github.com/looshlee/beatles@v0.0.0-20220727174639-742810ab631c/bpf/include/linux/perf_event.h (about) 1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <linux/type_mapper.h> 18 #include <linux/ioctl.h> 19 20 /* 21 * User-space ABI bits: 22 */ 23 24 /* 25 * attr.type 26 */ 27 enum perf_type_id { 28 PERF_TYPE_HARDWARE = 0, 29 PERF_TYPE_SOFTWARE = 1, 30 PERF_TYPE_TRACEPOINT = 2, 31 PERF_TYPE_HW_CACHE = 3, 32 PERF_TYPE_RAW = 4, 33 PERF_TYPE_BREAKPOINT = 5, 34 35 PERF_TYPE_MAX, /* non-ABI */ 36 }; 37 38 /* 39 * Generalized performance event event_id types, used by the 40 * attr.event_id parameter of the sys_perf_event_open() 41 * syscall: 42 */ 43 enum perf_hw_id { 44 /* 45 * Common hardware events, generalized by the kernel: 46 */ 47 PERF_COUNT_HW_CPU_CYCLES = 0, 48 PERF_COUNT_HW_INSTRUCTIONS = 1, 49 PERF_COUNT_HW_CACHE_REFERENCES = 2, 50 PERF_COUNT_HW_CACHE_MISSES = 3, 51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 52 PERF_COUNT_HW_BRANCH_MISSES = 5, 53 PERF_COUNT_HW_BUS_CYCLES = 6, 54 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 55 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 56 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 57 58 PERF_COUNT_HW_MAX, /* non-ABI */ 59 }; 60 61 /* 62 * Generalized hardware cache events: 63 * 64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 65 * { read, write, prefetch } x 66 * { accesses, misses } 67 */ 68 enum perf_hw_cache_id { 69 PERF_COUNT_HW_CACHE_L1D = 0, 70 PERF_COUNT_HW_CACHE_L1I = 1, 71 PERF_COUNT_HW_CACHE_LL = 2, 72 PERF_COUNT_HW_CACHE_DTLB = 3, 73 PERF_COUNT_HW_CACHE_ITLB = 4, 74 PERF_COUNT_HW_CACHE_BPU = 5, 75 PERF_COUNT_HW_CACHE_NODE = 6, 76 77 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 78 }; 79 80 enum perf_hw_cache_op_id { 81 PERF_COUNT_HW_CACHE_OP_READ = 0, 82 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 83 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 84 85 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 86 }; 87 88 enum perf_hw_cache_op_result_id { 89 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 90 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 91 92 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 93 }; 94 95 /* 96 * Special "software" events provided by the kernel, even if the hardware 97 * does not support performance events. These events measure various 98 * physical and sw events of the kernel (and allow the profiling of them as 99 * well): 100 */ 101 enum perf_sw_ids { 102 PERF_COUNT_SW_CPU_CLOCK = 0, 103 PERF_COUNT_SW_TASK_CLOCK = 1, 104 PERF_COUNT_SW_PAGE_FAULTS = 2, 105 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 106 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 107 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 108 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 109 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 110 PERF_COUNT_SW_EMULATION_FAULTS = 8, 111 PERF_COUNT_SW_DUMMY = 9, 112 PERF_COUNT_SW_BPF_OUTPUT = 10, 113 114 PERF_COUNT_SW_MAX, /* non-ABI */ 115 }; 116 117 /* 118 * Bits that can be set in attr.sample_type to request information 119 * in the overflow packets. 120 */ 121 enum perf_event_sample_format { 122 PERF_SAMPLE_IP = 1U << 0, 123 PERF_SAMPLE_TID = 1U << 1, 124 PERF_SAMPLE_TIME = 1U << 2, 125 PERF_SAMPLE_ADDR = 1U << 3, 126 PERF_SAMPLE_READ = 1U << 4, 127 PERF_SAMPLE_CALLCHAIN = 1U << 5, 128 PERF_SAMPLE_ID = 1U << 6, 129 PERF_SAMPLE_CPU = 1U << 7, 130 PERF_SAMPLE_PERIOD = 1U << 8, 131 PERF_SAMPLE_STREAM_ID = 1U << 9, 132 PERF_SAMPLE_RAW = 1U << 10, 133 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 134 PERF_SAMPLE_REGS_USER = 1U << 12, 135 PERF_SAMPLE_STACK_USER = 1U << 13, 136 PERF_SAMPLE_WEIGHT = 1U << 14, 137 PERF_SAMPLE_DATA_SRC = 1U << 15, 138 PERF_SAMPLE_IDENTIFIER = 1U << 16, 139 PERF_SAMPLE_TRANSACTION = 1U << 17, 140 PERF_SAMPLE_REGS_INTR = 1U << 18, 141 142 PERF_SAMPLE_MAX = 1U << 19, /* non-ABI */ 143 }; 144 145 /* 146 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 147 * 148 * If the user does not pass priv level information via branch_sample_type, 149 * the kernel uses the event's priv level. Branch and event priv levels do 150 * not have to match. Branch priv level is checked for permissions. 