* cgroup inode id */
    83  	__u32	attach_type;		/* program attach type */
    84  };
    85  
    86  /* BPF syscall commands, see bpf(2) man-page for details. */
    87  enum bpf_cmd {
    88  	BPF_MAP_CREATE,
    89  	BPF_MAP_LOOKUP_ELEM,
    90  	BPF_MAP_UPDATE_ELEM,
    91  	BPF_MAP_DELETE_ELEM,
    92  	BPF_MAP_GET_NEXT_KEY,
    93  	BPF_PROG_LOAD,
    94  	BPF_OBJ_PIN,
    95  	BPF_OBJ_GET,
    96  	BPF_PROG_ATTACH,
    97  	BPF_PROG_DETACH,
    98  	BPF_PROG_TEST_RUN,
    99  	BPF_PROG_GET_NEXT_ID,
   100  	BPF_MAP_GET_NEXT_ID,
   101  	BPF_PROG_GET_FD_BY_ID,
   102  	BPF_MAP_GET_FD_BY_ID,
   103  	BPF_OBJ_GET_INFO_BY_FD,
   104  	BPF_PROG_QUERY,
   105  	BPF_RAW_TRACEPOINT_OPEN,
   106  	BPF_BTF_LOAD,
   107  	BPF_BTF_GET_FD_BY_ID,
   108  	BPF_TASK_FD_QUERY,
   109  };
   110  
   111  enum bpf_map_type {
   112  	BPF_MAP_TYPE_UNSPEC,
   113  	BPF_MAP_TYPE_HASH,
   114  	BPF_MAP_TYPE_ARRAY,
   115  	BPF_MAP_TYPE_PROG_ARRAY,
   116  	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
   117  	BPF_MAP_TYPE_PERCPU_HASH,
   118  	BPF_MAP_TYPE_PERCPU_ARRAY,
   119  	BPF_MAP_TYPE_STACK_TRACE,
   120  	BPF_MAP_TYPE_CGROUP_ARRAY,
   121  	BPF_MAP_TYPE_LRU_HASH,
   122  	BPF_MAP_TYPE_LRU_PERCPU_HASH,
   123  	BPF_MAP_TYPE_LPM_TRIE,
   124  	BPF_MAP_TYPE_ARRAY_OF_MAPS,
   125  	BPF_MAP_TYPE_HASH_OF_MAPS,
   126  	BPF_MAP_TYPE_DEVMAP,
   127  	BPF_MAP_TYPE_SOCKMAP,
   128  	BPF_MAP_TYPE_CPUMAP,
   129  	BPF_MAP_TYPE_XSKMAP,
   130  	BPF_MAP_TYPE_SOCKHASH,
   131  	BPF_MAP_TYPE_CGROUP_STORAGE,
   132  	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
   133  };
   134  
   135  enum bpf_prog_type {
   136  	BPF_PROG_TYPE_UNSPEC,
   137  	BPF_PROG_TYPE_SOCKET_FILTER,
   138  	BPF_PROG_TYPE_KPROBE,
   139  	BPF_PROG_TYPE_SCHED_CLS,
   140  	BPF_PROG_TYPE_SCHED_ACT,
   141  	BPF_PROG_TYPE_TRACEPOINT,
   142  	BPF_PROG_TYPE_XDP,
   143  	BPF_PROG_TYPE_PERF_EVENT,
   144  	BPF_PROG_TYPE_CGROUP_SKB,
   145  	BPF_PROG_TYPE_CGROUP_SOCK,
   146  	BPF_PROG_TYPE_LWT_IN,
   147  	BPF_PROG_TYPE_LWT_OUT,
   148  	BPF_PROG_TYPE_LWT_XMIT,
   149  	BPF_PROG_TYPE_SOCK_OPS,
   150  	BPF_PROG_TYPE_SK_SKB,
   151  	BPF_PROG_TYPE_CGROUP_DEVICE,
   152  	BPF_PROG_TYPE_SK_MSG,
   153  	BPF_PROG_TYPE_RAW_TRACEPOINT,
   154  	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
   155  	BPF_PROG_TYPE_LWT_SEG6LOCAL,
   156  	BPF_PROG_TYPE_LIRC_MODE2,
   157  	BPF_PROG_TYPE_SK_REUSEPORT,
   158  };
   159  
   160  enum bpf_attach_type {
   161  	BPF_CGROUP_INET_INGRESS,
   162  	BPF_CGROUP_INET_EGRESS,
   163  	BPF_CGROUP_INET_SOCK_CREATE,
   164  	BPF_CGROUP_SOCK_OPS,
   165  	BPF_SK_SKB_STREAM_PARSER,
   166  	BPF_SK_SKB_STREAM_VERDICT,
   167  	BPF_CGROUP_DEVICE,
   168  	BPF_SK_MSG_VERDICT,
   169  	BPF_CGROUP_INET4_BIND,
   170  	BPF_CGROUP_INET6_BIND,
   171  	BPF_CGROUP_INET4_CONNECT,
   172  	BPF_CGROUP_INET6_CONNECT,
   173  	BPF_CGROUP_INET4_POST_BIND,
   174  	BPF_CGROUP_INET6_POST_BIND,
   175  	BPF_CGROUP_UDP4_SENDMSG,
   176  	BPF_CGROUP_UDP6_SENDMSG,
   177  	BPF_LIRC_MODE2,
   178  	__MAX_BPF_ATTACH_TYPE
   179  };
   180  
   181  #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
   182  
   183  /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
   184   *
   185   * NONE(default): No further bpf programs allowed in the subtree.
   186   *
   187   * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
   188   * the program in this cgroup yields to sub-cgroup program.
   189   *
   190   * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
   191   * that cgroup program gets run in addition to the program in this cgroup.
   192   *
   193   * Only one program is allowed to be attached to a cgroup with
   194   * NONE or BPF_F_ALLOW_OVERRIDE flag.
   195   * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
   196   * release old program and attach the new one. Attach flags has to match.
   197   *
   198   * Multiple programs are allowed to be attached to a cgroup with
   199   * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
   200   * (those that were attached first, run first)
   201   * The programs of sub-cgroup are executed first, then programs of
   202   * this cgroup and then programs of parent cgroup.
   203   * When children program makes decision (like picking TCP CA or sock bind)
   204   * parent program has a chance to override it.
   205   *
   206   * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
   207   * A cgroup with NONE doesn't allow any programs in sub-cgroups.
   208   * Ex1:
   209   * cgrp1 (MULTI progs A, B) ->
   210   *    cgrp2 (OVERRIDE prog C) ->
   211   *      cgrp3 (MULTI prog D) ->
   212   *        cgrp4 (OVERRIDE prog E) ->
   213   *          cgrp5 (NONE prog F)
   214   * the event in cgrp5 triggers execution of F,D,A,B in that order.
   215   * if prog F is detached, the execution is E,D,A,B
   216   * if prog F and D are detached, the execution is E,A,B
   217   * if prog F, E and D are detached, the execution is C,A,B
   218   *
   219   * All eligible programs are executed regardless of return code from
   220   * earlier programs.
   221   */
   222  #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
   223  #define BPF_F_ALLOW_MULTI	(1U << 1)
   224  
   225  /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
   226   * verifier will perform strict alignment checking as if the kernel
   227   * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
   228   * and NET_IP_ALIGN defined to 2.
   229   */
   230  #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
   231  
   232  /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
   233  #define BPF_PSEUDO_MAP_FD	1
   234  
   235  /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
   236   * offset to another bpf function
   237   */
   238  #define BPF_PSEUDO_CALL		1
   239  
   240  /* flags for BPF_MAP_UPDATE_ELEM command */
   241  #define BPF_ANY		0 /* create new element or update existing */
   242  #define BPF_NOEXIST	1 /* create new element if it didn't exist */
   243  #define BPF_EXIST	2 /* update existing element */
   244  
   245  /* flags for BPF_MAP_CREATE command */
   246  #define BPF_F_NO_PREALLOC	(1U << 0)
   247  /* Instead of having one common LRU list in the
   248   * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
   249   * which can scale and perform better.
   250   * Note, the LRU nodes (including free nodes) cannot be moved
   251   * across different LRU lists.
   252   */
   253  #define BPF_F_NO_COMMON_LRU	(1U << 1)
   254  /* Specify numa node during map creation */
   255  #define BPF_F_NUMA_NODE		(1U << 2)
   256  
   257  /* flags for BPF_PROG_QUERY */
   258  #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
   259  
   260  #define BPF_OBJ_NAME_LEN 16U
   261  
   262  /* Flags for accessing BPF object */
   263  #define BPF_F_RDONLY		(1U << 3)
   264  #define BPF_F_WRONLY		(1U << 4)
   265  
   266  /* Flag for stack_map, store build_id+offset instead of pointer */
   267  #define BPF_F_STACK_BUILD_ID	(1U << 5)
   268  
   269  enum bpf_stack_build_id_status {
   270  	/* user space need an empty entry to identify end of a trace */
   271  	BPF_STACK_BUILD_ID_EMPTY = 0,
   272  	/* with valid build_id and offset */
   273  	BPF_STACK_BUILD_ID_VALID = 1,
   274  	/* couldn't get build_id, fallback to ip */
   275  	BPF_STACK_BUILD_ID_IP = 2,
   276  };
   277  
   278  #define BPF_BUILD_ID_SIZE 20
   279  struct bpf_stack_build_id {
   280  	__s32		status;
   281  	unsigned char	build_id[BPF_BUILD_ID_SIZE];
   282  	union {
   283  		__u64	offset;
   284  		__u64	ip;
   285  	};
   286  };
   287  
   288  union bpf_attr {
   289  	struct { /* anonymous struct used by BPF_MAP_CREATE command */
   290  		__u32	map_type;	/* one of enum bpf_map_type */
   291  		__u32	key_size;	/* size of key in bytes */
   292  		__u32	value_size;	/* size of value in bytes */
   293  		__u32	max_entries;	/* max number of entries in a map */
   294  		__u32	map_flags;	/* BPF_MAP_CREATE related
   295  					 * flags defined above.
   296  					 */
   297  		__u32	inner_map_fd;	/* fd pointing to the inner map */
   298  		__u32	numa_node;	/* numa node (effective only if
   299  					 * BPF_F_NUMA_NODE is set).
   300  					 */
   301  		char	map_name[BPF_OBJ_NAME_LEN];
   302  		__u32	map_ifindex;	/* ifindex of netdev to create on */
   303  		__u32	btf_fd;		/* fd pointing to a BTF type data */
   304  		__u32	btf_key_type_id;	/* BTF type_id of the key */
   305  		__u32	btf_value_type_id;	/* BTF type_id of the value */
   306  	};
   307  
   308  	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
   309  		__u32		map_fd;
   310  		__aligned_u64	key;
   311  		union {
   312  			__aligned_u64 value;
   313  			__aligned_u64 next_key;
   314  		};
   315  		__u64		flags;
   316  	};
   317  
   318  	struct { /* anonymous struct used by BPF_PROG_LOAD command */
   319  		__u32		prog_type;	/* one of enum bpf_prog_type */
   320  		__u32		insn_cnt;
   321  		__aligned_u64	insns;
   322  		__aligned_u64	license;
   323  		__u32		log_level;	/* verbosity level of verifier */
   324  		__u32		log_size;	/* size of user buffer */
   325  		__aligned_u64	log_buf;	/* user supplied buffer */
   326  		__u32		kern_version;	/* checked when prog_type=kprobe */
   327  		__u32		prog_flags;
   328  		char		prog_name[BPF_OBJ_NAME_LEN];
   329  		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
   330  		/* For some prog types expected attach type must be known at
   331  		 * load time to verify attach type specific parts of prog
   332  		 * (context accesses, allowed helpers, etc).
   333  		 */
   334  		__u32		expected_attach_type;
   335  	};
   336  
   337  	struct { /* anonymous struct used by BPF_OBJ_* commands */
   338  		__aligned_u64	pathname;
   339  		__u32		bpf_fd;
   340  		__u32		file_flags;
   341  	};
   342  
   343  	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
   344  		__u32		target_fd;	/* container object to attach to */
   345  		__u32		attach_bpf_fd;	/* eBPF program to attach */
   346  		__u32		attach_type;
   347  		__u32		attach_flags;
   348  	};
   349  
   350  	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
   351  		__u32		prog_fd;
   352  		__u32		retval;
   353  		__u32		data_size_in;
   354  		__u32		data_size_out;
   355  		__aligned_u64	data_in;
   356  		__aligned_u64	data_out;
   357  		__u32		repeat;
   358  		__u32		duration;
   359  	} test;
   360  
   361  	struct { /* anonymous struct used by BPF_*_GET_*_ID */
   362  		union {
   363  			__u32		start_id;
   364  			__u32		prog_id;
   365  			__u32		map_id;
   366  			__u32		btf_id;
   367  		};
   368  		__u32		next_id;
   369  		__u32		open_flags;
   370  	};
   371  
   372  	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
   373  		__u32		bpf_fd;
   374  		__u32		info_len;
   375  		__aligned_u64	info;
   376  	} info;
   377  
   378  	struct { /* anonymous struct used by BPF_PROG_QUERY command */
   379  		__u32		target_fd;	/* container object to query */
   380  		__u32		attach_type;
   381  		__u32		query_flags;
   382  		__u32		attach_flags;
   383  		__aligned_u64	prog_ids;
   384  		__u32		prog_cnt;
   385  	} query;
   386  
   387  	struct {
   388  		__u64 name;
   389  		__u32 prog_fd;
   390  	} raw_tracepoint;
   391  
   392  	struct { /* anonymous struct for BPF_BTF_LOAD */
   393  		__aligned_u64	btf;
   394  		__aligned_u64	btf_log_buf;
   395  		__u32		btf_size;
   396  		__u32		btf_log_size;
   397  		__u32		btf_log_level;
   398  	};
   399  
   400  	struct {
   401  		__u32		pid;		/* input: pid */
   402  		__u32		fd;		/* input: fd */
   403  		__u32		flags;		/* input: flags */
   404  		__u32		buf_len;	/* input/output: buf len */
   405  		__aligned_u64	buf;		/* input/output:
   406  						 *   tp_name for tracepoint
   407  						 *   symbol for kprobe
   408  						 *   filename for uprobe
   409  						 */
   410  		__u32		prog_id;	/* output: prod_id */
   411  		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
   412  		__u64		probe_offset;	/* output: probe_offset */
   413  		__u64		probe_addr;	/* output: probe_addr */
   414  	} task_fd_query;
   415  } __attribute__((aligned(8)));
   416  
   417  /* The description below is an attempt at providing documentation to eBPF
   418   * developers about the multiple available eBPF helper functions. It can be
   419   * parsed and used to produce a manual page. The workflow is the following,
   420   * and requires the rst2man utility:
   421   *
   422   *     $ ./scripts/bpf_helpers_doc.py \
   423   *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
   424   *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
   425   *     $ man /tmp/bpf-helpers.7
   426   *
   427   * Note that in order to produce this external documentation, some RST
   428   * formatting is used in the descriptions to get "bold" and "italics" in
   429   * manual pages. Also note that the few trailing white spaces are
   430   * intentional, removing them would break paragraphs for rst2man.
