github.com/lovishpuri/go-40569/src@v0.0.0-20230519171745-f8623e7c56cf/crypto/rsa/rsa.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017. 6 // 7 // RSA is a single, fundamental operation that is used in this package to 8 // implement either public-key encryption or public-key signatures. 9 // 10 // The original specification for encryption and signatures with RSA is PKCS #1 11 // and the terms "RSA encryption" and "RSA signatures" by default refer to 12 // PKCS #1 version 1.5. However, that specification has flaws and new designs 13 // should use version 2, usually called by just OAEP and PSS, where 14 // possible. 15 // 16 // Two sets of interfaces are included in this package. When a more abstract 17 // interface isn't necessary, there are functions for encrypting/decrypting 18 // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract 19 // over the public key primitive, the PrivateKey type implements the 20 // Decrypter and Signer interfaces from the crypto package. 21 // 22 // Operations in this package are implemented using constant-time algorithms, 23 // except for [GenerateKey], [PrivateKey.Precompute], and [PrivateKey.Validate]. 24 // Every other operation only leaks the bit size of the involved values, which 25 // all depend on the selected key size. 26 package rsa 27 28 import ( 29 "crypto" 30 "crypto/internal/bigmod" 31 "crypto/internal/boring" 32 "crypto/internal/boring/bbig" 33 "crypto/internal/randutil" 34 "crypto/rand" 35 "crypto/subtle" 36 "encoding/binary" 37 "errors" 38 "hash" 39 "io" 40 "math" 41 "math/big" 42 ) 43 44 var bigOne = big.NewInt(1) 45 46 // A PublicKey represents the public part of an RSA key. 47 type PublicKey struct { 48 N *big.Int // modulus 49 E int // public exponent 50 } 51 52 // Any methods implemented on PublicKey might need to also be implemented on 53 // PrivateKey, as the latter embeds the former and will expose its methods. 54 55 // Size returns the modulus size in bytes. Raw signatures and ciphertexts 56 // for or by this public key will have the same size. 57 func (pub *PublicKey) Size() int { 58 return (pub.N.BitLen() + 7) / 8 59 } 60 61 // Equal reports whether pub and x have the same value. 62 func (pub *PublicKey) Equal(x crypto.PublicKey) bool { 63 xx, ok := x.(*PublicKey) 64 if !ok { 65 return false 66 } 67 return bigIntEqual(pub.N, xx.N) && pub.E == xx.E 68 } 69 70 // OAEPOptions is an interface for passing options to OAEP decryption using the 71 // crypto.Decrypter interface. 72 type OAEPOptions struct { 73 // Hash is the hash function that will be used when generating the mask. 74 Hash crypto.Hash 75 76 // MGFHash is the hash function used for MGF1. 77 // If zero, Hash is used instead. 78 MGFHash crypto.Hash 79 80 // Label is an arbitrary byte string that must be equal to the value 81 // used when encrypting. 82 Label []byte 83 } 84 85 var ( 86 errPublicModulus = errors.New("crypto/rsa: missing public modulus") 87 errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") 88 errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") 89 ) 90 91 // checkPub sanity checks the public key before we use it. 92 // We require pub.E to fit into a 32-bit integer so that we 93 // do not have different behavior depending on whether 94 // int is 32 or 64 bits. See also 95 // https://www.imperialviolet.org/2012/03/16/rsae.html. 96 func checkPub(pub *PublicKey) error { 97 if pub.N == nil { 98 return errPublicModulus 99 } 100 if pub.E < 2 { 101 return errPublicExponentSmall 102 } 103 if pub.E > 1<<31-1 { 104 return errPublicExponentLarge 105 } 106 return nil 107 } 108 109 // A PrivateKey represents an RSA key 110 type PrivateKey struct { 111 PublicKey // public part. 112 D *big.Int // private exponent 113 Primes []*big.Int // prime factors of N, has >= 2 elements. 114 115 // Precomputed contains precomputed values that speed up RSA operations, 116 // if available. It must be generated by calling PrivateKey.Precompute and 117 // must not be modified. 