151 * 152 * The branch types can be combined, however BRANCH_ANY covers all types 153 * of branches and therefore it supersedes all the other types. 154 */ 155 enum perf_branch_sample_type_shift { 156 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */ 157 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */ 158 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */ 159 160 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */ 161 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */ 162 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */ 163 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */ 164 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */ 165 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */ 166 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */ 167 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */ 168 169 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */ 170 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */ 171 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */ 172 173 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */ 174 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */ 175 176 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */ 177 }; 178 179 enum perf_branch_sample_type { 180 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT, 181 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT, 182 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT, 183 184 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT, 185 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT, 186 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT, 187 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT, 188 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT, 189 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT, 190 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT, 191 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT, 192 193 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT, 194 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT, 195 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT, 196 197 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT, 198 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT, 199 200 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT, 201 }; 202 203 #define PERF_SAMPLE_BRANCH_PLM_ALL \ 204 (PERF_SAMPLE_BRANCH_USER|\ 205 PERF_SAMPLE_BRANCH_KERNEL|\ 206 PERF_SAMPLE_BRANCH_HV) 207 208 /* 209 * Values to determine ABI of the registers dump. 210 */ 211 enum perf_sample_regs_abi { 212 PERF_SAMPLE_REGS_ABI_NONE = 0, 213 PERF_SAMPLE_REGS_ABI_32 = 1, 214 PERF_SAMPLE_REGS_ABI_64 = 2, 215 }; 216 217 /* 218 * Values for the memory transaction event qualifier, mostly for 219 * abort events. Multiple bits can be set. 220 */ 221 enum { 222 PERF_TXN_ELISION = (1 << 0), /* From elision */ 223 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ 224 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ 225 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */ 226 PERF_TXN_RETRY = (1 << 4), /* Retry possible */ 227 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ 228 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ 229 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ 230 231 PERF_TXN_MAX = (1 << 8), /* non-ABI */ 232 233 /* bits 32..63 are reserved for the abort code */ 234 235 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), 236 PERF_TXN_ABORT_SHIFT = 32, 237 }; 238 239 /* 240 * The format of the data returned by read() on a perf event fd, 241 * as specified by attr.read_format: 242 * 243 * struct read_format { 244 * { u64 value; 245 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 246 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 247 * { u64 id; } && PERF_FORMAT_ID 248 * } && !PERF_FORMAT_GROUP 249 * 250 * { u64 nr; 251 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 252 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 253 * { u64 value; 254 * { u64 id; } && PERF_FORMAT_ID 255 * } cntr[nr]; 256 * } && PERF_FORMAT_GROUP 257 * }; 258 */ 259 enum perf_event_read_format { 260 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 261 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 262 PERF_FORMAT_ID = 1U << 2, 263 