   431   *
   432   * Start of BPF helper function descriptions:
   433   *
   434   * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
   435   * 	Description
   436   * 		Perform a lookup in *map* for an entry associated to *key*.
   437   * 	Return
   438   * 		Map value associated to *key*, or **NULL** if no entry was
   439   * 		found.
   440   *
   441   * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
   442   * 	Description
   443   * 		Add or update the value of the entry associated to *key* in
   444   * 		*map* with *value*. *flags* is one of:
   445   *
   446   * 		**BPF_NOEXIST**
   447   * 			The entry for *key* must not exist in the map.
   448   * 		**BPF_EXIST**
   449   * 			The entry for *key* must already exist in the map.
   450   * 		**BPF_ANY**
   451   * 			No condition on the existence of the entry for *key*.
   452   *
   453   * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
   454   * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
   455   * 		elements always exist), the helper would return an error.
   456   * 	Return
   457   * 		0 on success, or a negative error in case of failure.
   458   *
   459   * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
   460   * 	Description
   461   * 		Delete entry with *key* from *map*.
   462   * 	Return
   463   * 		0 on success, or a negative error in case of failure.
   464   *
   465   * int bpf_probe_read(void *dst, u32 size, const void *src)
   466   * 	Description
   467   * 		For tracing programs, safely attempt to read *size* bytes from
   468   * 		address *src* and store the data in *dst*.
   469   * 	Return
   470   * 		0 on success, or a negative error in case of failure.
   471   *
   472   * u64 bpf_ktime_get_ns(void)
   473   * 	Description
   474   * 		Return the time elapsed since system boot, in nanoseconds.
   475   * 	Return
   476   * 		Current *ktime*.
   477   *
   478   * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
   479   * 	Description
   480   * 		This helper is a "printk()-like" facility for debugging. It
   481   * 		prints a message defined by format *fmt* (of size *fmt_size*)
   482   * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
   483   * 		available. It can take up to three additional **u64**
   484   * 		arguments (as an eBPF helpers, the total number of arguments is
   485   * 		limited to five).
   486   *
   487   * 		Each time the helper is called, it appends a line to the trace.
   488   * 		The format of the trace is customizable, and the exact output
   489   * 		one will get depends on the options set in
   490   * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
   491   * 		*README* file under the same directory). However, it usually
   492   * 		defaults to something like:
   493   *
   494   * 		::
   495   *
   496   * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
   497   *
   498   * 		In the above:
   499   *
   500   * 			* ``telnet`` is the name of the current task.
   501   * 			* ``470`` is the PID of the current task.
   502   * 			* ``001`` is the CPU number on which the task is
   503   * 			  running.
   504   * 			* In ``.N..``, each character refers to a set of
   505   * 			  options (whether irqs are enabled, scheduling
   506   * 			  options, whether hard/softirqs are running, level of
   507   * 			  preempt_disabled respectively). **N** means that
   508   * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
   509   * 			  are set.
   510   * 			* ``419421.045894`` is a timestamp.
   511   * 			* ``0x00000001`` is a fake value used by BPF for the
   512   * 			  instruction pointer register.
   513   * 			* ``<formatted msg>`` is the message formatted with
   514   * 			  *fmt*.
   515   *
   516   * 		The conversion specifiers supported by *fmt* are similar, but
   517   * 		more limited than for printk(). They are **%d**, **%i**,
   518   * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
   519   * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
   520   * 		of field, padding with zeroes, etc.) is available, and the
   521   * 		helper will return **-EINVAL** (but print nothing) if it
   522   * 		encounters an unknown specifier.
   523   *
   524   * 		Also, note that **bpf_trace_printk**\ () is slow, and should
   525   * 		only be used for debugging purposes. For this reason, a notice
   526   * 		bloc (spanning several lines) is printed to kernel logs and
   527   * 		states that the helper should not be used "for production use"
   528   * 		the first time this helper is used (or more precisely, when
   529   * 		**trace_printk**\ () buffers are allocated). For passing values
   530   * 		to user space, perf events should be preferred.
   531   * 	Return
   532   * 		The number of bytes written to the buffer, or a negative error
   533   * 		in case of failure.
   534   *
   535   * u32 bpf_get_prandom_u32(void)
   536   * 	Description
   537   * 		Get a pseudo-random number.
   538   *
   539   * 		From a security point of view, this helper uses its own
   540   * 		pseudo-random internal state, and cannot be used to infer the
   541   * 		seed of other random functions in the kernel. However, it is
   542   * 		essential to note that the generator used by the helper is not
   543   * 		cryptographically secure.
   544   * 	Return
   545   * 		A random 32-bit unsigned value.
   546   *
   547   * u32 bpf_get_smp_processor_id(void)
   548   * 	Description
   549   * 		Get the SMP (symmetric multiprocessing) processor id. Note that
   550   * 		all programs run with preemption disabled, which means that the
   551   * 		SMP processor id is stable during all the execution of the
   552   * 		program.
   553   * 	Return
   554   * 		The SMP id of the processor running the program.
   555   *
   556   * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
   557   * 	Description
   558   * 		Store *len* bytes from address *from* into the packet
   559   * 		associated to *skb*, at *offset*. *flags* are a combination of
   560   * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
   561   * 		checksum for the packet after storing the bytes) and
   562   * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
   563   * 		**->swhash** and *skb*\ **->l4hash** to 0).
   564   *
   565   * 		A call to this helper is susceptible to change the underlaying
   566   * 		packet buffer. Therefore, at load time, all checks on pointers
   567   * 		previously done by the verifier are invalidated and must be
   568   * 		performed again, if the helper is used in combination with
   569   * 		direct packet access.
   570   * 	Return
   571   * 		0 on success, or a negative error in case of failure.
   572   *
   573   * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
   574   * 	Description
   575   * 		Recompute the layer 3 (e.g. IP) checksum for the packet
   576   * 		associated to *skb*. Computation is incremental, so the helper
   577   * 		must know the former value of the header field that was
   578   * 		modified (*from*), the new value of this field (*to*), and the
   579   * 		number of bytes (2 or 4) for this field, stored in *size*.
   580   * 		Alternatively, it is possible to store the difference between
   581   * 		the previous and the new values of the header field in *to*, by
   582   * 		setting *from* and *size* to 0. For both methods, *offset*
   583   * 		indicates the location of the IP checksum within the packet.
   584   *
   585   * 		This helper works in combination with **bpf_csum_diff**\ (),
   586   * 		which does not update the checksum in-place, but offers more
   587   * 		flexibility and can handle sizes larger than 2 or 4 for the
   588   * 		checksum to update.
   589   *
   590   * 		A call to this helper is susceptible to change the underlaying
   591   * 		packet buffer. Therefore, at load time, all checks on pointers
   592   * 		previously done by the verifier are invalidated and must be
   593   * 		performed again, if the helper is used in combination with
   594   * 		direct packet access.
   595   * 	Return
   596   * 		0 on success, or a negative error in case of failure.
   597   *
   598   * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
   599   * 	Description
   600   * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
   601   * 		packet associated to *skb*. Computation is incremental, so the
   602   * 		helper must know the former value of the header field that was
   603   * 		modified (*from*), the new value of this field (*to*), and the
   604   * 		number of bytes (2 or 4) for this field, stored on the lowest
   605   * 		four bits of *flags*. Alternatively, it is possible to store
   606   * 		the difference between the previous and the new values of the
   607   * 		header field in *to*, by setting *from* and the four lowest
   608   * 		bits of *flags* to 0. For both methods, *offset* indicates the
   609   * 		location of the IP checksum within the packet. In addition to
   610   * 		the size of the field, *flags* can be added (bitwise OR) actual
   611   * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
   612   * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
   613   * 		for updates resulting in a null checksum the value is set to
   614   * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
   615   * 		the checksum is to be computed against a pseudo-header.
   616   *
   617   * 		This helper works in combination with **bpf_csum_diff**\ (),
   618   * 		which does not update the checksum in-place, but offers more
   619   * 		flexibility and can handle sizes larger than 2 or 4 for the
   620   * 		checksum to update.
   621   *
   622   * 		A call to this helper is susceptible to change the underlaying
   623   * 		packet buffer. Therefore, at load time, all checks on pointers
   624   * 		previously done by the verifier are invalidated and must be
   625   * 		performed again, if the helper is used in combination with
   626   * 		direct packet access.
   627   * 	Return
   628   * 		0 on success, or a negative error in case of failure.
   629   *
   630   * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
   631   * 	Description
   632   * 		This special helper is used to trigger a "tail call", or in
   633   * 		other words, to jump into another eBPF program. The same stack
   634   * 		frame is used (but values on stack and in registers for the
   635   * 		caller are not accessible to the callee). This mechanism allows
   636   * 		for program chaining, either for raising the maximum number of
   637   * 		available eBPF instructions, or to execute given programs in
   638   * 		conditional blocks. For security reasons, there is an upper
   639   * 		limit to the number of successive tail calls that can be
   640   * 		performed.
   641   *
   642   * 		Upon call of this helper, the program attempts to jump into a
   643   * 		program referenced at index *index* in *prog_array_map*, a
   644   * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
   645   * 		*ctx*, a pointer to the context.
   646   *
   647   * 		If the call succeeds, the kernel immediately runs the first
   648   * 		instruction of the new program. This is not a function call,
   649   * 		and it never returns to the previous program. If the call
   650   * 		fails, then the helper has no effect, and the caller continues
   651   * 		to run its subsequent instructions. A call can fail if the
   652   * 		destination program for the jump does not exist (i.e. *index*
   653   * 		is superior to the number of entries in *prog_array_map*), or
   654   * 		if the maximum number of tail calls has been reached for this
   655   * 		chain of programs. This limit is defined in the kernel by the
   656   * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
   657   * 		which is currently set to 32.
   658   * 	Return
   659   * 		0 on success, or a negative error in case of failure.
   660   *
   661   * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
   662   * 	Description
   663   * 		Clone and redirect the packet associated to *skb* to another
   664   * 		net device of index *ifindex*. Both ingress and egress
   665   * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
   666   * 		value in *flags* is used to make the distinction (ingress path
   667   * 		is selected if the flag is present, egress path otherwise).
   668   * 		This is the only flag supported for now.
   669   *
   670   * 		In comparison with **bpf_redirect**\ () helper,
   671   * 		**bpf_clone_redirect**\ () has the associated cost of
   672   * 		duplicating the packet buffer, but this can be executed out of
   673   * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
   674   * 		efficient, but it is handled through an action code where the
   675   * 		redirection happens only after the eBPF program has returned.
   676   *
   677   * 		A call to this helper is susceptible to change the underlaying
   678   * 		packet buffer. Therefore, at load time, all checks on pointers
   679   * 		previously done by the verifier are invalidated and must be
   680   * 		performed again, if the helper is used in combination with
   681   * 		direct packet access.
   682   * 	Return
   683   * 		0 on success, or a negative error in case of failure.
   684   *
   685   * u64 bpf_get_current_pid_tgid(void)
   686   * 	Return
   687   * 		A 64-bit integer containing the current tgid and pid, and
   688   * 		created as such:
   689   * 		*current_task*\ **->tgid << 32 \|**
   690   * 		*current_task*\ **->pid**.
   691   *
   692   * u64 bpf_get_current_uid_gid(void)
   693   * 	Return
   694   * 		A 64-bit integer containing the current GID and UID, and
   695   * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
   696   *
   697   * int bpf_get_current_comm(char *buf, u32 size_of_buf)
   698   * 	Description
   699   * 		Copy the **comm** attribute of the current task into *buf* of
   700   * 		*size_of_buf*. The **comm** attribute contains the name of
   701   * 		the executable (excluding the path) for the current task. The
   702   * 		*size_of_buf* must be strictly positive. On success, the
   703   * 		helper makes sure that the *buf* is NUL-terminated. On failure,
   704   * 		it is filled with zeroes.
   705   * 	Return
   706   * 		0 on success, or a negative error in case of failure.
   707   *
   708   * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
   709   * 	Description
   710   * 		Retrieve the classid for the current task, i.e. for the net_cls
   711   * 		cgroup to which *skb* belongs.
   712   *
   713   * 		This helper can be used on TC egress path, but not on ingress.
   714   *
   715   * 		The net_cls cgroup provides an interface to tag network packets
   716   * 		based on a user-provided identifier for all traffic coming from
   717   * 		the tasks belonging to the related cgroup. See also the related
   718   * 		kernel documentation, available from the Linux sources in file
   719   * 		*Documentation/cgroup-v1/net_cls.txt*.
   720   *
   721   * 		The Linux kernel has two versions for cgroups: there are
   722   * 		cgroups v1 and cgroups v2. Both are available to users, who can
   723   * 		use a mixture of them, but note that the net_cls cgroup is for
   724   * 		cgroup v1 only. This makes it incompatible with BPF programs
   725   * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
   726   * 		only hold data for one version of cgroups at a time).
   727   *
   728   * 		This helper is only available is the kernel was compiled with
   729   * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
   730   * 		"**y**" or to "**m**".
   731   * 	Return
   732   * 		The classid, or 0 for the default unconfigured classid.
   733   *
   734   * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
   735   * 	Description
   736   * 		Push a *vlan_tci* (VLAN tag control information) of protocol
   737   * 		*vlan_proto* to the packet associated to *skb*, then update
   738   * 		the checksum. Note that if *vlan_proto* is different from
   739   * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
   740   * 		be **ETH_P_8021Q**.
   741   *
   742   * 		A call to this helper is susceptible to change the underlaying
   743   * 		packet buffer. Therefore, at load time, all checks on pointers
   744   * 		previously done by the verifier are invalidated and must be
   745   * 		performed again, if the helper is used in combination with
   746   * 		direct packet access.
   747   * 	Return
   748   * 		0 on success, or a negative error in case of failure.
