github.com/lovishpuri/go-40569/src@v0.0.0-20230519171745-f8623e7c56cf/go/types/unify.go (about)

     1  // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
     2  
     3  // Copyright 2020 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  // This file implements type unification.
     8  //
     9  // Type unification attempts to make two types x and y structurally
    10  // equivalent by determining the types for a given list of (bound)
    11  // type parameters which may occur within x and y. If x and y are
    12  // structurally different (say []T vs chan T), or conflicting
    13  // types are determined for type parameters, unification fails.
    14  // If unification succeeds, as a side-effect, the types of the
    15  // bound type parameters may be determined.
    16  //
    17  // Unification typically requires multiple calls u.unify(x, y) to
    18  // a given unifier u, with various combinations of types x and y.
    19  // In each call, additional type parameter types may be determined
    20  // as a side effect and recorded in u.
    21  // If a call fails (returns false), unification fails.
    22  //
    23  // In the unification context, structural equivalence of two types
    24  // ignores the difference between a defined type and its underlying
    25  // type if one type is a defined type and the other one is not.
    26  // It also ignores the difference between an (external, unbound)
    27  // type parameter and its core type.
    28  // If two types are not structurally equivalent, they cannot be Go
    29  // identical types. On the other hand, if they are structurally
    30  // equivalent, they may be Go identical or at least assignable, or
    31  // they may be in the type set of a constraint.
    32  // Whether they indeed are identical or assignable is determined
    33  // upon instantiation and function argument passing.
    34  
    35  package types
    36  
    37  import (
    38  	"bytes"
    39  	"fmt"
    40  	"sort"
    41  	"strings"
    42  )
    43  
    44  const (
    45  	// Upper limit for recursion depth. Used to catch infinite recursions
    46  	// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
    47  	unificationDepthLimit = 50
    48  
    49  	// Whether to panic when unificationDepthLimit is reached.
    50  	// If disabled, a recursion depth overflow results in a (quiet)
    51  	// unification failure.
    52  	panicAtUnificationDepthLimit = false // go.dev/issue/59740
    53  
    54  	// If enableCoreTypeUnification is set, unification will consider
    55  	// the core types, if any, of non-local (unbound) type parameters.
    56  	enableCoreTypeUnification = true
    57  
    58  	// If traceInference is set, unification will print a trace of its operation.
    59  	// Interpretation of trace:
    60  	//   x ≡ y    attempt to unify types x and y
    61  	//   p ➞ y    type parameter p is set to type y (p is inferred to be y)
    62  	//   p ⇄ q    type parameters p and q match (p is inferred to be q and vice versa)
    63  	//   x ≢ y    types x and y cannot be unified
    64  	//   [p, q, ...] ➞ [x, y, ...]    mapping from type parameters to types
    65  	traceInference = false
    66  )
    67  
    68  // A unifier maintains a list of type parameters and
    69  // corresponding types inferred for each type parameter.
    70  // A unifier is created by calling newUnifier.
    71  type unifier struct {
    72  	// handles maps each type parameter to its inferred type through
    73  	// an indirection *Type called (inferred type) "handle".
    74  	// Initially, each type parameter has its own, separate handle,
    75  	// with a nil (i.e., not yet inferred) type.
    76  	// After a type parameter P is unified with a type parameter Q,
    77  	// P and Q share the same handle (and thus type). This ensures
    78  	// that inferring the type for a given type parameter P will
    79  	// automatically infer the same type for all other parameters
    80  	// unified (joined) with P.
    81  	handles map[*TypeParam]*Type
    82  	depth   int // recursion depth during unification
    83  }
    84  
    85  // newUnifier returns a new unifier initialized with the given type parameter
    86  // and corresponding type argument lists. The type argument list may be shorter
    87  // than the type parameter list, and it may contain nil types. Matching type
    88  // parameters and arguments must have the same index.
    89  func newUnifier(tparams []*TypeParam, targs []Type) *unifier {
    90  	assert(len(tparams) >= len(targs))
    91  	handles := make(map[*TypeParam]*Type, len(tparams))
    92  	// Allocate all handles up-front: in a correct program, all type parameters
    93  	// must be resolved and thus eventually will get a handle.