PERF_FORMAT_GROUP = 1U << 3, 264 265 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 266 }; 267 268 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 269 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 270 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 271 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */ 272 /* add: sample_stack_user */ 273 #define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */ 274 #define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */ 275 276 /* 277 * Hardware event_id to monitor via a performance monitoring event: 278 */ 279 struct perf_event_attr { 280 281 /* 282 * Major type: hardware/software/tracepoint/etc. 283 */ 284 __u32 type; 285 286 /* 287 * Size of the attr structure, for fwd/bwd compat. 288 */ 289 __u32 size; 290 291 /* 292 * Type specific configuration information. 293 */ 294 __u64 config; 295 296 union { 297 __u64 sample_period; 298 __u64 sample_freq; 299 }; 300 301 __u64 sample_type; 302 __u64 read_format; 303 304 __u64 disabled : 1, /* off by default */ 305 inherit : 1, /* children inherit it */ 306 pinned : 1, /* must always be on PMU */ 307 exclusive : 1, /* only group on PMU */ 308 exclude_user : 1, /* don't count user */ 309 exclude_kernel : 1, /* ditto kernel */ 310 exclude_hv : 1, /* ditto hypervisor */ 311 exclude_idle : 1, /* don't count when idle */ 312 mmap : 1, /* include mmap data */ 313 comm : 1, /* include comm data */ 314 freq : 1, /* use freq, not period */ 315 inherit_stat : 1, /* per task counts */ 316 enable_on_exec : 1, /* next exec enables */ 317 task : 1, /* trace fork/exit */ 318 watermark : 1, /* wakeup_watermark */ 319 /* 320 * precise_ip: 321 * 322 * 0 - SAMPLE_IP can have arbitrary skid 323 * 1 - SAMPLE_IP must have constant skid 324 * 2 - SAMPLE_IP requested to have 0 skid 325 * 3 - SAMPLE_IP must have 0 skid 326 * 327 * See also PERF_RECORD_MISC_EXACT_IP 328 */ 329 precise_ip : 2, /* skid constraint */ 330 mmap_data : 1, /* non-exec mmap data */ 331 sample_id_all : 1, /* sample_type all events */ 332 333 exclude_host : 1, /* don't count in host */ 334 exclude_guest : 1, /* don't count in guest */ 335 336 exclude_callchain_kernel : 1, /* exclude kernel callchains */ 337 exclude_callchain_user : 1, /* exclude user callchains */ 338 mmap2 : 1, /* include mmap with inode data */ 339 comm_exec : 1, /* flag comm events that are due to an exec */ 340 use_clockid : 1, /* use @clockid for time fields */ 341 context_switch : 1, /* context switch data */ 342 write_backward : 1, /* Write ring buffer from end to beginning */ 343 __reserved_1 : 36; 344 345 union { 346 __u32 wakeup_events; /* wakeup every n events */ 347 __u32 wakeup_watermark; /* bytes before wakeup */ 348 }; 349 350 __u32 bp_type; 351 union { 352 __u64 bp_addr; 353 __u64 config1; /* extension of config */ 354 }; 355 union { 356 __u64 bp_len; 357 __u64 config2; /* extension of config1 */ 358 }; 359 __u64 branch_sample_type; /* enum perf_branch_sample_type */ 360 361 /* 362 * Defines set of user regs to dump on samples. 363 * See asm/perf_regs.h for details. 364 */ 365 __u64 sample_regs_user; 366 367 /* 368 * Defines size of the user stack to dump on samples. 369 */ 370 __u32 sample_stack_user; 371 372 __s32 clockid; 373 /* 374 * Defines set of regs to dump for each sample 375 * state captured on: 376 * - precise = 0: PMU interrupt 377 * - precise > 0: sampled instruction 378 * 379 * See asm/perf_regs.h for details. 380 */ 381 __u64 sample_regs_intr; 382 383 /* 384 * Wakeup watermark for AUX area 385 */ 386 __u32 aux_watermark; 387 __u32 __reserved_2; /* align to __u64 */ 388 }; 389 390 #define perf_flags(attr) (*(&(attr)->read_format + 1)) 391 392 /* 393 * Ioctls that can be done on a perf event fd: 394 */ 395 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 396 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 397 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 398 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 399 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 400 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 401 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 402 #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *) 403 #define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32) 404 #define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32) 405 406 enum perf_event_ioc_flags { 407 PERF_IOC_FLAG_GROUP = 1U << 0, 408 }; 409 410 /* 411 * Structure of the page that can be mapped via mmap 412 */ 413 struct perf_event_mmap_page { 414 __u32 version; /* version number of this structure */ 415 __u32 compat_version; /* lowest version this is compat with */ 416 417 /* 418 * Bits needed to read the hw events in user-space. 