   749   *
   750   * int bpf_skb_vlan_pop(struct sk_buff *skb)
   751   * 	Description
   752   * 		Pop a VLAN header from the packet associated to *skb*.
   753   *
   754   * 		A call to this helper is susceptible to change the underlaying
   755   * 		packet buffer. Therefore, at load time, all checks on pointers
   756   * 		previously done by the verifier are invalidated and must be
   757   * 		performed again, if the helper is used in combination with
   758   * 		direct packet access.
   759   * 	Return
   760   * 		0 on success, or a negative error in case of failure.
   761   *
   762   * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
   763   * 	Description
   764   * 		Get tunnel metadata. This helper takes a pointer *key* to an
   765   * 		empty **struct bpf_tunnel_key** of **size**, that will be
   766   * 		filled with tunnel metadata for the packet associated to *skb*.
   767   * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
   768   * 		indicates that the tunnel is based on IPv6 protocol instead of
   769   * 		IPv4.
   770   *
   771   * 		The **struct bpf_tunnel_key** is an object that generalizes the
   772   * 		principal parameters used by various tunneling protocols into a
   773   * 		single struct. This way, it can be used to easily make a
   774   * 		decision based on the contents of the encapsulation header,
   775   * 		"summarized" in this struct. In particular, it holds the IP
   776   * 		address of the remote end (IPv4 or IPv6, depending on the case)
   777   * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
   778   * 		this struct exposes the *key*\ **->tunnel_id**, which is
   779   * 		generally mapped to a VNI (Virtual Network Identifier), making
   780   * 		it programmable together with the **bpf_skb_set_tunnel_key**\
   781   * 		() helper.
   782   *
   783   * 		Let's imagine that the following code is part of a program
   784   * 		attached to the TC ingress interface, on one end of a GRE
   785   * 		tunnel, and is supposed to filter out all messages coming from
   786   * 		remote ends with IPv4 address other than 10.0.0.1:
   787   *
   788   * 		::
   789   *
   790   * 			int ret;
   791   * 			struct bpf_tunnel_key key = {};
   792   * 			
   793   * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
   794   * 			if (ret < 0)
   795   * 				return TC_ACT_SHOT;	// drop packet
   796   * 			
   797   * 			if (key.remote_ipv4 != 0x0a000001)
   798   * 				return TC_ACT_SHOT;	// drop packet
   799   * 			
   800   * 			return TC_ACT_OK;		// accept packet
   801   *
   802   * 		This interface can also be used with all encapsulation devices
   803   * 		that can operate in "collect metadata" mode: instead of having
   804   * 		one network device per specific configuration, the "collect
   805   * 		metadata" mode only requires a single device where the
   806   * 		configuration can be extracted from this helper.
   807   *
   808   * 		This can be used together with various tunnels such as VXLan,
   809   * 		Geneve, GRE or IP in IP (IPIP).
   810   * 	Return
   811   * 		0 on success, or a negative error in case of failure.
   812   *
   813   * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
   814   * 	Description
   815   * 		Populate tunnel metadata for packet associated to *skb.* The
   816   * 		tunnel metadata is set to the contents of *key*, of *size*. The
   817   * 		*flags* can be set to a combination of the following values:
   818   *
   819   * 		**BPF_F_TUNINFO_IPV6**
   820   * 			Indicate that the tunnel is based on IPv6 protocol
   821   * 			instead of IPv4.
   822   * 		**BPF_F_ZERO_CSUM_TX**
   823   * 			For IPv4 packets, add a flag to tunnel metadata
   824   * 			indicating that checksum computation should be skipped
   825   * 			and checksum set to zeroes.
   826   * 		**BPF_F_DONT_FRAGMENT**
   827   * 			Add a flag to tunnel metadata indicating that the
   828   * 			packet should not be fragmented.
   829   * 		**BPF_F_SEQ_NUMBER**
   830   * 			Add a flag to tunnel metadata indicating that a
   831   * 			sequence number should be added to tunnel header before
   832   * 			sending the packet. This flag was added for GRE
   833   * 			encapsulation, but might be used with other protocols
   834   * 			as well in the future.
   835   *
   836   * 		Here is a typical usage on the transmit path:
   837   *
   838   * 		::
   839   *
   840   * 			struct bpf_tunnel_key key;
   841   * 			     populate key ...
   842   * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
   843   * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
   844   *
   845   * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
   846   * 		helper for additional information.
   847   * 	Return
   848   * 		0 on success, or a negative error in case of failure.
   849   *
   850   * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
   851   * 	Description
   852   * 		Read the value of a perf event counter. This helper relies on a
   853   * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
   854   * 		the perf event counter is selected when *map* is updated with
   855   * 		perf event file descriptors. The *map* is an array whose size
   856   * 		is the number of available CPUs, and each cell contains a value
   857   * 		relative to one CPU. The value to retrieve is indicated by
   858   * 		*flags*, that contains the index of the CPU to look up, masked
   859   * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
   860   * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
   861   * 		current CPU should be retrieved.
   862   *
   863   * 		Note that before Linux 4.13, only hardware perf event can be
   864   * 		retrieved.
   865   *
   866   * 		Also, be aware that the newer helper
   867   * 		**bpf_perf_event_read_value**\ () is recommended over
   868   * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
   869   * 		quirks where error and counter value are used as a return code
   870   * 		(which is wrong to do since ranges may overlap). This issue is
   871   * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
   872   * 		time provides more features over the **bpf_perf_event_read**\
   873   * 		() interface. Please refer to the description of
   874   * 		**bpf_perf_event_read_value**\ () for details.
   875   * 	Return
   876   * 		The value of the perf event counter read from the map, or a
   877   * 		negative error code in case of failure.
   878   *
   879   * int bpf_redirect(u32 ifindex, u64 flags)
   880   * 	Description
   881   * 		Redirect the packet to another net device of index *ifindex*.
   882   * 		This helper is somewhat similar to **bpf_clone_redirect**\
   883   * 		(), except that the packet is not cloned, which provides
   884   * 		increased performance.
   885   *
   886   * 		Except for XDP, both ingress and egress interfaces can be used
   887   * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
   888   * 		to make the distinction (ingress path is selected if the flag
   889   * 		is present, egress path otherwise). Currently, XDP only
   890   * 		supports redirection to the egress interface, and accepts no
   891   * 		flag at all.
   892   *
   893   * 		The same effect can be attained with the more generic
   894   * 		**bpf_redirect_map**\ (), which requires specific maps to be
   895   * 		used but offers better performance.
   896   * 	Return
   897   * 		For XDP, the helper returns **XDP_REDIRECT** on success or
   898   * 		**XDP_ABORTED** on error. For other program types, the values
   899   * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
   900   * 		error.
   901   *
   902   * u32 bpf_get_route_realm(struct sk_buff *skb)
   903   * 	Description
   904   * 		Retrieve the realm or the route, that is to say the
   905   * 		**tclassid** field of the destination for the *skb*. The
   906   * 		indentifier retrieved is a user-provided tag, similar to the
   907   * 		one used with the net_cls cgroup (see description for
   908   * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
   909   * 		held by a route (a destination entry), not by a task.
   910   *
   911   * 		Retrieving this identifier works with the clsact TC egress hook
   912   * 		(see also **tc-bpf(8)**), or alternatively on conventional
   913   * 		classful egress qdiscs, but not on TC ingress path. In case of
   914   * 		clsact TC egress hook, this has the advantage that, internally,
   915   * 		the destination entry has not been dropped yet in the transmit
   916   * 		path. Therefore, the destination entry does not need to be
   917   * 		artificially held via **netif_keep_dst**\ () for a classful
   918   * 		qdisc until the *skb* is freed.
   919   *
   920   * 		This helper is available only if the kernel was compiled with
   921   * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
   922   * 	Return
   923   * 		The realm of the route for the packet associated to *skb*, or 0
   924   * 		if none was found.
   925   *
   926   * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
   927   * 	Description
   928   * 		Write raw *data* blob into a special BPF perf event held by
   929   * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
   930   * 		event must have the following attributes: **PERF_SAMPLE_RAW**
   931   * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
   932   * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
   933   *
   934   * 		The *flags* are used to indicate the index in *map* for which
   935   * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
   936   * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
   937   * 		to indicate that the index of the current CPU core should be
   938   * 		used.
   939   *
   940   * 		The value to write, of *size*, is passed through eBPF stack and
   941   * 		pointed by *data*.
   942   *
   943   * 		The context of the program *ctx* needs also be passed to the
   944   * 		helper.
   945   *
   946   * 		On user space, a program willing to read the values needs to
   947   * 		call **perf_event_open**\ () on the perf event (either for
   948   * 		one or for all CPUs) and to store the file descriptor into the
   949   * 		*map*. This must be done before the eBPF program can send data
   950   * 		into it. An example is available in file
   951   * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
   952   * 		tree (the eBPF program counterpart is in
   953   * 		*samples/bpf/trace_output_kern.c*).
   954   *
   955   * 		**bpf_perf_event_output**\ () achieves better performance
   956   * 		than **bpf_trace_printk**\ () for sharing data with user
   957   * 		space, and is much better suitable for streaming data from eBPF
   958   * 		programs.
   959   *
   960   * 		Note that this helper is not restricted to tracing use cases
   961   * 		and can be used with programs attached to TC or XDP as well,
   962   * 		where it allows for passing data to user space listeners. Data
   963   * 		can be:
   964   *
   965   * 		* Only custom structs,
   966   * 		* Only the packet payload, or
   967   * 		* A combination of both.
   968   * 	Return
   969   * 		0 on success, or a negative error in case of failure.
   970   *
   971   * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
   972   * 	Description
   973   * 		This helper was provided as an easy way to load data from a
   974   * 		packet. It can be used to load *len* bytes from *offset* from
   975   * 		the packet associated to *skb*, into the buffer pointed by
   976   * 		*to*.
   977   *
   978   * 		Since Linux 4.7, usage of this helper has mostly been replaced
   979   * 		by "direct packet access", enabling packet data to be
   980   * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
   981   * 		pointing respectively to the first byte of packet data and to
   982   * 		the byte after the last byte of packet data. However, it
   983   * 		remains useful if one wishes to read large quantities of data
   984   * 		at once from a packet into the eBPF stack.
   985   * 	Return
   986   * 		0 on success, or a negative error in case of failure.
   987   *
   988   * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
   989   * 	Description
   990   * 		Walk a user or a kernel stack and return its id. To achieve
   991   * 		this, the helper needs *ctx*, which is a pointer to the context
   992   * 		on which the tracing program is executed, and a pointer to a
   993   * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
   994   *
   995   * 		The last argument, *flags*, holds the number of stack frames to
   996   * 		skip (from 0 to 255), masked with
   997   * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
   998   * 		a combination of the following flags:
   999   *
  1000   * 		**BPF_F_USER_STACK**
  1001   * 			Collect a user space stack instead of a kernel stack.
  1002   * 		**BPF_F_FAST_STACK_CMP**
  1003   * 			Compare stacks by hash only.
  1004   * 		**BPF_F_REUSE_STACKID**
  1005   * 			If two different stacks hash into the same *stackid*,
  1006   * 			discard the old one.
  1007   *
  1008   * 		The stack id retrieved is a 32 bit long integer handle which
  1009   * 		can be further combined with other data (including other stack
  1010   * 		ids) and used as a key into maps. This can be useful for
  1011   * 		generating a variety of graphs (such as flame graphs or off-cpu
  1012   * 		graphs).
  1013   *
  1014   * 		For walking a stack, this helper is an improvement over
  1015   * 		**bpf_probe_read**\ (), which can be used with unrolled loops
  1016   * 		but is not efficient and consumes a lot of eBPF instructions.
  1017   * 		Instead, **bpf_get_stackid**\ () can collect up to
  1018   * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
  1019   * 		this limit can be controlled with the **sysctl** program, and
  1020   * 		that it should be manually increased in order to profile long
  1021   * 		user stacks (such as stacks for Java programs). To do so, use:
  1022   *
  1023   * 		::
  1024   *
  1025   * 			# sysctl kernel.perf_event_max_stack=<new value>
  1026   * 	Return
  1027   * 		The positive or null stack id on success, or a negative error
  1028   * 		in case of failure.
  1029   *
  1030   * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
  1031   * 	Description
  1032   * 		Compute a checksum difference, from the raw buffer pointed by
  1033   * 		*from*, of length *from_size* (that must be a multiple of 4),
  1034   * 		towards the raw buffer pointed by *to*, of size *to_size*
  1035   * 		(same remark). An optional *seed* can be added to the value
  1036   * 		(this can be cascaded, the seed may come from a previous call
  1037   * 		to the helper).
  1038   *
  1039   * 		This is flexible enough to be used in several ways:
  1040   *
  1041   * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
  1042   * 		  checksum, it can be used when pushing new data.
  1043   * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
  1044   * 		  checksum, it can be used when removing data from a packet.
  1045   * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
  1046   * 		  can be used to compute a diff. Note that *from_size* and
  1047   * 		  *to_size* do not need to be equal.
  1048   *
  1049   * 		This helper can be used in combination with
  1050   * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
  1051   * 		which one can feed in the difference computed with
  1052   * 		**bpf_csum_diff**\ ().
  1053   * 	Return
  1054   * 		The checksum result, or a negative error code in case of
  1055   * 		failure.
  1056   *
  1057   * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
  1058   * 	Description
  1059   * 		Retrieve tunnel options metadata for the packet associated to
  1060   * 		*skb*, and store the raw tunnel option data to the buffer *opt*
  1061   * 		of *size*.
  1062   *
  1063   * 		This helper can be used with encapsulation devices that can
  1064   * 		operate in "collect metadata" mode (please refer to the related
  1065   * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
  1066   * 		more details). A particular example where this can be used is
  1067   * 		in combination with the Geneve encapsulation protocol, where it
  1068   * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
  1069   * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
  1070   * 		the eBPF program. This allows for full customization of these
  1071   * 		headers.
  1072   * 	Return
  1073   * 		The size of the option data retrieved.
  1074   *
  1075   * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
  1076   * 	Description
  1077   * 		Set tunnel options metadata for the packet associated to *skb*
  1078   * 		to the option data contained in the raw buffer *opt* of *size*.
  1079   *
  1080   * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
  1081   * 		helper for additional information.
  1082   * 	Return
  1083   * 		0 on success, or a negative error in case of failure.
