github.com/looshlee/beatles@v0.0.0-20220727174639-742810ab631c/bpf/include/linux/perf_event.h (about)

     1  /*
     2   * Performance events:
     3   *
     4   *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
     5   *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
     6   *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
     7   *
     8   * Data type definitions, declarations, prototypes.
     9   *
    10   *    Started by: Thomas Gleixner and Ingo Molnar
    11   *
    12   * For licencing details see kernel-base/COPYING
    13   */
    14  #ifndef _LINUX_PERF_EVENT_H
    15  #define _LINUX_PERF_EVENT_H
    16  
    17  #include <linux/type_mapper.h>
    18  #include <linux/ioctl.h>
    19  
    20  /*
    21   * User-space ABI bits:
    22   */
    23  
    24  /*
    25   * attr.type
    26   */
    27  enum perf_type_id {
    28  	PERF_TYPE_HARDWARE			= 0,
    29  	PERF_TYPE_SOFTWARE			= 1,
    30  	PERF_TYPE_TRACEPOINT			= 2,
    31  	PERF_TYPE_HW_CACHE			= 3,
    32  	PERF_TYPE_RAW				= 4,
    33  	PERF_TYPE_BREAKPOINT			= 5,
    34  
    35  	PERF_TYPE_MAX,				/* non-ABI */
    36  };
    37  
    38  /*
    39   * Generalized performance event event_id types, used by the
    40   * attr.event_id parameter of the sys_perf_event_open()
    41   * syscall:
    42   */
    43  enum perf_hw_id {
    44  	/*
    45  	 * Common hardware events, generalized by the kernel:
    46  	 */
    47  	PERF_COUNT_HW_CPU_CYCLES		= 0,
    48  	PERF_COUNT_HW_INSTRUCTIONS		= 1,
    49  	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
    50  	PERF_COUNT_HW_CACHE_MISSES		= 3,
    51  	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
    52  	PERF_COUNT_HW_BRANCH_MISSES		= 5,
    53  	PERF_COUNT_HW_BUS_CYCLES		= 6,
    54  	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
    55  	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
    56  	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
    57  
    58  	PERF_COUNT_HW_MAX,			/* non-ABI */
    59  };
    60  
    61  /*
    62   * Generalized hardware cache events:
    63   *
    64   *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
    65   *       { read, write, prefetch } x
    66   *       { accesses, misses }
    67   */
    68  enum perf_hw_cache_id {
    69  	PERF_COUNT_HW_CACHE_L1D			= 0,
    70  	PERF_COUNT_HW_CACHE_L1I			= 1,
    71  	PERF_COUNT_HW_CACHE_LL			= 2,
    72  	PERF_COUNT_HW_CACHE_DTLB		= 3,
    73  	PERF_COUNT_HW_CACHE_ITLB		= 4,
    74  	PERF_COUNT_HW_CACHE_BPU			= 5,
    75  	PERF_COUNT_HW_CACHE_NODE		= 6,
    76  
    77  	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
    78  };
    79  
    80  enum perf_hw_cache_op_id {
    81  	PERF_COUNT_HW_CACHE_OP_READ		= 0,
    82  	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
    83  	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
    84  
    85  	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
    86  };
    87  
    88  enum perf_hw_cache_op_result_id {
    89  	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
    90  	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
    91  
    92  	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
    93  };
    94  
    95  /*
    96   * Special "software" events provided by the kernel, even if the hardware
    97   * does not support performance events. These events measure various
    98   * physical and sw events of the kernel (and allow the profiling of them as
    99   * well):
   100   */
   101  enum perf_sw_ids {
   102  	PERF_COUNT_SW_CPU_CLOCK			= 0,
   103  	PERF_COUNT_SW_TASK_CLOCK		= 1,
   104  	PERF_COUNT_SW_PAGE_FAULTS		= 2,
   105  	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
   106  	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
   107  	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
   108  	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
   109  	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
   110  	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
   111  	PERF_COUNT_SW_DUMMY			= 9,
   112  	PERF_COUNT_SW_BPF_OUTPUT		= 10,
   113  
   114  	PERF_COUNT_SW_MAX,			/* non-ABI */
   115  };
   116  
   117  /*
   118   * Bits that can be set in attr.sample_type to request information
   119   * in the overflow packets.