419 * 420 * u32 seq, time_mult, time_shift, index, width; 421 * u64 count, enabled, running; 422 * u64 cyc, time_offset; 423 * s64 pmc = 0; 424 * 425 * do { 426 * seq = pc->lock; 427 * barrier() 428 * 429 * enabled = pc->time_enabled; 430 * running = pc->time_running; 431 * 432 * if (pc->cap_usr_time && enabled != running) { 433 * cyc = rdtsc(); 434 * time_offset = pc->time_offset; 435 * time_mult = pc->time_mult; 436 * time_shift = pc->time_shift; 437 * } 438 * 439 * index = pc->index; 440 * count = pc->offset; 441 * if (pc->cap_user_rdpmc && index) { 442 * width = pc->pmc_width; 443 * pmc = rdpmc(index - 1); 444 * } 445 * 446 * barrier(); 447 * } while (pc->lock != seq); 448 * 449 * NOTE: for obvious reason this only works on self-monitoring 450 * processes. 451 */ 452 __u32 lock; /* seqlock for synchronization */ 453 __u32 index; /* hardware event identifier */ 454 __s64 offset; /* add to hardware event value */ 455 __u64 time_enabled; /* time event active */ 456 __u64 time_running; /* time event on cpu */ 457 union { 458 __u64 capabilities; 459 struct { 460 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ 461 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ 462 463 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ 464 cap_user_time : 1, /* The time_* fields are used */ 465 cap_user_time_zero : 1, /* The time_zero field is used */ 466 cap_____res : 59; 467 }; 468 }; 469 470 /* 471 * If cap_user_rdpmc this field provides the bit-width of the value 472 * read using the rdpmc() or equivalent instruction. This can be used 473 * to sign extend the result like: 474 * 475 * pmc <<= 64 - width; 476 * pmc >>= 64 - width; // signed shift right 477 * count += pmc; 478 */ 479 __u16 pmc_width; 480 481 /* 482 * If cap_usr_time the below fields can be used to compute the time 483 * delta since time_enabled (in ns) using rdtsc or similar. 484 * 485 * u64 quot, rem; 486 * u64 delta; 487 * 488 * quot = (cyc >> time_shift); 489 * rem = cyc & (((u64)1 << time_shift) - 1); 490 * delta = time_offset + quot * time_mult + 491 * ((rem * time_mult) >> time_shift); 492 * 493 * Where time_offset,time_mult,time_shift and cyc are read in the 494 * seqcount loop described above. This delta can then be added to 495 * enabled and possible running (if index), improving the scaling: 496 * 497 * enabled += delta; 498 * if (index) 499 * running += delta; 500 * 501 * quot = count / running; 502 * rem = count % running; 503 * count = quot * enabled + (rem * enabled) / running; 504 */ 505 __u16 time_shift; 506 __u32 time_mult; 507 __u64 time_offset; 508 /* 509 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated 510 * from sample timestamps. 511 * 512 * time = timestamp - time_zero; 513 * quot = time / time_mult; 514 * rem = time % time_mult; 515 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; 516 * 517 * And vice versa: 518 * 519 * quot = cyc >> time_shift; 520 * rem = cyc & (((u64)1 << time_shift) - 1); 521 * timestamp = time_zero + quot * time_mult + 522 * ((rem * time_mult) >> time_shift); 523 */ 524 __u64 time_zero; 525 __u32 size; /* Header size up to __reserved[] fields. */ 526 527 /* 528 * Hole for extension of the self monitor capabilities 529 */ 530 531 __u8 __reserved[118*8+4]; /* align to 1k. */ 532 533 /* 534 * Control data for the mmap() data buffer. 535 * 536 * User-space reading the @data_head value should issue an smp_rmb(), 537 * after reading this value. 538 * 539 * When the mapping is PROT_WRITE the @data_tail value should be 540 * written by userspace to reflect the last read data, after issueing 541 * an smp_mb() to separate the data read from the ->data_tail store. 542 * In this case the kernel will not over-write unread data. 543 * 544 * See perf_output_put_handle() for the data ordering. 