  1084   *
  1085   * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
  1086   * 	Description
  1087   * 		Change the protocol of the *skb* to *proto*. Currently
  1088   * 		supported are transition from IPv4 to IPv6, and from IPv6 to
  1089   * 		IPv4. The helper takes care of the groundwork for the
  1090   * 		transition, including resizing the socket buffer. The eBPF
  1091   * 		program is expected to fill the new headers, if any, via
  1092   * 		**skb_store_bytes**\ () and to recompute the checksums with
  1093   * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
  1094   * 		(). The main case for this helper is to perform NAT64
  1095   * 		operations out of an eBPF program.
  1096   *
  1097   * 		Internally, the GSO type is marked as dodgy so that headers are
  1098   * 		checked and segments are recalculated by the GSO/GRO engine.
  1099   * 		The size for GSO target is adapted as well.
  1100   *
  1101   * 		All values for *flags* are reserved for future usage, and must
  1102   * 		be left at zero.
  1103   *
  1104   * 		A call to this helper is susceptible to change the underlaying
  1105   * 		packet buffer. Therefore, at load time, all checks on pointers
  1106   * 		previously done by the verifier are invalidated and must be
  1107   * 		performed again, if the helper is used in combination with
  1108   * 		direct packet access.
  1109   * 	Return
  1110   * 		0 on success, or a negative error in case of failure.
  1111   *
  1112   * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
  1113   * 	Description
  1114   * 		Change the packet type for the packet associated to *skb*. This
  1115   * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
  1116   * 		the eBPF program does not have a write access to *skb*\
  1117   * 		**->pkt_type** beside this helper. Using a helper here allows
  1118   * 		for graceful handling of errors.
  1119   *
  1120   * 		The major use case is to change incoming *skb*s to
  1121   * 		**PACKET_HOST** in a programmatic way instead of having to
  1122   * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
  1123   * 		example.
  1124   *
  1125   * 		Note that *type* only allows certain values. At this time, they
  1126   * 		are:
  1127   *
  1128   * 		**PACKET_HOST**
  1129   * 			Packet is for us.
  1130   * 		**PACKET_BROADCAST**
  1131   * 			Send packet to all.
  1132   * 		**PACKET_MULTICAST**
  1133   * 			Send packet to group.
  1134   * 		**PACKET_OTHERHOST**
  1135   * 			Send packet to someone else.
  1136   * 	Return
  1137   * 		0 on success, or a negative error in case of failure.
  1138   *
  1139   * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
  1140   * 	Description
  1141   * 		Check whether *skb* is a descendant of the cgroup2 held by
  1142   * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
  1143   * 	Return
  1144   * 		The return value depends on the result of the test, and can be:
  1145   *
  1146   * 		* 0, if the *skb* failed the cgroup2 descendant test.
  1147   * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
  1148   * 		* A negative error code, if an error occurred.
  1149   *
  1150   * u32 bpf_get_hash_recalc(struct sk_buff *skb)
  1151   * 	Description
  1152   * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
  1153   * 		not set, in particular if the hash was cleared due to mangling,
  1154   * 		recompute this hash. Later accesses to the hash can be done
  1155   * 		directly with *skb*\ **->hash**.
  1156   *
  1157   * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
  1158   * 		prototype with **bpf_skb_change_proto**\ (), or calling
  1159   * 		**bpf_skb_store_bytes**\ () with the
  1160   * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
  1161   * 		the hash and to trigger a new computation for the next call to
  1162   * 		**bpf_get_hash_recalc**\ ().
  1163   * 	Return
  1164   * 		The 32-bit hash.
  1165   *
  1166   * u64 bpf_get_current_task(void)
  1167   * 	Return
  1168   * 		A pointer to the current task struct.
  1169   *
  1170   * int bpf_probe_write_user(void *dst, const void *src, u32 len)
  1171   * 	Description
  1172   * 		Attempt in a safe way to write *len* bytes from the buffer
  1173   * 		*src* to *dst* in memory. It only works for threads that are in
  1174   * 		user context, and *dst* must be a valid user space address.
  1175   *
  1176   * 		This helper should not be used to implement any kind of
  1177   * 		security mechanism because of TOC-TOU attacks, but rather to
  1178   * 		debug, divert, and manipulate execution of semi-cooperative
  1179   * 		processes.
  1180   *
  1181   * 		Keep in mind that this feature is meant for experiments, and it
  1182   * 		has a risk of crashing the system and running programs.
  1183   * 		Therefore, when an eBPF program using this helper is attached,
  1184   * 		a warning including PID and process name is printed to kernel
  1185   * 		logs.
  1186   * 	Return
  1187   * 		0 on success, or a negative error in case of failure.
  1188   *
  1189   * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
  1190   * 	Description
  1191   * 		Check whether the probe is being run is the context of a given
  1192   * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
  1193   * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
  1194   * 	Return
  1195   * 		The return value depends on the result of the test, and can be:
  1196   *
  1197   * 		* 0, if the *skb* task belongs to the cgroup2.
  1198   * 		* 1, if the *skb* task does not belong to the cgroup2.
  1199   * 		* A negative error code, if an error occurred.
  1200   *
  1201   * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
  1202   * 	Description
  1203   * 		Resize (trim or grow) the packet associated to *skb* to the
  1204   * 		new *len*. The *flags* are reserved for future usage, and must
  1205   * 		be left at zero.
  1206   *
  1207   * 		The basic idea is that the helper performs the needed work to
  1208   * 		change the size of the packet, then the eBPF program rewrites
  1209   * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
  1210   * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
  1211   * 		and others. This helper is a slow path utility intended for
  1212   * 		replies with control messages. And because it is targeted for
  1213   * 		slow path, the helper itself can afford to be slow: it
  1214   * 		implicitly linearizes, unclones and drops offloads from the
  1215   * 		*skb*.
  1216   *
  1217   * 		A call to this helper is susceptible to change the underlaying
  1218   * 		packet buffer. Therefore, at load time, all checks on pointers
  1219   * 		previously done by the verifier are invalidated and must be
  1220   * 		performed again, if the helper is used in combination with
  1221   * 		direct packet access.
  1222   * 	Return
  1223   * 		0 on success, or a negative error in case of failure.
  1224   *
  1225   * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
  1226   * 	Description
  1227   * 		Pull in non-linear data in case the *skb* is non-linear and not
  1228   * 		all of *len* are part of the linear section. Make *len* bytes
  1229   * 		from *skb* readable and writable. If a zero value is passed for
  1230   * 		*len*, then the whole length of the *skb* is pulled.
  1231   *
  1232   * 		This helper is only needed for reading and writing with direct
  1233   * 		packet access.
  1234   *
  1235   * 		For direct packet access, testing that offsets to access
  1236   * 		are within packet boundaries (test on *skb*\ **->data_end**) is
  1237   * 		susceptible to fail if offsets are invalid, or if the requested
  1238   * 		data is in non-linear parts of the *skb*. On failure the
  1239   * 		program can just bail out, or in the case of a non-linear
  1240   * 		buffer, use a helper to make the data available. The
  1241   * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
  1242   * 		the data. Another one consists in using **bpf_skb_pull_data**
  1243   * 		to pull in once the non-linear parts, then retesting and
  1244   * 		eventually access the data.
  1245   *
  1246   * 		At the same time, this also makes sure the *skb* is uncloned,
  1247   * 		which is a necessary condition for direct write. As this needs
  1248   * 		to be an invariant for the write part only, the verifier
  1249   * 		detects writes and adds a prologue that is calling
  1250   * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
  1251   * 		the very beginning in case it is indeed cloned.
  1252   *
  1253   * 		A call to this helper is susceptible to change the underlaying
  1254   * 		packet buffer. Therefore, at load time, all checks on pointers
  1255   * 		previously done by the verifier are invalidated and must be
  1256   * 		performed again, if the helper is used in combination with
  1257   * 		direct packet access.
  1258   * 	Return
  1259   * 		0 on success, or a negative error in case of failure.
  1260   *
  1261   * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
  1262   * 	Description
  1263   * 		Add the checksum *csum* into *skb*\ **->csum** in case the
  1264   * 		driver has supplied a checksum for the entire packet into that
  1265   * 		field. Return an error otherwise. This helper is intended to be
  1266   * 		used in combination with **bpf_csum_diff**\ (), in particular
  1267   * 		when the checksum needs to be updated after data has been
  1268   * 		written into the packet through direct packet access.
  1269   * 	Return
  1270   * 		The checksum on success, or a negative error code in case of
  1271   * 		failure.
  1272   *
  1273   * void bpf_set_hash_invalid(struct sk_buff *skb)
  1274   * 	Description
  1275   * 		Invalidate the current *skb*\ **->hash**. It can be used after
  1276   * 		mangling on headers through direct packet access, in order to
  1277   * 		indicate that the hash is outdated and to trigger a
  1278   * 		recalculation the next time the kernel tries to access this
  1279   * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
  1280   *
  1281   * int bpf_get_numa_node_id(void)
  1282   * 	Description
  1283   * 		Return the id of the current NUMA node. The primary use case
  1284   * 		for this helper is the selection of sockets for the local NUMA
  1285   * 		node, when the program is attached to sockets using the
  1286   * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
  1287   * 		but the helper is also available to other eBPF program types,
  1288   * 		similarly to **bpf_get_smp_processor_id**\ ().
  1289   * 	Return
  1290   * 		The id of current NUMA node.
  1291   *
  1292   * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
  1293   * 	Description
  1294   * 		Grows headroom of packet associated to *skb* and adjusts the
  1295   * 		offset of the MAC header accordingly, adding *len* bytes of
  1296   * 		space. It automatically extends and reallocates memory as
  1297   * 		required.
  1298   *
  1299   * 		This helper can be used on a layer 3 *skb* to push a MAC header
  1300   * 		for redirection into a layer 2 device.
  1301   *
  1302   * 		All values for *flags* are reserved for future usage, and must
  1303   * 		be left at zero.
  1304   *
  1305   * 		A call to this helper is susceptible to change the underlaying
  1306   * 		packet buffer. Therefore, at load time, all checks on pointers
  1307   * 		previously done by the verifier are invalidated and must be
  1308   * 		performed again, if the helper is used in combination with
  1309   * 		direct packet access.
  1310   * 	Return
  1311   * 		0 on success, or a negative error in case of failure.
  1312   *
  1313   * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
  1314   * 	Description
  1315   * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
  1316   * 		it is possible to use a negative value for *delta*. This helper
  1317   * 		can be used to prepare the packet for pushing or popping
  1318   * 		headers.
  1319   *
  1320   * 		A call to this helper is susceptible to change the underlaying
  1321   * 		packet buffer. Therefore, at load time, all checks on pointers
  1322   * 		previously done by the verifier are invalidated and must be
  1323   * 		performed again, if the helper is used in combination with
  1324   * 		direct packet access.
  1325   * 	Return
  1326   * 		0 on success, or a negative error in case of failure.
  1327   *
  1328   * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
  1329   * 	Description
  1330   * 		Copy a NUL terminated string from an unsafe address
  1331   * 		*unsafe_ptr* to *dst*. The *size* should include the
  1332   * 		terminating NUL byte. In case the string length is smaller than
  1333   * 		*size*, the target is not padded with further NUL bytes. If the
  1334   * 		string length is larger than *size*, just *size*-1 bytes are
  1335   * 		copied and the last byte is set to NUL.
  1336   *
  1337   * 		On success, the length of the copied string is returned. This
  1338   * 		makes this helper useful in tracing programs for reading
  1339   * 		strings, and more importantly to get its length at runtime. See
  1340   * 		the following snippet:
  1341   *
  1342   * 		::
  1343   *
  1344   * 			SEC("kprobe/sys_open")
  1345   * 			void bpf_sys_open(struct pt_regs *ctx)
  1346   * 			{
  1347   * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
  1348   * 			        int res = bpf_probe_read_str(buf, sizeof(buf),
  1349   * 				                             ctx->di);
  1350   *
  1351   * 				// Consume buf, for example push it to
  1352   * 				// userspace via bpf_perf_event_output(); we
  1353   * 				// can use res (the string length) as event
  1354   * 				// size, after checking its boundaries.
  1355   * 			}
  1356   *
  1357   * 		In comparison, using **bpf_probe_read()** helper here instead
  1358   * 		to read the string would require to estimate the length at
  1359   * 		compile time, and would often result in copying more memory
  1360   * 		than necessary.
  1361   *
  1362   * 		Another useful use case is when parsing individual process
  1363   * 		arguments or individual environment variables navigating
  1364   * 		*current*\ **->mm->arg_start** and *current*\
  1365   * 		**->mm->env_start**: using this helper and the return value,
  1366   * 		one can quickly iterate at the right offset of the memory area.
  1367   * 	Return
  1368   * 		On success, the strictly positive length of the string,
  1369   * 		including the trailing NUL character. On error, a negative
  1370   * 		value.
  1371   *
  1372   * u64 bpf_get_socket_cookie(struct sk_buff *skb)
  1373   * 	Description
  1374   * 		If the **struct sk_buff** pointed by *skb* has a known socket,
  1375   * 		retrieve the cookie (generated by the kernel) of this socket.
  1376   * 		If no cookie has been set yet, generate a new cookie. Once
  1377   * 		generated, the socket cookie remains stable for the life of the
  1378   * 		socket. This helper can be useful for monitoring per socket
  1379   * 		networking traffic statistics as it provides a unique socket
  1380   * 		identifier per namespace.
  1381   * 	Return
  1382   * 		A 8-byte long non-decreasing number on success, or 0 if the
  1383   * 		socket field is missing inside *skb*.
  1384   *
  1385   * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
  1386   * 	Description
  1387   * 		Equivalent to bpf_get_socket_cookie() helper that accepts
  1388   * 		*skb*, but gets socket from **struct bpf_sock_addr** contex.
  1389   * 	Return
  1390   * 		A 8-byte long non-decreasing number.
  1391   *
  1392   * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
  1393   * 	Description
  1394   * 		Equivalent to bpf_get_socket_cookie() helper that accepts
  1395   * 		*skb*, but gets socket from **struct bpf_sock_ops** contex.
  1396   * 	Return
  1397   * 		A 8-byte long non-decreasing number.
  1398   *
  1399   * u32 bpf_get_socket_uid(struct sk_buff *skb)
  1400   * 	Return
  1401   * 		The owner UID of the socket associated to *skb*. If the socket
  1402   * 		is **NULL**, or if it is not a full socket (i.e. if it is a
  1403   * 		time-wait or a request socket instead), **overflowuid** value
  1404   * 		is returned (note that **overflowuid** might also be the actual
  1405   * 		UID value for the socket).