   120   */
   121  enum perf_event_sample_format {
   122  	PERF_SAMPLE_IP				= 1U << 0,
   123  	PERF_SAMPLE_TID				= 1U << 1,
   124  	PERF_SAMPLE_TIME			= 1U << 2,
   125  	PERF_SAMPLE_ADDR			= 1U << 3,
   126  	PERF_SAMPLE_READ			= 1U << 4,
   127  	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
   128  	PERF_SAMPLE_ID				= 1U << 6,
   129  	PERF_SAMPLE_CPU				= 1U << 7,
   130  	PERF_SAMPLE_PERIOD			= 1U << 8,
   131  	PERF_SAMPLE_STREAM_ID			= 1U << 9,
   132  	PERF_SAMPLE_RAW				= 1U << 10,
   133  	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
   134  	PERF_SAMPLE_REGS_USER			= 1U << 12,
   135  	PERF_SAMPLE_STACK_USER			= 1U << 13,
   136  	PERF_SAMPLE_WEIGHT			= 1U << 14,
   137  	PERF_SAMPLE_DATA_SRC			= 1U << 15,
   138  	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
   139  	PERF_SAMPLE_TRANSACTION			= 1U << 17,
   140  	PERF_SAMPLE_REGS_INTR			= 1U << 18,
   141  
   142  	PERF_SAMPLE_MAX = 1U << 19,		/* non-ABI */
   143  };
   144  
   145  /*
   146   * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
   147   *
   148   * If the user does not pass priv level information via branch_sample_type,
   149   * the kernel uses the event's priv level. Branch and event priv levels do
   150   * not have to match. Branch priv level is checked for permissions.
   151   *
   152   * The branch types can be combined, however BRANCH_ANY covers all types
   153   * of branches and therefore it supersedes all the other types.
   154   */
   155  enum perf_branch_sample_type_shift {
   156  	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
   157  	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
   158  	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
   159  
   160  	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
   161  	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
   162  	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
   163  	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
   164  	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
   165  	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
   166  	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
   167  	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
   168  
   169  	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
   170  	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
   171  	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
   172  
   173  	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
   174  	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
   175  
   176  	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
   177  };
   178  
   179  enum perf_branch_sample_type {
   180  	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
   181  	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
   182  	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
   183  
   184  	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
   185  	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
   186  	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
   187  	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
   188  	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
   189  	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
   190  	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
   191  	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
   192  
   193  	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
   194  	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
   195  	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
   196  
   197  	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
   198  	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
   199  
   200  	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
   201  };
   202  
   203  #define PERF_SAMPLE_BRANCH_PLM_ALL \
   204  	(PERF_SAMPLE_BRANCH_USER|\
   205  	 PERF_SAMPLE_BRANCH_KERNEL|\
   206  	 PERF_SAMPLE_BRANCH_HV)
   207  
   208  /*
   209   * Values to determine ABI of the registers dump.
   210   */
   211  enum perf_sample_regs_abi {
   212  	PERF_SAMPLE_REGS_ABI_NONE	= 0,
   213  	PERF_SAMPLE_REGS_ABI_32		= 1,
   214  	PERF_SAMPLE_REGS_ABI_64		= 2,
   215  };
   216  
   217  /*
   218   * Values for the memory transaction event qualifier, mostly for
   219   * abort events. Multiple bits can be set.
   220   */
   221  enum {
   222  	PERF_TXN_ELISION        = (1 << 0), /* From elision */
   223  	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
   224  	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
   225  	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
   226  	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
   227  	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
   228  	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
   229  	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
   230  
   231  	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
   232  
   233  	/* bits 32..63 are reserved for the abort code */
   234  
   235  	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
   236  	PERF_TXN_ABORT_SHIFT = 32,
   237  };
   238  
   239  /*
   240   * The format of the data returned by read() on a perf event fd,
   241   * as specified by attr.read_format:
   242   *
   243   * struct read_format {
   244   *	{ u64		value;
   245   *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
   246   *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
   247   *	  { u64		id;           } && PERF_FORMAT_ID
   248   *	} && !PERF_FORMAT_GROUP
   249   *
   250   *	{ u64		nr;
   251   *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
   252   *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
   253   *	  { u64		value;
   254   *	    { u64	id;           } && PERF_FORMAT_ID
   255   *	  }		cntr[nr];
   256   *	} && PERF_FORMAT_GROUP
   257   * };
   258   */
   259  enum perf_event_read_format {
   260  	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
   261  	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
   262  	PERF_FORMAT_ID				= 1U << 2,
   263  	PERF_FORMAT_GROUP			= 1U << 3,
   264  
   265  	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
   266  };
   267  
   268  #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
   269  #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
   270  #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
   271  #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
   272  					/* add: sample_stack_user */
   273  #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
   274  #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
   275  
   276  /*
   277   * Hardware event_id to monitor via a performance monitoring event:
   278   */
   279  struct perf_event_attr {
   280  
   281  	/*
   282  	 * Major type: hardware/software/tracepoint/etc.