545 * 546 * data_{offset,size} indicate the location and size of the perf record 547 * buffer within the mmapped area. 548 */ 549 __u64 data_head; /* head in the data section */ 550 __u64 data_tail; /* user-space written tail */ 551 __u64 data_offset; /* where the buffer starts */ 552 __u64 data_size; /* data buffer size */ 553 554 /* 555 * AUX area is defined by aux_{offset,size} fields that should be set 556 * by the userspace, so that 557 * 558 * aux_offset >= data_offset + data_size 559 * 560 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size. 561 * 562 * Ring buffer pointers aux_{head,tail} have the same semantics as 563 * data_{head,tail} and same ordering rules apply. 564 */ 565 __u64 aux_head; 566 __u64 aux_tail; 567 __u64 aux_offset; 568 __u64 aux_size; 569 }; 570 571 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 572 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 573 #define PERF_RECORD_MISC_KERNEL (1 << 0) 574 #define PERF_RECORD_MISC_USER (2 << 0) 575 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 576 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 577 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 578 579 /* 580 * Indicates that /proc/PID/maps parsing are truncated by time out. 581 */ 582 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12) 583 /* 584 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on 585 * different events so can reuse the same bit position. 586 * Ditto PERF_RECORD_MISC_SWITCH_OUT. 587 */ 588 #define PERF_RECORD_MISC_MMAP_DATA (1 << 13) 589 #define PERF_RECORD_MISC_COMM_EXEC (1 << 13) 590 #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13) 591 /* 592 * Indicates that the content of PERF_SAMPLE_IP points to 593 * the actual instruction that triggered the event. See also 594 * perf_event_attr::precise_ip. 595 */ 596 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 597 /* 598 * Reserve the last bit to indicate some extended misc field 599 */ 600 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 601 602 struct perf_event_header { 603 __u32 type; 604 __u16 misc; 605 __u16 size; 606 }; 607 608 enum perf_event_type { 609 610 /* 611 * If perf_event_attr.sample_id_all is set then all event types will 612 * have the sample_type selected fields related to where/when 613 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, 614 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed 615 * just after the perf_event_header and the fields already present for 616 * the existing fields, i.e. at the end of the payload. That way a newer 617 * perf.data file will be supported by older perf tools, with these new 618 * optional fields being ignored. 619 * 620 * struct sample_id { 621 * { u32 pid, tid; } && PERF_SAMPLE_TID 622 * { u64 time; } && PERF_SAMPLE_TIME 623 * { u64 id; } && PERF_SAMPLE_ID 624 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 625 * { u32 cpu, res; } && PERF_SAMPLE_CPU 626 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 627 * } && perf_event_attr::sample_id_all 628 * 629 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The 630 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed 631 * relative to header.size. 632 */ 633 634 /* 635 * The MMAP events record the PROT_EXEC mappings so that we can 636 * correlate userspace IPs to code. They have the following structure: 637 * 638 * struct { 639 * struct perf_event_header header; 640 * 641 * u32 pid, tid; 642 * u64 addr; 643 * u64 len; 644 * u64 pgoff; 645 * char filename[]; 646 * struct sample_id sample_id; 647 * }; 648 */ 649 PERF_RECORD_MMAP = 1, 650 651 /* 652 * struct { 653 * struct perf_event_header header; 654 * u64 id; 655 * u64 lost; 656 * struct sample_id sample_id; 657 * }; 658 */ 659 PERF_RECORD_LOST = 2, 660 661 /* 662 * struct { 663 * struct perf_event_header header; 664 * 665 * u32 pid, tid; 666 * char comm[]; 667 * struct sample_id sample_id; 668 * }; 669 */ 670 PERF_RECORD_COMM = 3, 671 672 /* 673 * struct { 674 * struct perf_event_header header; 675 * u32 pid, ppid; 676 * u32 tid, ptid; 677 * u64 time; 678 * struct sample_id sample_id; 679 * }; 680 */ 681 PERF_RECORD_EXIT = 4, 682 683 /* 684 * struct { 685 * struct perf_event_header header; 686 * u64 time; 687 * u64 id; 688 * u64 