  1406   *
  1407   * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
  1408   * 	Description
  1409   * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
  1410   * 		to value *hash*.
  1411   * 	Return
  1412   * 		0
  1413   *
  1414   * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
  1415   * 	Description
  1416   * 		Emulate a call to **setsockopt()** on the socket associated to
  1417   * 		*bpf_socket*, which must be a full socket. The *level* at
  1418   * 		which the option resides and the name *optname* of the option
  1419   * 		must be specified, see **setsockopt(2)** for more information.
  1420   * 		The option value of length *optlen* is pointed by *optval*.
  1421   *
  1422   * 		This helper actually implements a subset of **setsockopt()**.
  1423   * 		It supports the following *level*\ s:
  1424   *
  1425   * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
  1426   * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
  1427   * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
  1428   * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
  1429   * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
  1430   * 		  **TCP_BPF_SNDCWND_CLAMP**.
  1431   * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
  1432   * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
  1433   * 	Return
  1434   * 		0 on success, or a negative error in case of failure.
  1435   *
  1436   * int bpf_skb_adjust_room(struct sk_buff *skb, u32 len_diff, u32 mode, u64 flags)
  1437   * 	Description
  1438   * 		Grow or shrink the room for data in the packet associated to
  1439   * 		*skb* by *len_diff*, and according to the selected *mode*.
  1440   *
  1441   * 		There is a single supported mode at this time:
  1442   *
  1443   * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
  1444   * 		  (room space is added or removed below the layer 3 header).
  1445   *
  1446   * 		All values for *flags* are reserved for future usage, and must
  1447   * 		be left at zero.
  1448   *
  1449   * 		A call to this helper is susceptible to change the underlaying
  1450   * 		packet buffer. Therefore, at load time, all checks on pointers
  1451   * 		previously done by the verifier are invalidated and must be
  1452   * 		performed again, if the helper is used in combination with
  1453   * 		direct packet access.
  1454   * 	Return
  1455   * 		0 on success, or a negative error in case of failure.
  1456   *
  1457   * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
  1458   * 	Description
  1459   * 		Redirect the packet to the endpoint referenced by *map* at
  1460   * 		index *key*. Depending on its type, this *map* can contain
  1461   * 		references to net devices (for forwarding packets through other
  1462   * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
  1463   * 		but this is only implemented for native XDP (with driver
  1464   * 		support) as of this writing).
  1465   *
  1466   * 		All values for *flags* are reserved for future usage, and must
  1467   * 		be left at zero.
  1468   *
  1469   * 		When used to redirect packets to net devices, this helper
  1470   * 		provides a high performance increase over **bpf_redirect**\ ().
  1471   * 		This is due to various implementation details of the underlying
  1472   * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
  1473   * 		() tries to send packet as a "bulk" to the device.
  1474   * 	Return
  1475   * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
  1476   *
  1477   * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
  1478   * 	Description
  1479   * 		Redirect the packet to the socket referenced by *map* (of type
  1480   * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
  1481   * 		egress interfaces can be used for redirection. The
  1482   * 		**BPF_F_INGRESS** value in *flags* is used to make the
  1483   * 		distinction (ingress path is selected if the flag is present,
  1484   * 		egress path otherwise). This is the only flag supported for now.
  1485   * 	Return
  1486   * 		**SK_PASS** on success, or **SK_DROP** on error.
  1487   *
  1488   * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
  1489   * 	Description
  1490   * 		Add an entry to, or update a *map* referencing sockets. The
  1491   * 		*skops* is used as a new value for the entry associated to
  1492   * 		*key*. *flags* is one of:
  1493   *
  1494   * 		**BPF_NOEXIST**
  1495   * 			The entry for *key* must not exist in the map.
  1496   * 		**BPF_EXIST**
  1497   * 			The entry for *key* must already exist in the map.
  1498   * 		**BPF_ANY**
  1499   * 			No condition on the existence of the entry for *key*.
  1500   *
  1501   * 		If the *map* has eBPF programs (parser and verdict), those will
  1502   * 		be inherited by the socket being added. If the socket is
  1503   * 		already attached to eBPF programs, this results in an error.
  1504   * 	Return
  1505   * 		0 on success, or a negative error in case of failure.
  1506   *
  1507   * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
  1508   * 	Description
  1509   * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
  1510   * 		*delta* (which can be positive or negative). Note that this
  1511   * 		operation modifies the address stored in *xdp_md*\ **->data**,
  1512   * 		so the latter must be loaded only after the helper has been
  1513   * 		called.
  1514   *
  1515   * 		The use of *xdp_md*\ **->data_meta** is optional and programs
  1516   * 		are not required to use it. The rationale is that when the
  1517   * 		packet is processed with XDP (e.g. as DoS filter), it is
  1518   * 		possible to push further meta data along with it before passing
  1519   * 		to the stack, and to give the guarantee that an ingress eBPF
  1520   * 		program attached as a TC classifier on the same device can pick
  1521   * 		this up for further post-processing. Since TC works with socket
  1522   * 		buffers, it remains possible to set from XDP the **mark** or
  1523   * 		**priority** pointers, or other pointers for the socket buffer.
  1524   * 		Having this scratch space generic and programmable allows for
  1525   * 		more flexibility as the user is free to store whatever meta
  1526   * 		data they need.
  1527   *
  1528   * 		A call to this helper is susceptible to change the underlaying
  1529   * 		packet buffer. Therefore, at load time, all checks on pointers
  1530   * 		previously done by the verifier are invalidated and must be
  1531   * 		performed again, if the helper is used in combination with
  1532   * 		direct packet access.
  1533   * 	Return
  1534   * 		0 on success, or a negative error in case of failure.
  1535   *
  1536   * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
  1537   * 	Description
  1538   * 		Read the value of a perf event counter, and store it into *buf*
  1539   * 		of size *buf_size*. This helper relies on a *map* of type
  1540   * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
  1541   * 		counter is selected when *map* is updated with perf event file
  1542   * 		descriptors. The *map* is an array whose size is the number of
  1543   * 		available CPUs, and each cell contains a value relative to one
  1544   * 		CPU. The value to retrieve is indicated by *flags*, that
  1545   * 		contains the index of the CPU to look up, masked with
  1546   * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
  1547   * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
  1548   * 		current CPU should be retrieved.
  1549   *
  1550   * 		This helper behaves in a way close to
  1551   * 		**bpf_perf_event_read**\ () helper, save that instead of
  1552   * 		just returning the value observed, it fills the *buf*
  1553   * 		structure. This allows for additional data to be retrieved: in
  1554   * 		particular, the enabled and running times (in *buf*\
  1555   * 		**->enabled** and *buf*\ **->running**, respectively) are
  1556   * 		copied. In general, **bpf_perf_event_read_value**\ () is
  1557   * 		recommended over **bpf_perf_event_read**\ (), which has some
  1558   * 		ABI issues and provides fewer functionalities.
  1559   *
  1560   * 		These values are interesting, because hardware PMU (Performance
  1561   * 		Monitoring Unit) counters are limited resources. When there are
  1562   * 		more PMU based perf events opened than available counters,
  1563   * 		kernel will multiplex these events so each event gets certain
  1564   * 		percentage (but not all) of the PMU time. In case that
  1565   * 		multiplexing happens, the number of samples or counter value
  1566   * 		will not reflect the case compared to when no multiplexing
  1567   * 		occurs. This makes comparison between different runs difficult.
  1568   * 		Typically, the counter value should be normalized before
  1569   * 		comparing to other experiments. The usual normalization is done
  1570   * 		as follows.
  1571   *
  1572   * 		::
  1573   *
  1574   * 			normalized_counter = counter * t_enabled / t_running
  1575   *
  1576   * 		Where t_enabled is the time enabled for event and t_running is
  1577   * 		the time running for event since last normalization. The
  1578   * 		enabled and running times are accumulated since the perf event
  1579   * 		open. To achieve scaling factor between two invocations of an
  1580   * 		eBPF program, users can can use CPU id as the key (which is
  1581   * 		typical for perf array usage model) to remember the previous
  1582   * 		value and do the calculation inside the eBPF program.
  1583   * 	Return
  1584   * 		0 on success, or a negative error in case of failure.
  1585   *
  1586   * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
  1587   * 	Description
  1588   * 		For en eBPF program attached to a perf event, retrieve the
  1589   * 		value of the event counter associated to *ctx* and store it in
  1590   * 		the structure pointed by *buf* and of size *buf_size*. Enabled
  1591   * 		and running times are also stored in the structure (see
  1592   * 		description of helper **bpf_perf_event_read_value**\ () for
  1593   * 		more details).
  1594   * 	Return
  1595   * 		0 on success, or a negative error in case of failure.
  1596   *
  1597   * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
  1598   * 	Description
  1599   * 		Emulate a call to **getsockopt()** on the socket associated to
  1600   * 		*bpf_socket*, which must be a full socket. The *level* at
  1601   * 		which the option resides and the name *optname* of the option
  1602   * 		must be specified, see **getsockopt(2)** for more information.
  1603   * 		The retrieved value is stored in the structure pointed by
  1604   * 		*opval* and of length *optlen*.
  1605   *
  1606   * 		This helper actually implements a subset of **getsockopt()**.
  1607   * 		It supports the following *level*\ s:
  1608   *
  1609   * 		* **IPPROTO_TCP**, which supports *optname*
  1610   * 		  **TCP_CONGESTION**.
  1611   * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
  1612   * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
  1613   * 	Return
  1614   * 		0 on success, or a negative error in case of failure.
  1615   *
  1616   * int bpf_override_return(struct pt_reg *regs, u64 rc)
  1617   * 	Description
  1618   * 		Used for error injection, this helper uses kprobes to override
  1619   * 		the return value of the probed function, and to set it to *rc*.
  1620   * 		The first argument is the context *regs* on which the kprobe
  1621   * 		works.
  1622   *
  1623   * 		This helper works by setting setting the PC (program counter)
  1624   * 		to an override function which is run in place of the original
  1625   * 		probed function. This means the probed function is not run at
  1626   * 		all. The replacement function just returns with the required
  1627   * 		value.
  1628   *
  1629   * 		This helper has security implications, and thus is subject to
  1630   * 		restrictions. It is only available if the kernel was compiled
  1631   * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
  1632   * 		option, and in this case it only works on functions tagged with
  1633   * 		**ALLOW_ERROR_INJECTION** in the kernel code.
  1634   *
  1635   * 		Also, the helper is only available for the architectures having
  1636   * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
  1637   * 		x86 architecture is the only one to support this feature.
  1638   * 	Return
  1639   * 		0
  1640   *
  1641   * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
  1642   * 	Description
  1643   * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
  1644   * 		for the full TCP socket associated to *bpf_sock_ops* to
  1645   * 		*argval*.
  1646   *
  1647   * 		The primary use of this field is to determine if there should
  1648   * 		be calls to eBPF programs of type
  1649   * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
  1650   * 		code. A program of the same type can change its value, per
  1651   * 		connection and as necessary, when the connection is
  1652   * 		established. This field is directly accessible for reading, but
  1653   * 		this helper must be used for updates in order to return an
  1654   * 		error if an eBPF program tries to set a callback that is not
  1655   * 		supported in the current kernel.
  1656   *
  1657   * 		The supported callback values that *argval* can combine are:
  1658   *
  1659   * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
  1660   * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
  1661   * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
  1662   *
  1663   * 		Here are some examples of where one could call such eBPF
  1664   * 		program:
  1665   *
  1666   * 		* When RTO fires.
  1667   * 		* When a packet is retransmitted.
  1668   * 		* When the connection terminates.
  1669   * 		* When a packet is sent.
  1670   * 		* When a packet is received.
  1671   * 	Return
  1672   * 		Code **-EINVAL** if the socket is not a full TCP socket;
  1673   * 		otherwise, a positive number containing the bits that could not
  1674   * 		be set is returned (which comes down to 0 if all bits were set
  1675   * 		as required).
  1676   *
  1677   * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
  1678   * 	Description
  1679   * 		This helper is used in programs implementing policies at the
  1680   * 		socket level. If the message *msg* is allowed to pass (i.e. if
  1681   * 		the verdict eBPF program returns **SK_PASS**), redirect it to
  1682   * 		the socket referenced by *map* (of type
  1683   * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
  1684   * 		egress interfaces can be used for redirection. The
  1685   * 		**BPF_F_INGRESS** value in *flags* is used to make the
  1686   * 		distinction (ingress path is selected if the flag is present,
  1687   * 		egress path otherwise). This is the only flag supported for now.
  1688   * 	Return
  1689   * 		**SK_PASS** on success, or **SK_DROP** on error.
  1690   *
  1691   * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
  1692   * 	Description
  1693   * 		For socket policies, apply the verdict of the eBPF program to
  1694   * 		the next *bytes* (number of bytes) of message *msg*.
  1695   *
  1696   * 		For example, this helper can be used in the following cases:
  1697   *
  1698   * 		* A single **sendmsg**\ () or **sendfile**\ () system call
  1699   * 		  contains multiple logical messages that the eBPF program is
  1700   * 		  supposed to read and for which it should apply a verdict.
  1701   * 		* An eBPF program only cares to read the first *bytes* of a
  1702   * 		  *msg*. If the message has a large payload, then setting up
  1703   * 		  and calling the eBPF program repeatedly for all bytes, even
  1704   * 		  though the verdict is already known, would create unnecessary
  1705   * 		  overhead.
  1706   *
  1707   * 		When called from within an eBPF program, the helper sets a
  1708   * 		counter internal to the BPF infrastructure, that is used to
  1709   * 		apply the last verdict to the next *bytes*. If *bytes* is
  1710   * 		smaller than the current data being processed from a
  1711   * 		**sendmsg**\ () or **sendfile**\ () system call, the first
  1712   * 		*bytes* will be sent and the eBPF program will be re-run with
  1713   * 		the pointer for start of data pointing to byte number *bytes*
  1714   * 		**+ 1**. If *bytes* is larger than the current data being
  1715   * 		processed, then the eBPF verdict will be applied to multiple
  1716   * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
  1717   * 		consumed.
  1718   *
  1719   * 		Note that if a socket closes with the internal counter holding
  1720   * 		a non-zero value, this is not a problem because data is not
  1721   * 		being buffered for *bytes* and is sent as it is received.
  1722   * 	Return
  1723   * 		0
  1724   *
  1725   * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
  1726   * 	Description
  1727   * 		For socket policies, prevent the execution of the verdict eBPF
  1728   * 		program for message *msg* until *bytes* (byte number) have been
  1729   * 		accumulated.