   283  	 */
   284  	__u32			type;
   285  
   286  	/*
   287  	 * Size of the attr structure, for fwd/bwd compat.
   288  	 */
   289  	__u32			size;
   290  
   291  	/*
   292  	 * Type specific configuration information.
   293  	 */
   294  	__u64			config;
   295  
   296  	union {
   297  		__u64		sample_period;
   298  		__u64		sample_freq;
   299  	};
   300  
   301  	__u64			sample_type;
   302  	__u64			read_format;
   303  
   304  	__u64			disabled       :  1, /* off by default        */
   305  				inherit	       :  1, /* children inherit it   */
   306  				pinned	       :  1, /* must always be on PMU */
   307  				exclusive      :  1, /* only group on PMU     */
   308  				exclude_user   :  1, /* don't count user      */
   309  				exclude_kernel :  1, /* ditto kernel          */
   310  				exclude_hv     :  1, /* ditto hypervisor      */
   311  				exclude_idle   :  1, /* don't count when idle */
   312  				mmap           :  1, /* include mmap data     */
   313  				comm	       :  1, /* include comm data     */
   314  				freq           :  1, /* use freq, not period  */
   315  				inherit_stat   :  1, /* per task counts       */
   316  				enable_on_exec :  1, /* next exec enables     */
   317  				task           :  1, /* trace fork/exit       */
   318  				watermark      :  1, /* wakeup_watermark      */
   319  				/*
   320  				 * precise_ip:
   321  				 *
   322  				 *  0 - SAMPLE_IP can have arbitrary skid
   323  				 *  1 - SAMPLE_IP must have constant skid
   324  				 *  2 - SAMPLE_IP requested to have 0 skid
   325  				 *  3 - SAMPLE_IP must have 0 skid
   326  				 *
   327  				 *  See also PERF_RECORD_MISC_EXACT_IP
   328  				 */
   329  				precise_ip     :  2, /* skid constraint       */
   330  				mmap_data      :  1, /* non-exec mmap data    */
   331  				sample_id_all  :  1, /* sample_type all events */
   332  
   333  				exclude_host   :  1, /* don't count in host   */
   334  				exclude_guest  :  1, /* don't count in guest  */
   335  
   336  				exclude_callchain_kernel : 1, /* exclude kernel callchains */
   337  				exclude_callchain_user   : 1, /* exclude user callchains */
   338  				mmap2          :  1, /* include mmap with inode data     */
   339  				comm_exec      :  1, /* flag comm events that are due to an exec */
   340  				use_clockid    :  1, /* use @clockid for time fields */
   341  				context_switch :  1, /* context switch data */
   342  				write_backward :  1, /* Write ring buffer from end to beginning */
   343  				__reserved_1   : 36;
   344  
   345  	union {
   346  		__u32		wakeup_events;	  /* wakeup every n events */
   347  		__u32		wakeup_watermark; /* bytes before wakeup   */
   348  	};
   349  
   350  	__u32			bp_type;
   351  	union {
   352  		__u64		bp_addr;
   353  		__u64		config1; /* extension of config */
   354  	};
   355  	union {
   356  		__u64		bp_len;
   357  		__u64		config2; /* extension of config1 */
   358  	};
   359  	__u64	branch_sample_type; /* enum perf_branch_sample_type */
   360  
   361  	/*
   362  	 * Defines set of user regs to dump on samples.
   363  	 * See asm/perf_regs.h for details.
   364  	 */
   365  	__u64	sample_regs_user;
   366  
   367  	/*
   368  	 * Defines size of the user stack to dump on samples.