    94  	// Also, sharing of handles caused by unified type parameters is rare and
    95  	// so it's ok to not optimize for that case (and delay handle allocation).
    96  	for i, x := range tparams {
    97  		var t Type
    98  		if i < len(targs) {
    99  			t = targs[i]
   100  		}
   101  		handles[x] = &t
   102  	}
   103  	return &unifier{handles, 0}
   104  }
   105  
   106  // unify attempts to unify x and y and reports whether it succeeded.
   107  // As a side-effect, types may be inferred for type parameters.
   108  func (u *unifier) unify(x, y Type) bool {
   109  	return u.nify(x, y, nil)
   110  }
   111  
   112  func (u *unifier) tracef(format string, args ...interface{}) {
   113  	fmt.Println(strings.Repeat(".  ", u.depth) + sprintf(nil, nil, true, format, args...))
   114  }
   115  
   116  // String returns a string representation of the current mapping
   117  // from type parameters to types.
   118  func (u *unifier) String() string {
   119  	// sort type parameters for reproducible strings
   120  	tparams := make(typeParamsById, len(u.handles))
   121  	i := 0
   122  	for tpar := range u.handles {
   123  		tparams[i] = tpar
   124  		i++
   125  	}
   126  	sort.Sort(tparams)
   127  
   128  	var buf bytes.Buffer
   129  	w := newTypeWriter(&buf, nil)
   130  	w.byte('[')
   131  	for i, x := range tparams {
   132  		if i > 0 {
   133  			w.string(", ")
   134  		}
   135  		w.typ(x)
   136  		w.string(": ")
   137  		w.typ(u.at(x))
   138  	}
   139  	w.byte(']')
   140  	return buf.String()
   141  }
   142  
   143  type typeParamsById []*TypeParam
   144  
   145  func (s typeParamsById) Len() int           { return len(s) }
   146  func (s typeParamsById) Less(i, j int) bool { return s[i].id < s[j].id }
   147  func (s typeParamsById) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   148  
   149  // join unifies the given type parameters x and y.
   150  // If both type parameters already have a type associated with them
   151  // and they are not joined, join fails and returns false.
   152  func (u *unifier) join(x, y *TypeParam) bool {
   153  	if traceInference {
   154  		u.tracef("%s ⇄ %s", x, y)
   155  	}
   156  	switch hx, hy := u.handles[x], u.handles[y]; {
   157  	case hx == hy:
   158  		// Both type parameters already share the same handle. Nothing to do.
   159  	case *hx != nil && *hy != nil:
   160  		// Both type parameters have (possibly different) inferred types. Cannot join.
   161  		return false
   162  	case *hx != nil:
   163  		// Only type parameter x has an inferred type. Use handle of x.
   164  		u.setHandle(y, hx)
   165  	// This case is treated like the default case.
   166  	// case *hy != nil:
   167  	// 	// Only type parameter y has an inferred type. Use handle of y.
   168  	//	u.setHandle(x, hy)
   169  	default:
   170  		// Neither type parameter has an inferred type. Use handle of y.
   171  		u.setHandle(x, hy)
   172  	}
   173  	return true
   174  }
   175  
   176  // asTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
   177  // Otherwise, the result is nil.
   178  func (u *unifier) asTypeParam(x Type) *TypeParam {
   179  	if x, _ := x.(*TypeParam); x != nil {
   180  		if _, found := u.handles[x]; found {
   181  			return x
   182  		}
   183  	}
   184  	return nil
   185  }
   186  
   187  // setHandle sets the handle for type parameter x
   188  // (and all its joined type parameters) to h.
   189  func (u *unifier) setHandle(x *TypeParam, h *Type) {
   190  	hx := u.handles[x]
   191  	assert(hx != nil)
   192  	for y, hy := range u.handles {
   193  		if hy == hx {
   194  			u.handles[y] = h
   195  		}
   196  	}
   197  }
   198  
   199  // at returns the (possibly nil) type for type parameter x.