  1730   *
  1731   * 		This can be used when one needs a specific number of bytes
  1732   * 		before a verdict can be assigned, even if the data spans
  1733   * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
  1734   * 		case would be a user calling **sendmsg**\ () repeatedly with
  1735   * 		1-byte long message segments. Obviously, this is bad for
  1736   * 		performance, but it is still valid. If the eBPF program needs
  1737   * 		*bytes* bytes to validate a header, this helper can be used to
  1738   * 		prevent the eBPF program to be called again until *bytes* have
  1739   * 		been accumulated.
  1740   * 	Return
  1741   * 		0
  1742   *
  1743   * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
  1744   * 	Description
  1745   * 		For socket policies, pull in non-linear data from user space
  1746   * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
  1747   * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
  1748   * 		respectively.
  1749   *
  1750   * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
  1751   * 		*msg* it can only parse data that the (**data**, **data_end**)
  1752   * 		pointers have already consumed. For **sendmsg**\ () hooks this
  1753   * 		is likely the first scatterlist element. But for calls relying
  1754   * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
  1755   * 		be the range (**0**, **0**) because the data is shared with
  1756   * 		user space and by default the objective is to avoid allowing
  1757   * 		user space to modify data while (or after) eBPF verdict is
  1758   * 		being decided. This helper can be used to pull in data and to
  1759   * 		set the start and end pointer to given values. Data will be
  1760   * 		copied if necessary (i.e. if data was not linear and if start
  1761   * 		and end pointers do not point to the same chunk).
  1762   *
  1763   * 		A call to this helper is susceptible to change the underlaying
  1764   * 		packet buffer. Therefore, at load time, all checks on pointers
  1765   * 		previously done by the verifier are invalidated and must be
  1766   * 		performed again, if the helper is used in combination with
  1767   * 		direct packet access.
  1768   *
  1769   * 		All values for *flags* are reserved for future usage, and must
  1770   * 		be left at zero.
  1771   * 	Return
  1772   * 		0 on success, or a negative error in case of failure.
  1773   *
  1774   * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
  1775   * 	Description
  1776   * 		Bind the socket associated to *ctx* to the address pointed by
  1777   * 		*addr*, of length *addr_len*. This allows for making outgoing
  1778   * 		connection from the desired IP address, which can be useful for
  1779   * 		example when all processes inside a cgroup should use one
  1780   * 		single IP address on a host that has multiple IP configured.
  1781   *
  1782   * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
  1783   * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
  1784   * 		**AF_INET6**). Looking for a free port to bind to can be
  1785   * 		expensive, therefore binding to port is not permitted by the
  1786   * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
  1787   * 		must be set to zero.
  1788   * 	Return
  1789   * 		0 on success, or a negative error in case of failure.
  1790   *
  1791   * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
  1792   * 	Description
  1793   * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
  1794   * 		only possible to shrink the packet as of this writing,
  1795   * 		therefore *delta* must be a negative integer.
  1796   *
  1797   * 		A call to this helper is susceptible to change the underlaying
  1798   * 		packet buffer. Therefore, at load time, all checks on pointers
  1799   * 		previously done by the verifier are invalidated and must be
  1800   * 		performed again, if the helper is used in combination with
  1801   * 		direct packet access.
  1802   * 	Return
  1803   * 		0 on success, or a negative error in case of failure.
  1804   *
  1805   * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
  1806   * 	Description
  1807   * 		Retrieve the XFRM state (IP transform framework, see also
  1808   * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
  1809   *
  1810   * 		The retrieved value is stored in the **struct bpf_xfrm_state**
  1811   * 		pointed by *xfrm_state* and of length *size*.
  1812   *
  1813   * 		All values for *flags* are reserved for future usage, and must
  1814   * 		be left at zero.
  1815   *
  1816   * 		This helper is available only if the kernel was compiled with
  1817   * 		**CONFIG_XFRM** configuration option.
  1818   * 	Return
  1819   * 		0 on success, or a negative error in case of failure.
  1820   *
  1821   * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
  1822   * 	Description
  1823   * 		Return a user or a kernel stack in bpf program provided buffer.
  1824   * 		To achieve this, the helper needs *ctx*, which is a pointer
  1825   * 		to the context on which the tracing program is executed.
  1826   * 		To store the stacktrace, the bpf program provides *buf* with
  1827   * 		a nonnegative *size*.
  1828   *
  1829   * 		The last argument, *flags*, holds the number of stack frames to
  1830   * 		skip (from 0 to 255), masked with
  1831   * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
  1832   * 		the following flags:
  1833   *
  1834   * 		**BPF_F_USER_STACK**
  1835   * 			Collect a user space stack instead of a kernel stack.
  1836   * 		**BPF_F_USER_BUILD_ID**
  1837   * 			Collect buildid+offset instead of ips for user stack,
  1838   * 			only valid if **BPF_F_USER_STACK** is also specified.
  1839   *
  1840   * 		**bpf_get_stack**\ () can collect up to
  1841   * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
  1842   * 		to sufficient large buffer size. Note that
  1843   * 		this limit can be controlled with the **sysctl** program, and
  1844   * 		that it should be manually increased in order to profile long
  1845   * 		user stacks (such as stacks for Java programs). To do so, use:
  1846   *
  1847   * 		::
  1848   *
  1849   * 			# sysctl kernel.perf_event_max_stack=<new value>
  1850   * 	Return
  1851   * 		A non-negative value equal to or less than *size* on success,
  1852   * 		or a negative error in case of failure.
  1853   *
  1854   * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
  1855   * 	Description
  1856   * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
  1857   * 		it provides an easy way to load *len* bytes from *offset*
  1858   * 		from the packet associated to *skb*, into the buffer pointed
  1859   * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
  1860   * 		a fifth argument *start_header* exists in order to select a
  1861   * 		base offset to start from. *start_header* can be one of:
  1862   *
  1863   * 		**BPF_HDR_START_MAC**
  1864   * 			Base offset to load data from is *skb*'s mac header.
  1865   * 		**BPF_HDR_START_NET**
  1866   * 			Base offset to load data from is *skb*'s network header.
  1867   *
  1868   * 		In general, "direct packet access" is the preferred method to
  1869   * 		access packet data, however, this helper is in particular useful
  1870   * 		in socket filters where *skb*\ **->data** does not always point
  1871   * 		to the start of the mac header and where "direct packet access"
  1872   * 		is not available.
  1873   * 	Return
  1874   * 		0 on success, or a negative error in case of failure.
  1875   *
  1876   * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
  1877   *	Description
  1878   *		Do FIB lookup in kernel tables using parameters in *params*.
  1879   *		If lookup is successful and result shows packet is to be
  1880   *		forwarded, the neighbor tables are searched for the nexthop.
  1881   *		If successful (ie., FIB lookup shows forwarding and nexthop
  1882   *		is resolved), the nexthop address is returned in ipv4_dst
  1883   *		or ipv6_dst based on family, smac is set to mac address of
  1884   *		egress device, dmac is set to nexthop mac address, rt_metric
  1885   *		is set to metric from route (IPv4/IPv6 only), and ifindex
  1886   *		is set to the device index of the nexthop from the FIB lookup.
  1887   *
  1888   *             *plen* argument is the size of the passed in struct.
  1889   *             *flags* argument can be a combination of one or more of the
  1890   *             following values:
  1891   *
  1892   *		**BPF_FIB_LOOKUP_DIRECT**
  1893   *			Do a direct table lookup vs full lookup using FIB
  1894   *			rules.
  1895   *		**BPF_FIB_LOOKUP_OUTPUT**
  1896   *			Perform lookup from an egress perspective (default is
  1897   *			ingress).
  1898   *
  1899   *             *ctx* is either **struct xdp_md** for XDP programs or
  1900   *             **struct sk_buff** tc cls_act programs.
  1901   *     Return
  1902   *		* < 0 if any input argument is invalid
  1903   *		*   0 on success (packet is forwarded, nexthop neighbor exists)
  1904   *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
  1905   *		  packet is not forwarded or needs assist from full stack
  1906   *
  1907   * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
  1908   *	Description
  1909   *		Add an entry to, or update a sockhash *map* referencing sockets.
  1910   *		The *skops* is used as a new value for the entry associated to
  1911   *		*key*. *flags* is one of:
  1912   *
  1913   *		**BPF_NOEXIST**
  1914   *			The entry for *key* must not exist in the map.
  1915   *		**BPF_EXIST**
  1916   *			The entry for *key* must already exist in the map.
  1917   *		**BPF_ANY**
  1918   *			No condition on the existence of the entry for *key*.
  1919   *
  1920   *		If the *map* has eBPF programs (parser and verdict), those will
  1921   *		be inherited by the socket being added. If the socket is
  1922   *		already attached to eBPF programs, this results in an error.
  1923   *	Return
  1924   *		0 on success, or a negative error in case of failure.
  1925   *
  1926   * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
  1927   *	Description
  1928   *		This helper is used in programs implementing policies at the
  1929   *		socket level. If the message *msg* is allowed to pass (i.e. if
  1930   *		the verdict eBPF program returns **SK_PASS**), redirect it to
  1931   *		the socket referenced by *map* (of type
  1932   *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
  1933   *		egress interfaces can be used for redirection. The
  1934   *		**BPF_F_INGRESS** value in *flags* is used to make the
  1935   *		distinction (ingress path is selected if the flag is present,
  1936   *		egress path otherwise). This is the only flag supported for now.
  1937   *	Return
  1938   *		**SK_PASS** on success, or **SK_DROP** on error.
  1939   *
  1940   * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
  1941   *	Description
  1942   *		This helper is used in programs implementing policies at the
  1943   *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
  1944   *		if the verdeict eBPF program returns **SK_PASS**), redirect it
  1945   *		to the socket referenced by *map* (of type
  1946   *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
  1947   *		egress interfaces can be used for redirection. The
  1948   *		**BPF_F_INGRESS** value in *flags* is used to make the
  1949   *		distinction (ingress path is selected if the flag is present,
  1950   *		egress otherwise). This is the only flag supported for now.
  1951   *	Return
  1952   *		**SK_PASS** on success, or **SK_DROP** on error.
  1953   *
  1954   * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
  1955   *	Description
  1956   *		Encapsulate the packet associated to *skb* within a Layer 3
  1957   *		protocol header. This header is provided in the buffer at
  1958   *		address *hdr*, with *len* its size in bytes. *type* indicates
  1959   *		the protocol of the header and can be one of:
  1960   *
  1961   *		**BPF_LWT_ENCAP_SEG6**
  1962   *			IPv6 encapsulation with Segment Routing Header
  1963   *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
  1964   *			the IPv6 header is computed by the kernel.
  1965   *		**BPF_LWT_ENCAP_SEG6_INLINE**
  1966   *			Only works if *skb* contains an IPv6 packet. Insert a
  1967   *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
  1968   *			the IPv6 header.
  1969   *
  1970   * 		A call to this helper is susceptible to change the underlaying
  1971   * 		packet buffer. Therefore, at load time, all checks on pointers
  1972   * 		previously done by the verifier are invalidated and must be
  1973   * 		performed again, if the helper is used in combination with
  1974   * 		direct packet access.
  1975   *	Return
  1976   * 		0 on success, or a negative error in case of failure.
  1977   *
  1978   * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
  1979   *	Description
  1980   *		Store *len* bytes from address *from* into the packet
  1981   *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
  1982   *		inside the outermost IPv6 Segment Routing Header can be
  1983   *		modified through this helper.
  1984   *
  1985   * 		A call to this helper is susceptible to change the underlaying
  1986   * 		packet buffer. Therefore, at load time, all checks on pointers
  1987   * 		previously done by the verifier are invalidated and must be
  1988   * 		performed again, if the helper is used in combination with
  1989   * 		direct packet access.
  1990   *	Return
  1991   * 		0 on success, or a negative error in case of failure.
  1992   *
  1993   * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
  1994   *	Description
  1995   *		Adjust the size allocated to TLVs in the outermost IPv6
  1996   *		Segment Routing Header contained in the packet associated to
  1997   *		*skb*, at position *offset* by *delta* bytes. Only offsets
  1998   *		after the segments are accepted. *delta* can be as well
  1999   *		positive (growing) as negative (shrinking).
  2000   *
  2001   * 		A call to this helper is susceptible to change the underlaying
  2002   * 		packet buffer. Therefore, at load time, all checks on pointers
  2003   * 		previously done by the verifier are invalidated and must be
  2004   * 		performed again, if the helper is used in combination with
  2005   * 		direct packet access.
  2006   *	Return
  2007   * 		0 on success, or a negative error in case of failure.
  2008   *
  2009   * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
  2010   *	Description
  2011   *		Apply an IPv6 Segment Routing action of type *action* to the
  2012   *		packet associated to *skb*. Each action takes a parameter
  2013   *		contained at address *param*, and of length *param_len* bytes.
  2014   *		*action* can be one of:
  2015   *
  2016   *		**SEG6_LOCAL_ACTION_END_X**
  2017   *			End.X action: Endpoint with Layer-3 cross-connect.
  2018   *			Type of *param*: **struct in6_addr**.
  2019   *		**SEG6_LOCAL_ACTION_END_T**
  2020   *			End.T action: Endpoint with specific IPv6 table lookup.
  2021   *			Type of *param*: **int**.
  2022   *		**SEG6_LOCAL_ACTION_END_B6**
  2023   *			End.B6 action: Endpoint bound to an SRv6 policy.
  2024   *			Type of param: **struct ipv6_sr_hdr**.
  2025   *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
  2026   *			End.B6.Encap action: Endpoint bound to an SRv6
  2027   *			encapsulation policy.
  2028   *			Type of param: **struct ipv6_sr_hdr**.
  2029   *
  2030   * 		A call to this helper is susceptible to change the underlaying
  2031   * 		packet buffer. Therefore, at load time, all checks on pointers
  2032   * 		previously done by the verifier are invalidated and must be
  2033   * 		performed again, if the helper is used in combination with
  2034   * 		direct packet access.
  2035   *	Return
  2036   * 		0 on success, or a negative error in case of failure.
  2037   *
  2038   * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
  2039   *	Description
  2040   *		This helper is used in programs implementing IR decoding, to
  2041   *		report a successfully decoded key press with *scancode*,
  2042   *		*toggle* value in the given *protocol*. The scancode will be
  2043   *		translated to a keycode using the rc keymap, and reported as
  2044   *		an input key down event. After a period a key up event is
  2045   *		generated. This period can be extended by calling either
  2046   *		**bpf_rc_keydown** () again with the same values, or calling
  2047   *		**bpf_rc_repeat** ().