   369  	 */
   370  	__u32	sample_stack_user;
   371  
   372  	__s32	clockid;
   373  	/*
   374  	 * Defines set of regs to dump for each sample
   375  	 * state captured on:
   376  	 *  - precise = 0: PMU interrupt
   377  	 *  - precise > 0: sampled instruction
   378  	 *
   379  	 * See asm/perf_regs.h for details.
   380  	 */
   381  	__u64	sample_regs_intr;
   382  
   383  	/*
   384  	 * Wakeup watermark for AUX area
   385  	 */
   386  	__u32	aux_watermark;
   387  	__u32	__reserved_2;	/* align to __u64 */
   388  };
   389  
   390  #define perf_flags(attr)	(*(&(attr)->read_format + 1))
   391  
   392  /*
   393   * Ioctls that can be done on a perf event fd:
   394   */
   395  #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
   396  #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
   397  #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
   398  #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
   399  #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
   400  #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
   401  #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
   402  #define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
   403  #define PERF_EVENT_IOC_SET_BPF		_IOW('$', 8, __u32)
   404  #define PERF_EVENT_IOC_PAUSE_OUTPUT	_IOW('$', 9, __u32)
   405  
   406  enum perf_event_ioc_flags {
   407  	PERF_IOC_FLAG_GROUP		= 1U << 0,
   408  };
   409  
   410  /*
   411   * Structure of the page that can be mapped via mmap
   412   */
   413  struct perf_event_mmap_page {
   414  	__u32	version;		/* version number of this structure */
   415  	__u32	compat_version;		/* lowest version this is compat with */
   416  
   417  	/*
   418  	 * Bits needed to read the hw events in user-space.
   419  	 *
   420  	 *   u32 seq, time_mult, time_shift, index, width;
   421  	 *   u64 count, enabled, running;
   422  	 *   u64 cyc, time_offset;
   423  	 *   s64 pmc = 0;
   424  	 *
   425  	 *   do {
   426  	 *     seq = pc->lock;
   427  	 *     barrier()
   428  	 *
   429  	 *     enabled = pc->time_enabled;
   430  	 *     running = pc->time_running;
   431  	 *
   432  	 *     if (pc->cap_usr_time && enabled != running) {
   433  	 *       cyc = rdtsc();
   434  	 *       time_offset = pc->time_offset;
   435  	 *       time_mult   = pc->time_mult;
   436  	 *       time_shift  = pc->time_shift;
   437  	 *     }
   438  	 *
   439  	 *     index = pc->index;
   440  	 *     count = pc->offset;
   441  	 *     if (pc->cap_user_rdpmc && index) {
   442  	 *       width = pc->pmc_width;
   443  	 *       pmc = rdpmc(index - 1);
   444  	 *     }
   445  	 *
   446  	 *     barrier();
   447  	 *   } while (pc->lock != seq);
   448  	 *
   449  	 * NOTE: for obvious reason this only works on self-monitoring
   450  	 *       processes.
   451  	 */
   452  	__u32	lock;			/* seqlock for synchronization */
   453  	__u32	index;			/* hardware event identifier */
   454  	__s64	offset;			/* add to hardware event value */
   455  	__u64	time_enabled;		/* time event active */
   456  	__u64	time_running;		/* time event on cpu */
   457  	union {
   458  		__u64	capabilities;
   459  		struct {
   460  			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
   461  				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
   462  
   463  				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
   464  				cap_user_time		: 1, /* The time_* fields are used */
   465  				cap_user_time_zero	: 1, /* The time_zero field is used */
   466  				cap_____res		: 59;
   467  		};
   468  	};
   469  
   470  	/*
   471  	 * If cap_user_rdpmc this field provides the bit-width of the value
   472  	 * read using the rdpmc() or equivalent instruction. This can be used
   473  	 * to sign extend the result like:
   474  	 *
   475  	 *   pmc <<= 64 - width;
   476  	 *   pmc >>= 64 - width; // signed shift right
   477  	 *   count += pmc;
   478  	 */
   479  	__u16	pmc_width;
   480  
   481  	/*
   482  	 * If cap_usr_time the below fields can be used to compute the time
   483  	 * delta since time_enabled (in ns) using rdtsc or similar.