118 Precomputed PrecomputedValues 119 } 120 121 // Public returns the public key corresponding to priv. 122 func (priv *PrivateKey) Public() crypto.PublicKey { 123 return &priv.PublicKey 124 } 125 126 // Equal reports whether priv and x have equivalent values. It ignores 127 // Precomputed values. 128 func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { 129 xx, ok := x.(*PrivateKey) 130 if !ok { 131 return false 132 } 133 if !priv.PublicKey.Equal(&xx.PublicKey) || !bigIntEqual(priv.D, xx.D) { 134 return false 135 } 136 if len(priv.Primes) != len(xx.Primes) { 137 return false 138 } 139 for i := range priv.Primes { 140 if !bigIntEqual(priv.Primes[i], xx.Primes[i]) { 141 return false 142 } 143 } 144 return true 145 } 146 147 // bigIntEqual reports whether a and b are equal leaking only their bit length 148 // through timing side-channels. 149 func bigIntEqual(a, b *big.Int) bool { 150 return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 151 } 152 153 // Sign signs digest with priv, reading randomness from rand. If opts is a 154 // *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will 155 // be used. digest must be the result of hashing the input message using 156 // opts.HashFunc(). 157 // 158 // This method implements crypto.Signer, which is an interface to support keys 159 // where the private part is kept in, for example, a hardware module. Common 160 // uses should use the Sign* functions in this package directly. 161 func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { 162 if pssOpts, ok := opts.(*PSSOptions); ok { 163 return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts) 164 } 165 166 return SignPKCS1v15(rand, priv, opts.HashFunc(), digest) 167 } 168 169 // Decrypt decrypts ciphertext with priv. If opts is nil or of type 170 // *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise 171 // opts must have type *OAEPOptions and OAEP decryption is done. 172 func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { 173 if opts == nil { 174 return DecryptPKCS1v15(rand, priv, ciphertext) 175 } 176 177 switch opts := opts.(type) { 178 case *OAEPOptions: 179 if opts.MGFHash == 0 { 180 return decryptOAEP(opts.Hash.New(), opts.Hash.New(), rand, priv, ciphertext, opts.Label) 181 } else { 182 return decryptOAEP(opts.Hash.New(), opts.MGFHash.New(), rand, priv, ciphertext, opts.Label) 183 } 184 185 case *PKCS1v15DecryptOptions: 186 if l := opts.SessionKeyLen; l > 0 { 187 plaintext = make([]byte, l) 188 if _, err := io.ReadFull(rand, plaintext); err != nil { 189 return nil, err 190 } 191 if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { 192 return nil, err 193 } 194 return plaintext, nil 195 } else { 196 return DecryptPKCS1v15(rand, priv, ciphertext) 197 } 198 199 default: 200 return nil, errors.New("crypto/rsa: invalid options for Decrypt") 201 } 202 } 203 204 type PrecomputedValues struct { 205 Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) 206 Qinv *big.Int // Q^-1 mod P 207 208 // CRTValues is used for the 3rd and subsequent primes. Due to a 209 // historical accident, the CRT for the first two primes is handled 210 // differently in PKCS #1 and interoperability is sufficiently 211 // important that we mirror this. 212 // 213 // Deprecated: These values are still filled in by Precompute for 214 // backwards compatibility but are not used. Multi-prime RSA is very rare, 215 // and is implemented by this package without CRT optimizations to limit 216 // complexity. 217 CRTValues []CRTValue 218 219 n, p, q *bigmod.Modulus // moduli for CRT with Montgomery precomputed constants 220 } 221 222 // CRTValue contains the precomputed Chinese remainder theorem values. 223 type CRTValue struct { 224 Exp *big.Int // D mod (prime-1). 225 Coeff *big.Int // R·Coeff ≡ 1 mod Prime. 226 R *big.Int // product of primes prior to this (inc p and q). 227 } 228 229 // Validate performs basic sanity checks on the key. 230 // It returns nil if the key is valid, or else an error describing a problem. 