  2048   *
  2049   *		Some protocols include a toggle bit, in case the button	was
  2050   *		released and pressed again between consecutive scancodes.
  2051   *
  2052   *		The *ctx* should point to the lirc sample as passed into
  2053   *		the program.
  2054   *
  2055   *		The *protocol* is the decoded protocol number (see
  2056   *		**enum rc_proto** for some predefined values).
  2057   *
  2058   *		This helper is only available is the kernel was compiled with
  2059   *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
  2060   *		"**y**".
  2061   *	Return
  2062   *		0
  2063   *
  2064   * int bpf_rc_repeat(void *ctx)
  2065   *	Description
  2066   *		This helper is used in programs implementing IR decoding, to
  2067   *		report a successfully decoded repeat key message. This delays
  2068   *		the generation of a key up event for previously generated
  2069   *		key down event.
  2070   *
  2071   *		Some IR protocols like NEC have a special IR message for
  2072   *		repeating last button, for when a button is held down.
  2073   *
  2074   *		The *ctx* should point to the lirc sample as passed into
  2075   *		the program.
  2076   *
  2077   *		This helper is only available is the kernel was compiled with
  2078   *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
  2079   *		"**y**".
  2080   *	Return
  2081   *		0
  2082   *
  2083   * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb)
  2084   * 	Description
  2085   * 		Return the cgroup v2 id of the socket associated with the *skb*.
  2086   * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
  2087   * 		helper for cgroup v1 by providing a tag resp. identifier that
  2088   * 		can be matched on or used for map lookups e.g. to implement
  2089   * 		policy. The cgroup v2 id of a given path in the hierarchy is
  2090   * 		exposed in user space through the f_handle API in order to get
  2091   * 		to the same 64-bit id.
  2092   *
  2093   * 		This helper can be used on TC egress path, but not on ingress,
  2094   * 		and is available only if the kernel was compiled with the
  2095   * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
  2096   * 	Return
  2097   * 		The id is returned or 0 in case the id could not be retrieved.
  2098   *
  2099   * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
  2100   *	Description
  2101   *		Return id of cgroup v2 that is ancestor of cgroup associated
  2102   *		with the *skb* at the *ancestor_level*.  The root cgroup is at
  2103   *		*ancestor_level* zero and each step down the hierarchy
  2104   *		increments the level. If *ancestor_level* == level of cgroup
  2105   *		associated with *skb*, then return value will be same as that
  2106   *		of **bpf_skb_cgroup_id**\ ().
  2107   *
  2108   *		The helper is useful to implement policies based on cgroups
  2109   *		that are upper in hierarchy than immediate cgroup associated
  2110   *		with *skb*.
  2111   *
  2112   *		The format of returned id and helper limitations are same as in
  2113   *		**bpf_skb_cgroup_id**\ ().
  2114   *	Return
  2115   *		The id is returned or 0 in case the id could not be retrieved.
  2116   *
  2117   * u64 bpf_get_current_cgroup_id(void)
  2118   * 	Return
  2119   * 		A 64-bit integer containing the current cgroup id based
  2120   * 		on the cgroup within which the current task is running.
  2121   *
  2122   * void* get_local_storage(void *map, u64 flags)
  2123   *	Description
  2124   *		Get the pointer to the local storage area.
  2125   *		The type and the size of the local storage is defined
  2126   *		by the *map* argument.
  2127   *		The *flags* meaning is specific for each map type,
  2128   *		and has to be 0 for cgroup local storage.
  2129   *
  2130   *		Depending on the bpf program type, a local storage area
  2131   *		can be shared between multiple instances of the bpf program,
  2132   *		running simultaneously.
  2133   *
  2134   *		A user should care about the synchronization by himself.
  2135   *		For example, by using the BPF_STX_XADD instruction to alter
  2136   *		the shared data.
  2137   *	Return
  2138   *		Pointer to the local storage area.
  2139   *
  2140   * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
  2141   *	Description
  2142   *		Select a SO_REUSEPORT sk from a	BPF_MAP_TYPE_REUSEPORT_ARRAY map
  2143   *		It checks the selected sk is matching the incoming
  2144   *		request in the skb.
  2145   *	Return
  2146   *		0 on success, or a negative error in case of failure.
  2147   */
  2148  #define __BPF_FUNC_MAPPER(FN)		\
  2149  	FN(unspec),			\
  2150  	FN(map_lookup_elem),		\
  2151  	FN(map_update_elem),		\
  2152  	FN(map_delete_elem),		\
  2153  	FN(probe_read),			\
  2154  	FN(ktime_get_ns),		\
  2155  	FN(trace_printk),		\
  2156  	FN(get_prandom_u32),		\
  2157  	FN(get_smp_processor_id),	\
  2158  	FN(skb_store_bytes),		\
  2159  	FN(l3_csum_replace),		\
  2160  	FN(l4_csum_replace),		\
  2161  	FN(tail_call),			\
  2162  	FN(clone_redirect),		\
  2163  	FN(get_current_pid_tgid),	\
  2164  	FN(get_current_uid_gid),	\
  2165  	FN(get_current_comm),		\
  2166  	FN(get_cgroup_classid),		\
  2167  	FN(skb_vlan_push),		\
  2168  	FN(skb_vlan_pop),		\
  2169  	FN(skb_get_tunnel_key),		\
  2170  	FN(skb_set_tunnel_key),		\
  2171  	FN(perf_event_read),		\
  2172  	FN(redirect),			\
  2173  	FN(get_route_realm),		\
  2174  	FN(perf_event_output),		\
  2175  	FN(skb_load_bytes),		\
  2176  	FN(get_stackid),		\
  2177  	FN(csum_diff),			\
  2178  	FN(skb_get_tunnel_opt),		\
  2179  	FN(skb_set_tunnel_opt),		\
  2180  	FN(skb_change_proto),		\
  2181  	FN(skb_change_type),		\
  2182  	FN(skb_under_cgroup),		\
  2183  	FN(get_hash_recalc),		\
  2184  	FN(get_current_task),		\
  2185  	FN(probe_write_user),		\
  2186  	FN(current_task_under_cgroup),	\
  2187  	FN(skb_change_tail),		\
  2188  	FN(skb_pull_data),		\
  2189  	FN(csum_update),		\
  2190  	FN(set_hash_invalid),		\
  2191  	FN(get_numa_node_id),		\
  2192  	FN(skb_change_head),		\
  2193  	FN(xdp_adjust_head),		\
  2194  	FN(probe_read_str),		\
  2195  	FN(get_socket_cookie),		\
  2196  	FN(get_socket_uid),		\
  2197  	FN(set_hash),			\
  2198  	FN(setsockopt),			\
  2199  	FN(skb_adjust_room),		\
  2200  	FN(redirect_map),		\
  2201  	FN(sk_redirect_map),		\
  2202  	FN(sock_map_update),		\
  2203  	FN(xdp_adjust_meta),		\
  2204  	FN(perf_event_read_value),	\
  2205  	FN(perf_prog_read_value),	\
  2206  	FN(getsockopt),			\
  2207  	FN(override_return),		\
  2208  	FN(sock_ops_cb_flags_set),	\
  2209  	FN(msg_redirect_map),		\
  2210  	FN(msg_apply_bytes),		\
  2211  	FN(msg_cork_bytes),		\
  2212  	FN(msg_pull_data),		\
  2213  	FN(bind),			\
  2214  	FN(xdp_adjust_tail),		\
  2215  	FN(skb_get_xfrm_state),		\
  2216  	FN(get_stack),			\
  2217  	FN(skb_load_bytes_relative),	\
  2218  	FN(fib_lookup),			\
  2219  	FN(sock_hash_update),		\
  2220  	FN(msg_redirect_hash),		\
  2221  	FN(sk_redirect_hash),		\
  2222  	FN(lwt_push_encap),		\
  2223  	FN(lwt_seg6_store_bytes),	\
  2224  	FN(lwt_seg6_adjust_srh),	\
  2225  	FN(lwt_seg6_action),		\
  2226  	FN(rc_repeat),			\
  2227  	FN(rc_keydown),			\
  2228  	FN(skb_cgroup_id),		\
  2229  	FN(get_current_cgroup_id),	\
  2230  	FN(get_local_storage),		\
  2231  	FN(sk_select_reuseport),	\
  2232  	FN(skb_ancestor_cgroup_id),
  2233  
  2234  /* integer value in 'imm' field of BPF_CALL instruction selects which helper
  2235   * function eBPF program intends to call
  2236   */
  2237  #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
  2238  enum bpf_func_id {
  2239  	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
  2240  	__BPF_FUNC_MAX_ID,
  2241  };
  2242  #undef __BPF_ENUM_FN
  2243  
  2244  /* All flags used by eBPF helper functions, placed here. */
  2245  
  2246  /* BPF_FUNC_skb_store_bytes flags. */
  2247  #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
  2248  #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
  2249  
  2250  /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
  2251   * First 4 bits are for passing the header field size.
  2252   */
  2253  #define BPF_F_HDR_FIELD_MASK		0xfULL
  2254  
  2255  /* BPF_FUNC_l4_csum_replace flags. */
  2256  #define BPF_F_PSEUDO_HDR		(1ULL << 4)
  2257  #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
  2258  #define BPF_F_MARK_ENFORCE		(1ULL << 6)
  2259  
  2260  /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
  2261  #define BPF_F_INGRESS			(1ULL << 0)
  2262  
  2263  /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
  2264  #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
  2265  
  2266  /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
  2267  #define BPF_F_SKIP_FIELD_MASK		0xffULL
  2268  #define BPF_F_USER_STACK		(1ULL << 8)
  2269  /* flags used by BPF_FUNC_get_stackid only. */
  2270  #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
  2271  #define BPF_F_REUSE_STACKID		(1ULL << 10)
  2272  /* flags used by BPF_FUNC_get_stack only. */
  2273  #define BPF_F_USER_BUILD_ID		(1ULL << 11)
  2274  
  2275  /* BPF_FUNC_skb_set_tunnel_key flags. */
  2276  #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
  2277  #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
  2278  #define BPF_F_SEQ_NUMBER		(1ULL << 3)
  2279  
  2280  /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
  2281   * BPF_FUNC_perf_event_read_value flags.
  2282   */
  2283  #define BPF_F_INDEX_MASK		0xffffffffULL
  2284  #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
  2285  /* BPF_FUNC_perf_event_output for sk_buff input context. */
  2286  #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
  2287  
  2288  /* Mode for BPF_FUNC_skb_adjust_room helper. */
  2289  enum bpf_adj_room_mode {
  2290  	BPF_ADJ_ROOM_NET,
  2291  };
  2292  
  2293  /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
  2294  enum bpf_hdr_start_off {
  2295  	BPF_HDR_START_MAC,
  2296  	BPF_HDR_START_NET,
  2297  };
  2298  
  2299  /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
  2300  enum bpf_lwt_encap_mode {
  2301  	BPF_LWT_ENCAP_SEG6,
  2302  	BPF_LWT_ENCAP_SEG6_INLINE
  2303  };
  2304  
  2305  /* user accessible mirror of in-kernel sk_buff.
  2306   * new fields can only be added to the end of this structure
  2307   */
  2308  struct __sk_buff {
  2309  	__u32 len;
  2310  	__u32 pkt_type;
  2311  	__u32 mark;
  2312  	__u32 queue_mapping;
  2313  	__u32 protocol;
  2314  	__u32 vlan_present;
  2315  	__u32 vlan_tci;
  2316  	__u32 vlan_proto;
  2317  	__u32 priority;
  2318  	__u32 ingress_ifindex;
  2319  	__u32 ifindex;
  2320  	__u32 tc_index;
  2321  	__u32 cb[5];
  2322  	__u32 hash;
  2323  	__u32 tc_classid;
  2324  	__u32 data;
  2325  	__u32 data_end;
  2326  	__u32 napi_id;
  2327  
  2328  	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
  2329  	__u32 family;
  2330  	__u32 remote_ip4;	/* Stored in network byte order */
  2331  	__u32 local_ip4;	/* Stored in network byte order */
  2332  	__u32 remote_ip6[4];	/* Stored in network byte order */
  2333  	__u32 local_ip6[4];	/* Stored in network byte order */
  2334  	__u32 remote_port;	/* Stored in network byte order */
  2335  	__u32 local_port;	/* stored in host byte order */
  2336  	/* ... here. */
  2337  
  2338  	__u32 data_meta;
  2339  };
  2340  
  2341  struct bpf_tunnel_key {
  2342  	__u32 tunnel_id;
  2343  	union {
  2344  		__u32 remote_ipv4;
  2345  		__u32 remote_ipv6[4];
  2346  	};
  2347  	__u8 tunnel_tos;
  2348  	__u8 tunnel_ttl;
  2349  	__u16 tunnel_ext;	/* Padding, future use. */
  2350  	__u32 tunnel_label;
  2351  };
  2352  
  2353  /* user accessible mirror of in-kernel xfrm_state.
  2354   * new fields can only be added to the end of this structure
  2355   */
  2356  struct bpf_xfrm_state {
  2357  	__u32 reqid;
  2358  	__u32 spi;	/* Stored in network byte order */
  2359  	__u16 family;
  2360  	__u16 ext;	/* Padding, future use. */
  2361  	union {
  2362  		__u32 remote_ipv4;	/* Stored in network byte order */
  2363  		__u32 remote_ipv6[4];	/* Stored in network byte order */
  2364  	};
  2365  };
  2366  
  2367  /* Generic BPF return codes which all BPF program types may support.
  2368   * The values are binary compatible with their TC_ACT_* counter-part to
  2369   * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
  2370   * programs.
  2371   *
  2372   * XDP is handled seprately, see XDP_*.
  2373   */
  2374  enum bpf_ret_code {
  2375  	BPF_OK = 0,
  2376  	/* 1 reserved */
  2377  	BPF_DROP = 2,
  2378  	/* 3-6 reserved */
  2379  	BPF_REDIRECT = 7,
  2380  	/* >127 are reserved for prog type specific return codes */
  2381  };
  2382  
  2383  struct bpf_sock {
  2384  	__u32 bound_dev_if;
  2385  	__u32 family;
  2386  	__u32 type;
  2387  	__u32 protocol;
  2388  	__u32 mark;
  2389  	__u32 priority;
  2390  	__u32 src_ip4;		/* Allows 1,2,4-byte read.