   484  	 *
   485  	 *   u64 quot, rem;
   486  	 *   u64 delta;
   487  	 *
   488  	 *   quot = (cyc >> time_shift);
   489  	 *   rem = cyc & (((u64)1 << time_shift) - 1);
   490  	 *   delta = time_offset + quot * time_mult +
   491  	 *              ((rem * time_mult) >> time_shift);
   492  	 *
   493  	 * Where time_offset,time_mult,time_shift and cyc are read in the
   494  	 * seqcount loop described above. This delta can then be added to
   495  	 * enabled and possible running (if index), improving the scaling:
   496  	 *
   497  	 *   enabled += delta;
   498  	 *   if (index)
   499  	 *     running += delta;
   500  	 *
   501  	 *   quot = count / running;
   502  	 *   rem  = count % running;
   503  	 *   count = quot * enabled + (rem * enabled) / running;
   504  	 */
   505  	__u16	time_shift;
   506  	__u32	time_mult;
   507  	__u64	time_offset;
   508  	/*
   509  	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
   510  	 * from sample timestamps.
   511  	 *
   512  	 *   time = timestamp - time_zero;
   513  	 *   quot = time / time_mult;
   514  	 *   rem  = time % time_mult;
   515  	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
   516  	 *
   517  	 * And vice versa:
   518  	 *
   519  	 *   quot = cyc >> time_shift;
   520  	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
   521  	 *   timestamp = time_zero + quot * time_mult +
   522  	 *               ((rem * time_mult) >> time_shift);
   523  	 */
   524  	__u64	time_zero;
   525  	__u32	size;			/* Header size up to __reserved[] fields. */
   526  
   527  		/*
   528  		 * Hole for extension of the self monitor capabilities
   529  		 */
   530  
   531  	__u8	__reserved[118*8+4];	/* align to 1k. */
   532  
   533  	/*
   534  	 * Control data for the mmap() data buffer.
   535  	 *
   536  	 * User-space reading the @data_head value should issue an smp_rmb(),
   537  	 * after reading this value.
   538  	 *
   539  	 * When the mapping is PROT_WRITE the @data_tail value should be
   540  	 * written by userspace to reflect the last read data, after issueing
   541  	 * an smp_mb() to separate the data read from the ->data_tail store.
   542  	 * In this case the kernel will not over-write unread data.
   543  	 *
   544  	 * See perf_output_put_handle() for the data ordering.
   545  	 *
   546  	 * data_{offset,size} indicate the location and size of the perf record
   547  	 * buffer within the mmapped area.
   548  	 */
   549  	__u64   data_head;		/* head in the data section */
   550  	__u64	data_tail;		/* user-space written tail */
   551  	__u64	data_offset;		/* where the buffer starts */
   552  	__u64	data_size;		/* data buffer size */
   553  
   554  	/*
   555  	 * AUX area is defined by aux_{offset,size} fields that should be set
   556  	 * by the userspace, so that
   557  	 *
   558  	 *   aux_offset >= data_offset + data_size
   559  	 *
   560  	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
   561  	 *
   562  	 * Ring buffer pointers aux_{head,tail} have the same semantics as
   563  	 * data_{head,tail} and same ordering rules apply.
   564  	 */
   565  	__u64	aux_head;
   566  	__u64	aux_tail;
   567  	__u64	aux_offset;
   568  	__u64	aux_size;
   569  };
   570  
   571  #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
   572  #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
   573  #define PERF_RECORD_MISC_KERNEL			(1 << 0)
   574  #define PERF_RECORD_MISC_USER			(2 << 0)
   575  #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
   576  #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
   577  #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
   578  
   579  /*
   580   * Indicates that /proc/PID/maps parsing are truncated by time out.
   581   */
   582  #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
   583  /*
   584   * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
   585   * different events so can reuse the same bit position.
   586   * Ditto PERF_RECORD_MISC_SWITCH_OUT.
   587   */
   588  #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
   589  #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
   590  #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
   591  /*
   592   * Indicates that the content of PERF_SAMPLE_IP points to
   593   * the actual instruction that triggered the event. See also
   594   * perf_event_attr::precise_ip.