   200  func (u *unifier) at(x *TypeParam) Type {
   201  	return *u.handles[x]
   202  }
   203  
   204  // set sets the type t for type parameter x;
   205  // t must not be nil.
   206  func (u *unifier) set(x *TypeParam, t Type) {
   207  	assert(t != nil)
   208  	if traceInference {
   209  		u.tracef("%s ➞ %s", x, t)
   210  	}
   211  	*u.handles[x] = t
   212  }
   213  
   214  // unknowns returns the number of type parameters for which no type has been set yet.
   215  func (u *unifier) unknowns() int {
   216  	n := 0
   217  	for _, h := range u.handles {
   218  		if *h == nil {
   219  			n++
   220  		}
   221  	}
   222  	return n
   223  }
   224  
   225  // inferred returns the list of inferred types for the given type parameter list.
   226  // The result is never nil and has the same length as tparams; result types that
   227  // could not be inferred are nil. Corresponding type parameters and result types
   228  // have identical indices.
   229  func (u *unifier) inferred(tparams []*TypeParam) []Type {
   230  	list := make([]Type, len(tparams))
   231  	for i, x := range tparams {
   232  		list[i] = u.at(x)
   233  	}
   234  	return list
   235  }
   236  
   237  // nify implements the core unification algorithm which is an
   238  // adapted version of Checker.identical. For changes to that
   239  // code the corresponding changes should be made here.
   240  // Must not be called directly from outside the unifier.
   241  func (u *unifier) nify(x, y Type, p *ifacePair) (result bool) {
   242  	u.depth++
   243  	if traceInference {
   244  		u.tracef("%s ≡ %s", x, y)
   245  	}
   246  	defer func() {
   247  		if traceInference && !result {
   248  			u.tracef("%s ≢ %s", x, y)
   249  		}
   250  		u.depth--
   251  	}()
   252  
   253  	// nothing to do if x == y
   254  	if x == y {
   255  		return true
   256  	}
   257  
   258  	// Stop gap for cases where unification fails.
   259  	if u.depth > unificationDepthLimit {
   260  		if traceInference {
   261  			u.tracef("depth %d >= %d", u.depth, unificationDepthLimit)
   262  		}
   263  		if panicAtUnificationDepthLimit {
   264  			panic("unification reached recursion depth limit")
   265  		}
   266  		return false
   267  	}
   268  
   269  	// Unification is symmetric, so we can swap the operands.
   270  	// Ensure that if we have at least one
   271  	// - defined type, make sure one is in y
   272  	// - type parameter recorded with u, make sure one is in x
   273  	if _, ok := x.(*Named); ok || u.asTypeParam(y) != nil {
   274  		if traceInference {
   275  			u.tracef("%s ≡ %s (swap)", y, x)
   276  		}
   277  		x, y = y, x
   278  	}
   279  
   280  	// Unification will fail if we match a defined type against a type literal.
   281  	// Per the (spec) assignment rules, assignments of values to variables with
   282  	// the same type structure are permitted as long as at least one of them
   283  	// is not a defined type. To accommodate for that possibility, we continue
   284  	// unification with the underlying type of a defined type if the other type
   285  	// is a type literal.
   286  	// We also continue if the other type is a basic type because basic types
   287  	// are valid underlying types and may appear as core types of type constraints.
   288  	// If we exclude them, inferred defined types for type parameters may not
   289  	// match against the core types of their constraints (even though they might
   290  	// correctly match against some of the types in the constraint's type set).
   291  	// Finally, if unification (incorrectly) succeeds by matching the underlying
   292  	// type of a defined type against a basic type (because we include basic types
   293  	// as type literals here), and if that leads to an incorrectly inferred type,
   294  	// we will fail at function instantiation or argument assignment time.
   295  	//
   296  	// If we have at least one defined type, there is one in y.
   297  	if ny, _ := y.(*Named); ny != nil && isTypeLit(x) {
   298  		if traceInference {
   299  			u.tracef("%s ≡ under %s", x, ny)
   300  		}
   301  		y = ny.under()
   302  		// Per the spec, a defined type cannot have an underlying type
   303  		// that is a type parameter.