231 func (priv *PrivateKey) Validate() error { 232 if err := checkPub(&priv.PublicKey); err != nil { 233 return err 234 } 235 236 // Check that Πprimes == n. 237 modulus := new(big.Int).Set(bigOne) 238 for _, prime := range priv.Primes { 239 // Any primes ≤ 1 will cause divide-by-zero panics later. 240 if prime.Cmp(bigOne) <= 0 { 241 return errors.New("crypto/rsa: invalid prime value") 242 } 243 modulus.Mul(modulus, prime) 244 } 245 if modulus.Cmp(priv.N) != 0 { 246 return errors.New("crypto/rsa: invalid modulus") 247 } 248 249 // Check that de ≡ 1 mod p-1, for each prime. 250 // This implies that e is coprime to each p-1 as e has a multiplicative 251 // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = 252 // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 253 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. 254 congruence := new(big.Int) 255 de := new(big.Int).SetInt64(int64(priv.E)) 256 de.Mul(de, priv.D) 257 for _, prime := range priv.Primes { 258 pminus1 := new(big.Int).Sub(prime, bigOne) 259 congruence.Mod(de, pminus1) 260 if congruence.Cmp(bigOne) != 0 { 261 return errors.New("crypto/rsa: invalid exponents") 262 } 263 } 264 return nil 265 } 266 267 // GenerateKey generates an RSA keypair of the given bit size using the 268 // random source random (for example, crypto/rand.Reader). 269 func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { 270 return GenerateMultiPrimeKey(random, 2, bits) 271 } 272 273 // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit 274 // size and the given random source. 275 // 276 // Table 1 in "[On the Security of Multi-prime RSA]" suggests maximum numbers of 277 // primes for a given bit size. 278 // 279 // Although the public keys are compatible (actually, indistinguishable) from 280 // the 2-prime case, the private keys are not. Thus it may not be possible to 281 // export multi-prime private keys in certain formats or to subsequently import 282 // them into other code. 283 // 284 // This package does not implement CRT optimizations for multi-prime RSA, so the 285 // keys with more than two primes will have worse performance. 286 // 287 // Deprecated: The use of this function with a number of primes different from 288 // two is not recommended for the above security, compatibility, and performance 289 // reasons. Use GenerateKey instead. 290 // 291 // [On the Security of Multi-prime RSA]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf 292 func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { 293 randutil.MaybeReadByte(random) 294 295 if boring.Enabled && random == boring.RandReader && nprimes == 2 && 296 (bits == 2048 || bits == 3072 || bits == 4096) { 297 bN, bE, bD, bP, bQ, bDp, bDq, bQinv, err := boring.GenerateKeyRSA(bits) 298 if err != nil { 299 return nil, err 300 } 301 N := bbig.Dec(bN) 302 E := bbig.Dec(bE) 303 D := bbig.Dec(bD) 304 P := bbig.Dec(bP) 305 Q := bbig.Dec(bQ) 306 Dp := bbig.Dec(bDp) 307 Dq := bbig.Dec(bDq) 308 Qinv := bbig.Dec(bQinv) 309 e64 := E.Int64() 310 if !E.IsInt64() || int64(int(e64)) != e64 { 311 return nil, errors.New("crypto/rsa: generated key exponent too large") 312 } 313 key := &PrivateKey{ 314 PublicKey: PublicKey{ 315 N: N, 316 E: int(e64), 317 }, 318 D: D, 319 Primes: []*big.Int{P, Q}, 320 Precomputed: PrecomputedValues{ 321 Dp: Dp, 322 Dq: Dq, 323 Qinv: Qinv, 324 CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute 325 n: bigmod.NewModulusFromBig(N), 326 p: bigmod.NewModulusFromBig(P), 327 q: bigmod.NewModulusFromBig(Q), 328 }, 329 } 330 return key, nil 331 } 332 333 priv := new(PrivateKey) 334 priv.E = 65537 335 336 if nprimes < 2 { 337 return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") 338 } 339 340 if bits < 64 { 341 primeLimit := float64(uint64(1) << uint(bits/nprimes)) 342 // pi approximates the number of primes less than primeLimit 343 pi := primeLimit / (math.Log(primeLimit) - 1) 344 // Generated primes start with 11 (in binary) so we can only 345 // use a quarter of them. 346 pi /= 4 347 // Use a factor of two to ensure that key generation terminates 348 // in a reasonable amount of time. 349 pi /= 2 350 if pi <= float64(nprimes) { 351 return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") 352 } 353 } 354 355 primes := make([]*big.Int, nprimes) 356 357 NextSetOfPrimes: 358 for { 359 todo := bits 360 // crypto/rand should set the top two bits in each prime. 