   595   */
   596  #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
   597  /*
   598   * Reserve the last bit to indicate some extended misc field
   599   */
   600  #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
   601  
   602  struct perf_event_header {
   603  	__u32	type;
   604  	__u16	misc;
   605  	__u16	size;
   606  };
   607  
   608  enum perf_event_type {
   609  
   610  	/*
   611  	 * If perf_event_attr.sample_id_all is set then all event types will
   612  	 * have the sample_type selected fields related to where/when
   613  	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
   614  	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
   615  	 * just after the perf_event_header and the fields already present for
   616  	 * the existing fields, i.e. at the end of the payload. That way a newer
   617  	 * perf.data file will be supported by older perf tools, with these new
   618  	 * optional fields being ignored.
   619  	 *
   620  	 * struct sample_id {
   621  	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
   622  	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
   623  	 * 	{ u64			id;       } && PERF_SAMPLE_ID
   624  	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
   625  	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
   626  	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
   627  	 * } && perf_event_attr::sample_id_all
   628  	 *
   629  	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
   630  	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
   631  	 * relative to header.size.
   632  	 */
   633  
   634  	/*
   635  	 * The MMAP events record the PROT_EXEC mappings so that we can
   636  	 * correlate userspace IPs to code. They have the following structure:
   637  	 *
   638  	 * struct {
   639  	 *	struct perf_event_header	header;
   640  	 *
   641  	 *	u32				pid, tid;
   642  	 *	u64				addr;
   643  	 *	u64				len;
   644  	 *	u64				pgoff;
   645  	 *	char				filename[];
   646  	 * 	struct sample_id		sample_id;
   647  	 * };
   648  	 */
   649  	PERF_RECORD_MMAP			= 1,
   650  
   651  	/*
   652  	 * struct {
   653  	 *	struct perf_event_header	header;
   654  	 *	u64				id;
   655  	 *	u64				lost;
   656  	 * 	struct sample_id		sample_id;
   657  	 * };
   658  	 */
   659  	PERF_RECORD_LOST			= 2,
   660  
   661  	/*
   662  	 * struct {
   663  	 *	struct perf_event_header	header;
   664  	 *
   665  	 *	u32				pid, tid;
   666  	 *	char				comm[];
   667  	 * 	struct sample_id		sample_id;
   668  	 * };
   669  	 */
   670  	PERF_RECORD_COMM			= 3,
   671  
   672  	/*
   673  	 * struct {
   674  	 *	struct perf_event_header	header;
   675  	 *	u32				pid, ppid;
   676  	 *	u32				tid, ptid;
   677  	 *	u64				time;
   678  	 * 	struct sample_id		sample_id;
   679  	 * };
   680  	 */
   681  	PERF_RECORD_EXIT			= 4,
   682  
   683  	/*
   684  	 * struct {
   685  	 *	struct perf_event_header	header;
   686  	 *	u64				time;
   687  	 *	u64				id;
   688  	 *	u64				stream_id;
   689  	 * 	struct sample_id		sample_id;
   690  	 * };
   691  	 */
   692  	PERF_RECORD_THROTTLE			= 5,
   693  	PERF_RECORD_UNTHROTTLE			= 6,
   694  
   695  	/*
   696  	 * struct {
   697  	 *	struct perf_event_header	header;
   698  	 *	u32				pid, ppid;
   699  	 *	u32				tid, ptid;
   700  	 *	u64				time;
   701  	 * 	struct sample_id		sample_id;
   702  	 * };
   703  	 */
   704  	PERF_RECORD_FORK			= 7,
   705  
   706  	/*
   707  	 * struct {
   708  	 *	struct perf_event_header	header;
   709  	 *	u32				pid, tid;
   710  	 *
   711  	 *	struct read_format		values;
   712  	 * 	struct sample_id		sample_id;
   713  	 * };
   714  	 */
   715  	PERF_RECORD_READ			= 8,
   716  
   717  	/*
   718  	 * struct {
   719  	 *	struct perf_event_header	header;
   720  	 *
   721  	 *	#
   722  	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
   723  	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
   724  	 *	# is fixed relative to header.