stream_id; 689 * struct sample_id sample_id; 690 * }; 691 */ 692 PERF_RECORD_THROTTLE = 5, 693 PERF_RECORD_UNTHROTTLE = 6, 694 695 /* 696 * struct { 697 * struct perf_event_header header; 698 * u32 pid, ppid; 699 * u32 tid, ptid; 700 * u64 time; 701 * struct sample_id sample_id; 702 * }; 703 */ 704 PERF_RECORD_FORK = 7, 705 706 /* 707 * struct { 708 * struct perf_event_header header; 709 * u32 pid, tid; 710 * 711 * struct read_format values; 712 * struct sample_id sample_id; 713 * }; 714 */ 715 PERF_RECORD_READ = 8, 716 717 /* 718 * struct { 719 * struct perf_event_header header; 720 * 721 * # 722 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. 723 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position 724 * # is fixed relative to header. 725 * # 726 * 727 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 728 * { u64 ip; } && PERF_SAMPLE_IP 729 * { u32 pid, tid; } && PERF_SAMPLE_TID 730 * { u64 time; } && PERF_SAMPLE_TIME 731 * { u64 addr; } && PERF_SAMPLE_ADDR 732 * { u64 id; } && PERF_SAMPLE_ID 733 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 734 * { u32 cpu, res; } && PERF_SAMPLE_CPU 735 * { u64 period; } && PERF_SAMPLE_PERIOD 736 * 737 * { struct read_format values; } && PERF_SAMPLE_READ 738 * 739 * { u64 nr, 740 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 741 * 742 * # 743 * # The RAW record below is opaque data wrt the ABI 744 * # 745 * # That is, the ABI doesn't make any promises wrt to 746 * # the stability of its content, it may vary depending 747 * # on event, hardware, kernel version and phase of 748 * # the moon. 749 * # 750 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 751 * # 752 * 753 * { u32 size; 754 * char data[size];}&& PERF_SAMPLE_RAW 755 * 756 * { u64 nr; 757 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 758 * 759 * { u64 abi; # enum perf_sample_regs_abi 760 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER 761 * 762 * { u64 size; 763 * char data[size]; 764 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER 765 * 766 * { u64 weight; } && PERF_SAMPLE_WEIGHT 767 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC 768 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION 769 * { u64 abi; # enum perf_sample_regs_abi 770 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR 771 * }; 772 */ 773 PERF_RECORD_SAMPLE = 9, 774 775 /* 776 * The MMAP2 records are an augmented version of MMAP, they add 777 * maj, min, ino numbers to be used to uniquely identify each mapping 778 * 779 * struct { 780 * struct perf_event_header header; 781 * 782 * u32 pid, tid; 783 * u64 addr; 784 * u64 len; 785 * u64 pgoff; 786 * u32 maj; 787 * u32 min; 788 * u64 ino; 789 * u64 ino_generation; 790 * u32 prot, flags; 791 * char filename[]; 792 * struct sample_id sample_id; 793 * }; 794 */ 795 PERF_RECORD_MMAP2 = 10, 796 797 /* 798 * Records that new data landed in the AUX buffer part. 799 * 800 * struct { 801 * struct perf_event_header header; 802 * 803 * u64 aux_offset; 804 * u64 aux_size; 805 * u64 flags; 806 * struct sample_id sample_id; 807 * }; 808 */ 809 PERF_RECORD_AUX = 11, 810 811 /* 812 * Indicates that instruction trace has started 813 * 814 * struct { 815 * struct perf_event_header header; 816 * u32 pid; 817 * u32 tid; 818 * }; 819 */ 820 PERF_RECORD_ITRACE_START = 12, 821 822 /* 823 * Records the dropped/lost sample number. 824 * 825 * struct { 826 * struct perf_event_header header; 827 * 828 * u64 lost; 829 * struct sample_id sample_id; 830 * }; 831 */ 832 PERF_RECORD_LOST_SAMPLES = 13, 833 834 /* 835 * Records a context switch in or out (flagged by 836 * PERF_RECORD_MISC_SWITCH_OUT). See also 837 * PERF_RECORD_SWITCH_CPU_WIDE. 838 * 839 * struct { 840 * struct perf_event_header header; 841 * struct sample_id sample_id; 842 * }; 843 */ 844 PERF_RECORD_SWITCH = 14, 845 846 /* 847 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and 848 * next_prev_tid that are the next (switching out) or previous 849 * (switching in) pid/tid. 850 * 851 * struct { 852 * struct perf_event_header header; 853 * u32 next_prev_pid; 854 * u32 next_prev_tid; 855 * struct sample_id sample_id; 856 * }; 857 */ 858 PERF_RECORD_SWITCH_CPU_WIDE = 15, 859 860 PERF_RECORD_MAX, /* non-ABI */ 861 }; 862 863 #define