  2391  				 * Stored in network byte order.
  2392  				 */
  2393  	__u32 src_ip6[4];	/* Allows 1,2,4-byte read.
  2394  				 * Stored in network byte order.
  2395  				 */
  2396  	__u32 src_port;		/* Allows 4-byte read.
  2397  				 * Stored in host byte order
  2398  				 */
  2399  };
  2400  
  2401  #define XDP_PACKET_HEADROOM 256
  2402  
  2403  /* User return codes for XDP prog type.
  2404   * A valid XDP program must return one of these defined values. All other
  2405   * return codes are reserved for future use. Unknown return codes will
  2406   * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
  2407   */
  2408  enum xdp_action {
  2409  	XDP_ABORTED = 0,
  2410  	XDP_DROP,
  2411  	XDP_PASS,
  2412  	XDP_TX,
  2413  	XDP_REDIRECT,
  2414  };
  2415  
  2416  /* user accessible metadata for XDP packet hook
  2417   * new fields must be added to the end of this structure
  2418   */
  2419  struct xdp_md {
  2420  	__u32 data;
  2421  	__u32 data_end;
  2422  	__u32 data_meta;
  2423  	/* Below access go through struct xdp_rxq_info */
  2424  	__u32 ingress_ifindex; /* rxq->dev->ifindex */
  2425  	__u32 rx_queue_index;  /* rxq->queue_index  */
  2426  };
  2427  
  2428  enum sk_action {
  2429  	SK_DROP = 0,
  2430  	SK_PASS,
  2431  };
  2432  
  2433  /* user accessible metadata for SK_MSG packet hook, new fields must
  2434   * be added to the end of this structure
  2435   */
  2436  struct sk_msg_md {
  2437  	void *data;
  2438  	void *data_end;
  2439  
  2440  	__u32 family;
  2441  	__u32 remote_ip4;	/* Stored in network byte order */
  2442  	__u32 local_ip4;	/* Stored in network byte order */
  2443  	__u32 remote_ip6[4];	/* Stored in network byte order */
  2444  	__u32 local_ip6[4];	/* Stored in network byte order */
  2445  	__u32 remote_port;	/* Stored in network byte order */
  2446  	__u32 local_port;	/* stored in host byte order */
  2447  };
  2448  
  2449  struct sk_reuseport_md {
  2450  	/*
  2451  	 * Start of directly accessible data. It begins from
  2452  	 * the tcp/udp header.
  2453  	 */
  2454  	void *data;
  2455  	void *data_end;		/* End of directly accessible data */
  2456  	/*
  2457  	 * Total length of packet (starting from the tcp/udp header).
  2458  	 * Note that the directly accessible bytes (data_end - data)
  2459  	 * could be less than this "len".  Those bytes could be
  2460  	 * indirectly read by a helper "bpf_skb_load_bytes()".
  2461  	 */
  2462  	__u32 len;
  2463  	/*
  2464  	 * Eth protocol in the mac header (network byte order). e.g.
  2465  	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
  2466  	 */
  2467  	__u32 eth_protocol;
  2468  	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
  2469  	__u32 bind_inany;	/* Is sock bound to an INANY address? */
  2470  	__u32 hash;		/* A hash of the packet 4 tuples */
  2471  };
  2472  
  2473  #define BPF_TAG_SIZE	8
  2474  
  2475  struct bpf_prog_info {
  2476  	__u32 type;
  2477  	__u32 id;
  2478  	__u8  tag[BPF_TAG_SIZE];
  2479  	__u32 jited_prog_len;
  2480  	__u32 xlated_prog_len;
  2481  	__aligned_u64 jited_prog_insns;
  2482  	__aligned_u64 xlated_prog_insns;
  2483  	__u64 load_time;	/* ns since boottime */
  2484  	__u32 created_by_uid;
  2485  	__u32 nr_map_ids;
  2486  	__aligned_u64 map_ids;
  2487  	char name[BPF_OBJ_NAME_LEN];
  2488  	__u32 ifindex;
  2489  	__u32 gpl_compatible:1;
  2490  	__u64 netns_dev;
  2491  	__u64 netns_ino;
  2492  	__u32 nr_jited_ksyms;
  2493  	__u32 nr_jited_func_lens;
  2494  	__aligned_u64 jited_ksyms;
  2495  	__aligned_u64 jited_func_lens;
  2496  } __attribute__((aligned(8)));
  2497  
  2498  struct bpf_map_info {
  2499  	__u32 type;
  2500  	__u32 id;
  2501  	__u32 key_size;
  2502  	__u32 value_size;
  2503  	__u32 max_entries;
  2504  	__u32 map_flags;
  2505  	char  name[BPF_OBJ_NAME_LEN];
  2506  	__u32 ifindex;
  2507  	__u32 :32;
  2508  	__u64 netns_dev;
  2509  	__u64 netns_ino;
  2510  	__u32 btf_id;
  2511  	__u32 btf_key_type_id;
  2512  	__u32 btf_value_type_id;
  2513  } __attribute__((aligned(8)));
  2514  
  2515  struct bpf_btf_info {
  2516  	__aligned_u64 btf;
  2517  	__u32 btf_size;
  2518  	__u32 id;
  2519  } __attribute__((aligned(8)));
  2520  
  2521  /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
  2522   * by user and intended to be used by socket (e.g. to bind to, depends on
  2523   * attach attach type).
  2524   */
  2525  struct bpf_sock_addr {
  2526  	__u32 user_family;	/* Allows 4-byte read, but no write. */
  2527  	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
  2528  				 * Stored in network byte order.
  2529  				 */
  2530  	__u32 user_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
  2531  				 * Stored in network byte order.
  2532  				 */
  2533  	__u32 user_port;	/* Allows 4-byte read and write.
  2534  				 * Stored in network byte order
  2535  				 */
  2536  	__u32 family;		/* Allows 4-byte read, but no write */
  2537  	__u32 type;		/* Allows 4-byte read, but no write */
  2538  	__u32 protocol;		/* Allows 4-byte read, but no write */
  2539  	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read an 4-byte write.
  2540  				 * Stored in network byte order.
  2541  				 */
  2542  	__u32 msg_src_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
  2543  				 * Stored in network byte order.
  2544  				 */
  2545  };
  2546  
  2547  /* User bpf_sock_ops struct to access socket values and specify request ops
  2548   * and their replies.
  2549   * Some of this fields are in network (bigendian) byte order and may need
  2550   * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
  2551   * New fields can only be added at the end of this structure
  2552   */
  2553  struct bpf_sock_ops {
  2554  	__u32 op;
  2555  	union {
  2556  		__u32 args[4];		/* Optionally passed to bpf program */
  2557  		__u32 reply;		/* Returned by bpf program	    */
  2558  		__u32 replylong[4];	/* Optionally returned by bpf prog  */
  2559  	};
  2560  	__u32 family;
  2561  	__u32 remote_ip4;	/* Stored in network byte order */
  2562  	__u32 local_ip4;	/* Stored in network byte order */
  2563  	__u32 remote_ip6[4];	/* Stored in network byte order */
  2564  	__u32 local_ip6[4];	/* Stored in network byte order */
  2565  	__u32 remote_port;	/* Stored in network byte order */
  2566  	__u32 local_port;	/* stored in host byte order */
  2567  	__u32 is_fullsock;	/* Some TCP fields are only valid if
  2568  				 * there is a full socket. If not, the
  2569  				 * fields read as zero.
  2570  				 */
  2571  	__u32 snd_cwnd;
  2572  	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
  2573  	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
  2574  	__u32 state;
  2575  	__u32 rtt_min;
  2576  	__u32 snd_ssthresh;
  2577  	__u32 rcv_nxt;
  2578  	__u32 snd_nxt;
  2579  	__u32 snd_una;
  2580  	__u32 mss_cache;
  2581  	__u32 ecn_flags;
  2582  	__u32 rate_delivered;
  2583  	__u32 rate_interval_us;
  2584  	__u32 packets_out;
  2585  	__u32 retrans_out;
  2586  	__u32 total_retrans;
  2587  	__u32 segs_in;
  2588  	__u32 data_segs_in;
  2589  	__u32 segs_out;
  2590  	__u32 data_segs_out;
  2591  	__u32 lost_out;
  2592  	__u32 sacked_out;
  2593  	__u32 sk_txhash;
  2594  	__u64 bytes_received;
  2595  	__u64 bytes_acked;
  2596  };
  2597  
  2598  /* Definitions for bpf_sock_ops_cb_flags */
  2599  #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
  2600  #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
  2601  #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
  2602  #define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7		/* Mask of all currently
  2603  							 * supported cb flags
  2604  							 */
  2605  
  2606  /* List of known BPF sock_ops operators.
  2607   * New entries can only be added at the end
  2608   */
  2609  enum {
  2610  	BPF_SOCK_OPS_VOID,
  2611  	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
  2612  					 * -1 if default value should be used
  2613  					 */
  2614  	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
  2615  					 * window (in packets) or -1 if default
  2616  					 * value should be used
  2617  					 */
  2618  	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
  2619  					 * active connection is initialized
  2620  					 */
  2621  	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
  2622  						 * active connection is
  2623  						 * established
  2624  						 */
  2625  	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
  2626  						 * passive connection is
  2627  						 * established
  2628  						 */
  2629  	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
  2630  					 * needs ECN
  2631  					 */
  2632  	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
  2633  					 * based on the path and may be
  2634  					 * dependent on the congestion control
  2635  					 * algorithm. In general it indicates
  2636  					 * a congestion threshold. RTTs above
  2637  					 * this indicate congestion
  2638  					 */
  2639  	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
  2640  					 * Arg1: value of icsk_retransmits
  2641  					 * Arg2: value of icsk_rto
  2642  					 * Arg3: whether RTO has expired
  2643  					 */
  2644  	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
  2645  					 * Arg1: sequence number of 1st byte
  2646  					 * Arg2: # segments
  2647  					 * Arg3: return value of
  2648  					 *       tcp_transmit_skb (0 => success)
  2649  					 */
  2650  	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
  2651  					 * Arg1: old_state
  2652  					 * Arg2: new_state
  2653  					 */
  2654  	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
  2655  					 * socket transition to LISTEN state.
  2656  					 */
  2657  };
  2658  
  2659  /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
  2660   * changes between the TCP and BPF versions. Ideally this should never happen.
  2661   * If it does, we need to add code to convert them before calling
  2662   * the BPF sock_ops function.
  2663   */
  2664  enum {
  2665  	BPF_TCP_ESTABLISHED = 1,
  2666  	BPF_TCP_SYN_SENT,
  2667  	BPF_TCP_SYN_RECV,
  2668  	BPF_TCP_FIN_WAIT1,
  2669  	BPF_TCP_FIN_WAIT2,
  2670  	BPF_TCP_TIME_WAIT,
  2671  	BPF_TCP_CLOSE,
  2672  	BPF_TCP_CLOSE_WAIT,
  2673  	BPF_TCP_LAST_ACK,
  2674  	BPF_TCP_LISTEN,
  2675  	BPF_TCP_CLOSING,	/* Now a valid state */
  2676  	BPF_TCP_NEW_SYN_RECV,
  2677  
  2678  	BPF_TCP_MAX_STATES	/* Leave at the end! */
  2679  };
  2680  
  2681  #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
  2682  #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
  2683  
  2684  struct bpf_perf_event_value {
  2685  	__u64 counter;
  2686  	__u64 enabled;
  2687  	__u64 running;
  2688  };
  2689  
  2690  #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
  2691  #define BPF_DEVCG_ACC_READ	(1ULL << 1)
  2692  #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
  2693  
  2694  #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
  2695  #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
  2696  
  2697  struct bpf_cgroup_dev_ctx {
  2698  	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
  2699  	__u32 access_type;
  2700  	__u32 major;
  2701  	__u32 minor;
  2702  };
  2703  
  2704  struct bpf_raw_tracepoint_args {
  2705  	__u64 args[0];
  2706  };
  2707  
  2708  /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
  2709   * OUTPUT:  Do lookup from egress perspective; default is ingress
  2710   */
  2711  #define BPF_FIB_LOOKUP_DIRECT  BIT(0)
  2712  #define BPF_FIB_LOOKUP_OUTPUT  BIT(1)
  2713  
  2714  enum {
  2715  	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
  2716  	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
  2717  	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
  2718  	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
  2719  	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
  2720  	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
  2721  	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
  2722  	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
  2723  	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
  2724  };
  2725  
  2726  struct bpf_fib_lookup {
  2727  	/* input:  network family for lookup (AF_INET, AF_INET6)
  2728  	 * output: network family of egress nexthop
  2729  	 */
  2730  	__u8	family;
  2731  
  2732  	/* set if lookup is to consider L4 data - e.g., FIB rules */
  2733  	__u8	l4_protocol;
  2734  	__be16	sport;
  2735  	__be16	dport;
  2736  
  2737  	/* total length of packet from network header - used for MTU check */
  2738  	__u16	tot_len;
  2739  
  2740  	/* input: L3 device index for lookup
  2741  	 * output: device index from FIB lookup
  2742  	 */
  2743  	__u32	ifindex;
  2744  
  2745  	union {
  2746  		/* inputs to lookup */
  2747  		__u8	tos;		/* AF_INET  */
  2748  		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
  2749  
  2750  		/* output: metric of fib result (IPv4/IPv6 only) */
  2751  		__u32	rt_metric;
  2752  	};
  2753  
  2754  	union {
  2755  		__be32		ipv4_src;
  2756  		__u32		ipv6_src[4];  /* in6_addr; network order */
  2757  	};
  2758  
  2759  	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
  2760  	 * network header. output: bpf_fib_lookup sets to gateway address
  2761  	 * if FIB lookup returns gateway route
  2762  	 */
  2763  	union {
  2764  		__be32		ipv4_dst;
  2765  		__u32		ipv6_dst[4];  /* in6_addr; network order */
  2766  	};
  2767  
  2768  	/* output */
  2769  	__be16	h_vlan_proto;
  2770  	__be16	h_vlan_TCI;
  2771  	__u8	smac[6];     /* ETH_ALEN */
  2772  	__u8	dmac[6];     /* ETH_ALEN */
  2773  };
  2774  
  2775  enum bpf_task_fd_type {
  2776  	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
  2777  	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
  2778  	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
  2779  	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
  2780  	BPF_FD_TYPE_UPROBE,		/* filename + offset */
  2781  	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
  2782  };
  2783  
  2784  #endif /* __LINUX_BPF_H__ */