   725  	 *	#
   726  	 *
   727  	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
   728  	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
   729  	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
   730  	 *	{ u64			time;     } && PERF_SAMPLE_TIME
   731  	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
   732  	 *	{ u64			id;	  } && PERF_SAMPLE_ID
   733  	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
   734  	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
   735  	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
   736  	 *
   737  	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
   738  	 *
   739  	 *	{ u64			nr,
   740  	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
   741  	 *
   742  	 *	#
   743  	 *	# The RAW record below is opaque data wrt the ABI
   744  	 *	#
   745  	 *	# That is, the ABI doesn't make any promises wrt to
   746  	 *	# the stability of its content, it may vary depending
   747  	 *	# on event, hardware, kernel version and phase of
   748  	 *	# the moon.
   749  	 *	#
   750  	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
   751  	 *	#
   752  	 *
   753  	 *	{ u32			size;
   754  	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
   755  	 *
   756  	 *	{ u64                   nr;
   757  	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
   758  	 *
   759  	 * 	{ u64			abi; # enum perf_sample_regs_abi
   760  	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
   761  	 *
   762  	 * 	{ u64			size;
   763  	 * 	  char			data[size];
   764  	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
   765  	 *
   766  	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
   767  	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
   768  	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
   769  	 *	{ u64			abi; # enum perf_sample_regs_abi
   770  	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
   771  	 * };
   772  	 */
   773  	PERF_RECORD_SAMPLE			= 9,
   774  
   775  	/*
   776  	 * The MMAP2 records are an augmented version of MMAP, they add
   777  	 * maj, min, ino numbers to be used to uniquely identify each mapping
   778  	 *
   779  	 * struct {
   780  	 *	struct perf_event_header	header;
   781  	 *
   782  	 *	u32				pid, tid;
   783  	 *	u64				addr;
   784  	 *	u64				len;
   785  	 *	u64				pgoff;
   786  	 *	u32				maj;
   787  	 *	u32				min;
   788  	 *	u64				ino;
   789  	 *	u64				ino_generation;
   790  	 *	u32				prot, flags;
   791  	 *	char				filename[];
   792  	 * 	struct sample_id		sample_id;
   793  	 * };
   794  	 */
   795  	PERF_RECORD_MMAP2			= 10,
   796  
   797  	/*
   798  	 * Records that new data landed in the AUX buffer part.
   799  	 *
   800  	 * struct {
   801  	 * 	struct perf_event_header	header;
   802  	 *
   803  	 * 	u64				aux_offset;
   804  	 * 	u64				aux_size;
   805  	 *	u64				flags;
   806  	 * 	struct sample_id		sample_id;
   807  	 * };
   808  	 */
   809  	PERF_RECORD_AUX				= 11,
   810  
   811  	/*
   812  	 * Indicates that instruction trace has started
   813  	 *
   814  	 * struct {
   815  	 *	struct perf_event_header	header;
   816  	 *	u32				pid;
   817  	 *	u32				tid;
   818  	 * };
   819  	 */
   820  	PERF_RECORD_ITRACE_START		= 12,
   821  
   822  	/*
   823  	 * Records the dropped/lost sample number.
   824  	 *
   825  	 * struct {
   826  	 *	struct perf_event_header	header;
   827  	 *
   828  	 *	u64				lost;
   829  	 *	struct sample_id		sample_id;
   830  	 * };
   831  	 */
   832  	PERF_RECORD_LOST_SAMPLES		= 13,
   833  
   834  	/*
   835  	 * Records a context switch in or out (flagged by
   836  	 * PERF_RECORD_MISC_SWITCH_OUT). See also
   837  	 * PERF_RECORD_SWITCH_CPU_WIDE.
   838  	 *
   839  	 * struct {
   840  	 *	struct perf_event_header	header;
   841  	 *	struct sample_id		sample_id;
   842  	 * };
   843  	 */
   844  	PERF_RECORD_SWITCH			= 14,
   845  
   846  	/*
   847  	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
   848  	 * next_prev_tid that are the next (switching out) or previous
   849  	 * (switching in) pid/tid.