361 // Thus each prime has the form 362 // p_i = 2^bitlen(p_i) × 0.11... (in base 2). 363 // And the product is: 364 // P = 2^todo × α 365 // where α is the product of nprimes numbers of the form 0.11... 366 // 367 // If α < 1/2 (which can happen for nprimes > 2), we need to 368 // shift todo to compensate for lost bits: the mean value of 0.11... 369 // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 370 // will give good results. 371 if nprimes >= 7 { 372 todo += (nprimes - 2) / 5 373 } 374 for i := 0; i < nprimes; i++ { 375 var err error 376 primes[i], err = rand.Prime(random, todo/(nprimes-i)) 377 if err != nil { 378 return nil, err 379 } 380 todo -= primes[i].BitLen() 381 } 382 383 // Make sure that primes is pairwise unequal. 384 for i, prime := range primes { 385 for j := 0; j < i; j++ { 386 if prime.Cmp(primes[j]) == 0 { 387 continue NextSetOfPrimes 388 } 389 } 390 } 391 392 n := new(big.Int).Set(bigOne) 393 totient := new(big.Int).Set(bigOne) 394 pminus1 := new(big.Int) 395 for _, prime := range primes { 396 n.Mul(n, prime) 397 pminus1.Sub(prime, bigOne) 398 totient.Mul(totient, pminus1) 399 } 400 if n.BitLen() != bits { 401 // This should never happen for nprimes == 2 because 402 // crypto/rand should set the top two bits in each prime. 403 // For nprimes > 2 we hope it does not happen often. 404 continue NextSetOfPrimes 405 } 406 407 priv.D = new(big.Int) 408 e := big.NewInt(int64(priv.E)) 409 ok := priv.D.ModInverse(e, totient) 410 411 if ok != nil { 412 priv.Primes = primes 413 priv.N = n 414 break 415 } 416 } 417 418 priv.Precompute() 419 return priv, nil 420 } 421 422 // incCounter increments a four byte, big-endian counter. 423 func incCounter(c *[4]byte) { 424 if c[3]++; c[3] != 0 { 425 return 426 } 427 if c[2]++; c[2] != 0 { 428 return 429 } 430 if c[1]++; c[1] != 0 { 431 return 432 } 433 c[0]++ 434 } 435 436 // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function 437 // specified in PKCS #1 v2.1. 438 func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { 439 var counter [4]byte 440 var digest []byte 441 442 done := 0 443 for done < len(out) { 444 hash.Write(seed) 445 hash.Write(counter[0:4]) 446 digest = hash.Sum(digest[:0]) 447 hash.Reset() 448 449 for i := 0; i < len(digest) && done < len(out); i++ { 450 out[done] ^= digest[i] 451 done++ 452 } 453 incCounter(&counter) 454 } 455 } 456 457 // ErrMessageTooLong is returned when attempting to encrypt or sign a message 458 // which is too large for the size of the key. When using SignPSS, this can also 459 // be returned if the size of the salt is too large. 460 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size") 461 462 func encrypt(pub *PublicKey, plaintext []byte) ([]byte, error) { 463 boring.Unreachable() 464 465 N := bigmod.NewModulusFromBig(pub.N) 466 m, err := bigmod.NewNat().SetBytes(plaintext, N) 467 if err != nil { 468 return nil, err 469 } 470 e := intToBytes(pub.E) 471 472 return bigmod.NewNat().Exp(m, e, N).Bytes(N), nil 473 } 474 475 // intToBytes returns i as a big-endian slice of bytes with no leading zeroes, 476 // leaking only the bit size of i through timing side-channels. 477 func intToBytes(i int) []byte { 478 b := make([]byte, 8) 479 binary.BigEndian.PutUint64(b, uint64(i)) 480 for len(b) > 1 && b[0] == 0 { 481 b = b[1:] 482 } 483 return b 484 } 485 486 // EncryptOAEP encrypts the given message with RSA-OAEP. 487 // 488 // OAEP is parameterised by a hash function that is used as a random oracle. 489 // Encryption and decryption of a given message must use the same hash function 490 // and sha256.New() is a reasonable choice. 