PERF_MAX_STACK_DEPTH 127 864 #define PERF_MAX_CONTEXTS_PER_STACK 8 865 866 enum perf_callchain_context { 867 PERF_CONTEXT_HV = (__u64)-32, 868 PERF_CONTEXT_KERNEL = (__u64)-128, 869 PERF_CONTEXT_USER = (__u64)-512, 870 871 PERF_CONTEXT_GUEST = (__u64)-2048, 872 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 873 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 874 875 PERF_CONTEXT_MAX = (__u64)-4095, 876 }; 877 878 /** 879 * PERF_RECORD_AUX::flags bits 880 */ 881 #define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */ 882 #define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */ 883 884 #define PERF_FLAG_FD_NO_GROUP (1UL << 0) 885 #define PERF_FLAG_FD_OUTPUT (1UL << 1) 886 #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */ 887 #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ 888 889 union perf_mem_data_src { 890 __u64 val; 891 struct { 892 __u64 mem_op:5, /* type of opcode */ 893 mem_lvl:14, /* memory hierarchy level */ 894 mem_snoop:5, /* snoop mode */ 895 mem_lock:2, /* lock instr */ 896 mem_dtlb:7, /* tlb access */ 897 mem_rsvd:31; 898 }; 899 }; 900 901 /* type of opcode (load/store/prefetch,code) */ 902 #define PERF_MEM_OP_NA 0x01 /* not available */ 903 #define PERF_MEM_OP_LOAD 0x02 /* load instruction */ 904 #define PERF_MEM_OP_STORE 0x04 /* store instruction */ 905 #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */ 906 #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */ 907 #define PERF_MEM_OP_SHIFT 0 908 909 /* memory hierarchy (memory level, hit or miss) */ 910 #define PERF_MEM_LVL_NA 0x01 /* not available */ 911 #define PERF_MEM_LVL_HIT 0x02 /* hit level */ 912 #define PERF_MEM_LVL_MISS 0x04 /* miss level */ 913 #define PERF_MEM_LVL_L1 0x08 /* L1 */ 914 #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */ 915 #define PERF_MEM_LVL_L2 0x20 /* L2 */ 916 #define PERF_MEM_LVL_L3 0x40 /* L3 */ 917 #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */ 918 #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */ 919 #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */ 920 #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */ 921 #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */ 922 #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ 923 #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ 924 #define PERF_MEM_LVL_SHIFT 5 925 926 /* snoop mode */ 927 #define PERF_MEM_SNOOP_NA 0x01 /* not available */ 928 #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */ 929 #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */ 930 #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */ 931 #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */ 932 #define PERF_MEM_SNOOP_SHIFT 19 933 934 /* locked instruction */ 935 #define PERF_MEM_LOCK_NA 0x01 /* not available */ 936 #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */ 937 #define PERF_MEM_LOCK_SHIFT 24 938 939 /* TLB access */ 940 #define PERF_MEM_TLB_NA 0x01 /* not available */ 941 #define PERF_MEM_TLB_HIT 0x02 /* hit level */ 942 #define PERF_MEM_TLB_MISS 0x04 /* miss level */ 943 #define PERF_MEM_TLB_L1 0x08 /* L1 */ 944 #define PERF_MEM_TLB_L2 0x10 /* L2 */ 945 #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/ 946 #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */ 947 #define PERF_MEM_TLB_SHIFT 26 948 949 #define PERF_MEM_S(a, s) \ 950 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) 951 952 /* 953 * single taken branch record layout: 954 * 955 * from: source instruction (may not always be a branch insn) 956 * to: branch target 957 * mispred: branch target was mispredicted 958 * predicted: branch target was predicted 959 * 960 * support for mispred, predicted is optional. In case it 961 * is not supported mispred = predicted = 0. 962 * 963 * in_tx: running in a hardware transaction 964 * abort: aborting a hardware transaction 965 * cycles: cycles from last branch (or 0 if not supported) 966 */ 967 struct perf_branch_entry { 968 __u64 from; 969 __u64 to; 970 __u64 mispred:1, /* target mispredicted */ 971 predicted:1,/* target predicted */ 972 in_tx:1, /* in transaction */ 973 abort:1, /* transaction abort */ 974 cycles:16, /* cycle count to last branch */ 975 reserved:44; 976 }; 977 978 #endif /* _LINUX_PERF_EVENT_H */