   850  	 *
   851  	 * struct {
   852  	 *	struct perf_event_header	header;
   853  	 *	u32				next_prev_pid;
   854  	 *	u32				next_prev_tid;
   855  	 *	struct sample_id		sample_id;
   856  	 * };
   857  	 */
   858  	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
   859  
   860  	PERF_RECORD_MAX,			/* non-ABI */
   861  };
   862  
   863  #define PERF_MAX_STACK_DEPTH		127
   864  #define PERF_MAX_CONTEXTS_PER_STACK	  8
   865  
   866  enum perf_callchain_context {
   867  	PERF_CONTEXT_HV			= (__u64)-32,
   868  	PERF_CONTEXT_KERNEL		= (__u64)-128,
   869  	PERF_CONTEXT_USER		= (__u64)-512,
   870  
   871  	PERF_CONTEXT_GUEST		= (__u64)-2048,
   872  	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
   873  	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
   874  
   875  	PERF_CONTEXT_MAX		= (__u64)-4095,
   876  };
   877  
   878  /**
   879   * PERF_RECORD_AUX::flags bits
   880   */
   881  #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
   882  #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
   883  
   884  #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
   885  #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
   886  #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
   887  #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
   888  
   889  union perf_mem_data_src {
   890  	__u64 val;
   891  	struct {
   892  		__u64   mem_op:5,	/* type of opcode */
   893  			mem_lvl:14,	/* memory hierarchy level */
   894  			mem_snoop:5,	/* snoop mode */
   895  			mem_lock:2,	/* lock instr */
   896  			mem_dtlb:7,	/* tlb access */
   897  			mem_rsvd:31;
   898  	};
   899  };
   900  
   901  /* type of opcode (load/store/prefetch,code) */
   902  #define PERF_MEM_OP_NA		0x01 /* not available */
   903  #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
   904  #define PERF_MEM_OP_STORE	0x04 /* store instruction */
   905  #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
   906  #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
   907  #define PERF_MEM_OP_SHIFT	0
   908  
   909  /* memory hierarchy (memory level, hit or miss) */
   910  #define PERF_MEM_LVL_NA		0x01  /* not available */
   911  #define PERF_MEM_LVL_HIT	0x02  /* hit level */
   912  #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
   913  #define PERF_MEM_LVL_L1		0x08  /* L1 */
   914  #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
   915  #define PERF_MEM_LVL_L2		0x20  /* L2 */
   916  #define PERF_MEM_LVL_L3		0x40  /* L3 */
   917  #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
   918  #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
   919  #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
   920  #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
   921  #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
   922  #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
   923  #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
   924  #define PERF_MEM_LVL_SHIFT	5
   925  
   926  /* snoop mode */
   927  #define PERF_MEM_SNOOP_NA	0x01 /* not available */
   928  #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
   929  #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
   930  #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
   931  #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
   932  #define PERF_MEM_SNOOP_SHIFT	19
   933  
   934  /* locked instruction */
   935  #define PERF_MEM_LOCK_NA	0x01 /* not available */
   936  #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
   937  #define PERF_MEM_LOCK_SHIFT	24
   938  
   939  /* TLB access */
   940  #define PERF_MEM_TLB_NA		0x01 /* not available */
   941  #define PERF_MEM_TLB_HIT	0x02 /* hit level */
   942  #define PERF_MEM_TLB_MISS	0x04 /* miss level */
   943  #define PERF_MEM_TLB_L1		0x08 /* L1 */
   944  #define PERF_MEM_TLB_L2		0x10 /* L2 */
   945  #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
   946  #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
   947  #define PERF_MEM_TLB_SHIFT	26
   948  
   949  #define PERF_MEM_S(a, s) \
   950  	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
   951  
   952  /*
   953   * single taken branch record layout:
   954   *
   955   *      from: source instruction (may not always be a branch insn)
   956   *        to: branch target
   957   *   mispred: branch target was mispredicted
   958   * predicted: branch target was predicted
   959   *
   960   * support for mispred, predicted is optional. In case it
   961   * is not supported mispred = predicted = 0.
   962   *
   963   *     in_tx: running in a hardware transaction
   964   *     abort: aborting a hardware transaction
   965   *    cycles: cycles from last branch (or 0 if not supported)
   966   */
   967  struct perf_branch_entry {
   968  	__u64	from;
   969  	__u64	to;
   970  	__u64	mispred:1,  /* target mispredicted */
   971  		predicted:1,/* target predicted */
   972  		in_tx:1,    /* in transaction */
   973  		abort:1,    /* transaction abort */
   974  		cycles:16,  /* cycle count to last branch */
   975  		reserved:44;
   976  };
   977  
   978  #endif /* _LINUX_PERF_EVENT_H */