491 // 492 // The random parameter is used as a source of entropy to ensure that 493 // encrypting the same message twice doesn't result in the same ciphertext. 494 // 495 // The label parameter may contain arbitrary data that will not be encrypted, 496 // but which gives important context to the message. For example, if a given 497 // public key is used to encrypt two types of messages then distinct label 498 // values could be used to ensure that a ciphertext for one purpose cannot be 499 // used for another by an attacker. If not required it can be empty. 500 // 501 // The message must be no longer than the length of the public modulus minus 502 // twice the hash length, minus a further 2. 503 func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { 504 if err := checkPub(pub); err != nil { 505 return nil, err 506 } 507 hash.Reset() 508 k := pub.Size() 509 if len(msg) > k-2*hash.Size()-2 { 510 return nil, ErrMessageTooLong 511 } 512 513 if boring.Enabled && random == boring.RandReader { 514 bkey, err := boringPublicKey(pub) 515 if err != nil { 516 return nil, err 517 } 518 return boring.EncryptRSAOAEP(hash, hash, bkey, msg, label) 519 } 520 boring.UnreachableExceptTests() 521 522 hash.Write(label) 523 lHash := hash.Sum(nil) 524 hash.Reset() 525 526 em := make([]byte, k) 527 seed := em[1 : 1+hash.Size()] 528 db := em[1+hash.Size():] 529 530 copy(db[0:hash.Size()], lHash) 531 db[len(db)-len(msg)-1] = 1 532 copy(db[len(db)-len(msg):], msg) 533 534 _, err := io.ReadFull(random, seed) 535 if err != nil { 536 return nil, err 537 } 538 539 mgf1XOR(db, hash, seed) 540 mgf1XOR(seed, hash, db) 541 542 if boring.Enabled { 543 var bkey *boring.PublicKeyRSA 544 bkey, err = boringPublicKey(pub) 545 if err != nil { 546 return nil, err 547 } 548 return boring.EncryptRSANoPadding(bkey, em) 549 } 550 551 return encrypt(pub, em) 552 } 553 554 // ErrDecryption represents a failure to decrypt a message. 555 // It is deliberately vague to avoid adaptive attacks. 556 var ErrDecryption = errors.New("crypto/rsa: decryption error") 557 558 // ErrVerification represents a failure to verify a signature. 559 // It is deliberately vague to avoid adaptive attacks. 560 var ErrVerification = errors.New("crypto/rsa: verification error") 561 562 // Precompute performs some calculations that speed up private key operations 563 // in the future. 564 func (priv *PrivateKey) Precompute() { 565 if priv.Precomputed.n == nil && len(priv.Primes) == 2 { 566 priv.Precomputed.n = bigmod.NewModulusFromBig(priv.N) 567 priv.Precomputed.p = bigmod.NewModulusFromBig(priv.Primes[0]) 568 priv.Precomputed.q = bigmod.NewModulusFromBig(priv.Primes[1]) 569 } 570 571 // Fill in the backwards-compatibility *big.Int values. 572 if priv.Precomputed.Dp != nil { 573 return 574 } 575 576 priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) 577 priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) 578 579 priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) 580 priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) 581 582 priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) 583 584 r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) 585 priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) 586 for i := 2; i < len(priv.Primes); i++ { 587 prime := priv.Primes[i] 588 values := &priv.Precomputed.CRTValues[i-2] 589 590 values.Exp = new(big.Int).Sub(prime, bigOne) 591 values.Exp.Mod(priv.D, values.Exp) 592 593 values.R = new(big.Int).Set(r) 594 values.Coeff = new(big.Int).ModInverse(r, prime) 595 596 r.Mul(r, prime) 597 } 598 } 599 600 const withCheck = true 601 const noCheck = false 602 603 // decrypt performs an RSA decryption of ciphertext into out. If check is true, 604 // m^e is calculated and compared with ciphertext, in order to defend against 605 // errors in the CRT computation. 606 func decrypt(priv *PrivateKey, ciphertext []byte, check bool) ([]byte, error) { 607 if len(priv.Primes) <= 2 { 608 boring.Unreachable() 609 } 610 611 var ( 612 err error 613 m, c *bigmod.Nat 614 N *bigmod.Modulus 615 t0 = bigmod.NewNat() 616 ) 617 if priv.Precomputed.n == nil { 618 N = bigmod.NewModulusFromBig(priv.N) 619 c, err = bigmod.NewNat().SetBytes(ciphertext, N) 620 if err != nil { 621 return nil, ErrDecryption 622 } 623 m = bigmod.NewNat().Exp(c, priv.D.Bytes(), N) 624 } else { 625 N = priv.Precomputed.n 626 P, Q := priv.Precomputed.p, priv.Precomputed.q 627 Qinv, err := bigmod.NewNat().SetBytes(priv.Precomputed.Qinv.Bytes(), P) 628 if err != nil { 629 return nil, ErrDecryption 630 } 631 c, err = bigmod.NewNat().SetBytes(ciphertext, N) 632 if err != nil { 633 return nil, ErrDecryption 634 } 635 636 // m = c ^ Dp mod p 637 m = bigmod.NewNat().Exp(t0.Mod(c, P), priv.Precomputed.Dp.Bytes(), P) 638 // m2 = c ^ Dq mod q 639 m2 := bigmod.NewNat().Exp(t0.Mod(c, Q), priv.Precomputed.Dq.Bytes(), Q) 640 // m = m - m2 mod p 641 m.Sub(t0.Mod(m2, P), P) 642 // m = m * Qinv mod p 643 m.Mul(Qinv, P) 644 // m = m * q mod N 645 m.ExpandFor(N).Mul(t0.Mod(Q.Nat(), N), N) 646 // m = m + m2 mod N 647 m.Add(m2.ExpandFor(N), N) 648 } 649 650 if check { 651 c1 := bigmod.NewNat().Exp(m, intToBytes(priv.E), N) 652 if c1.Equal(c) != 1 { 653 return nil, ErrDecryption 654 } 655 } 656 657 return m.Bytes(N), nil 658 } 659 660 // DecryptOAEP decrypts ciphertext using RSA-OAEP. 661 // 662 // OAEP is parameterised by a hash function that is used as a random oracle. 663 // Encryption and decryption of a given message must use the same hash function 664 // and sha256.New() is a reasonable choice. 665 // 666 // The random parameter is legacy and ignored, and it can be as nil. 667 // 668 // The label parameter must match the value given when encrypting. See 669 // EncryptOAEP for details. 670 func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { 671 return decryptOAEP(hash, hash, random, priv, ciphertext, label) 672 } 673 674 func decryptOAEP(hash, mgfHash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { 675 if err := checkPub(&priv.PublicKey); err != nil { 676 return nil, err 677 } 678 k := priv.Size() 679 if len(ciphertext) > k || 680 k < hash.Size()*2+2 { 681 return nil, ErrDecryption 682 } 683 684 if boring.Enabled { 685 bkey, err := boringPrivateKey(priv) 686 if err != nil { 687 return nil, err 688 } 689 out, err := boring.DecryptRSAOAEP(hash, mgfHash, bkey, ciphertext, label) 690 if err != nil { 691 return nil, ErrDecryption 692 } 693 return out, nil 694 } 695 696 em, err := decrypt(priv, ciphertext, noCheck) 697 if err != nil { 698 return nil, err 699 } 700 701 hash.Write(label) 702 lHash := hash.Sum(nil) 703 hash.Reset() 704 705 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 706 707 seed := em[1 : hash.Size()+1] 708 db := em[hash.Size()+1:] 709 710 mgf1XOR(seed, mgfHash, db) 711 mgf1XOR(db, mgfHash, seed) 712 713 lHash2 := db[0:hash.Size()] 714 715 // We have to validate the plaintext in constant time in order to avoid 716 // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal 717 // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 718 // v2.0. In J. Kilian, editor, Advances in Cryptology. 719 lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) 720 721 // The remainder of the plaintext must be zero or more 0x00, followed 722 // by 0x01, followed by the message. 723 // lookingForIndex: 1 iff we are still looking for the 0x01 724 // index: the offset of the first 0x01 byte 725 // invalid: 1 iff we saw a non-zero byte before the 0x01. 726 var lookingForIndex, index, invalid int 727 lookingForIndex = 1 728 rest := db[hash.Size():] 729 730 for i := 0; i < len(rest); i++ { 731 equals0 := subtle.ConstantTimeByteEq(rest[i], 0) 732 equals1 := subtle.ConstantTimeByteEq(rest[i], 1) 733 index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) 734 lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) 735 invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) 736 } 737 738 if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { 739 return nil, ErrDecryption 740 } 741 742 return rest[index+1:], nil 743 }