   304  		assert(!isTypeParam(y))
   305  		// x and y may be identical now
   306  		if x == y {
   307  			return true
   308  		}
   309  	}
   310  
   311  	// Cases where at least one of x or y is a type parameter recorded with u.
   312  	// If we have at least one type parameter, there is one in x.
   313  	// If we have exactly one type parameter, because it is in x,
   314  	// isTypeLit(x) is false and y was not changed above. In other
   315  	// words, if y was a defined type, it is still a defined type
   316  	// (relevant for the logic below).
   317  	switch px, py := u.asTypeParam(x), u.asTypeParam(y); {
   318  	case px != nil && py != nil:
   319  		// both x and y are type parameters
   320  		if u.join(px, py) {
   321  			return true
   322  		}
   323  		// both x and y have an inferred type - they must match
   324  		return u.nify(u.at(px), u.at(py), p)
   325  
   326  	case px != nil:
   327  		// x is a type parameter, y is not
   328  		if x := u.at(px); x != nil {
   329  			// x has an inferred type which must match y
   330  			if u.nify(x, y, p) {
   331  				// If we have a match, possibly through underlying types,
   332  				// and y is a defined type, make sure we record that type
   333  				// for type parameter x, which may have until now only
   334  				// recorded an underlying type (go.dev/issue/43056).
   335  				if _, ok := y.(*Named); ok {
   336  					u.set(px, y)
   337  				}
   338  				return true
   339  			}
   340  			return false
   341  		}
   342  		// otherwise, infer type from y
   343  		u.set(px, y)
   344  		return true
   345  	}
   346  
   347  	// x != y if we get here
   348  	assert(x != y)
   349  
   350  	// If we get here and x or y is a type parameter, they are unbound
   351  	// (not recorded with the unifier).
   352  	// Ensure that if we have at least one type parameter, it is in x
   353  	// (the earlier swap checks for _recorded_ type parameters only).
   354  	if isTypeParam(y) {
   355  		if traceInference {
   356  			u.tracef("%s ≡ %s (swap)", y, x)
   357  		}
   358  		x, y = y, x
   359  	}
   360  
   361  	switch x := x.(type) {
   362  	case *Basic:
   363  		// Basic types are singletons except for the rune and byte
   364  		// aliases, thus we cannot solely rely on the x == y check
   365  		// above. See also comment in TypeName.IsAlias.
   366  		if y, ok := y.(*Basic); ok {
   367  			return x.kind == y.kind
   368  		}
   369  
   370  	case *Array:
   371  		// Two array types unify if they have the same array length
   372  		// and their element types unify.
   373  		if y, ok := y.(*Array); ok {
   374  			// If one or both array lengths are unknown (< 0) due to some error,
   375  			// assume they are the same to avoid spurious follow-on errors.
   376  			return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, p)
   377  		}
   378  
   379  	case *Slice:
   380  		// Two slice types unify if their element types unify.
   381  		if y, ok := y.(*Slice); ok {
   382  			return u.nify(x.elem, y.elem, p)
   383  		}
   384  
   385  	case *Struct:
   386  		// Two struct types unify if they have the same sequence of fields,
   387  		// and if corresponding fields have the same names, their (field) types unify,
   388  		// and they have identical tags. Two embedded fields are considered to have the same
   389  		// name. Lower-case field names from different packages are always different.
   390  		if y, ok := y.(*Struct); ok {
   391  			if x.NumFields() == y.NumFields() {
   392  				for i, f := range x.fields {
   393  					g := y.fields[i]
   394  					if f.embedded != g.embedded ||
   395  						x.Tag(i) != y.Tag(i) ||
   396  						!f.sameId(g.pkg, g.name) ||
   397  						!u.nify(f.typ, g.typ, p) {
   398  						return false
   399  					}
   400  				}
   401  				return true
   402  			}
   403  		}
   404  
   405  	case *Pointer:
   406  		// Two pointer types unify if their base types unify.
   407  		if y, ok := y.(*Pointer); ok {
   408  			return u.nify(x.base, y.base, p)
   409  		}
   410  
   411  	case *Tuple:
   412  		// Two tuples types unify if they have the same number of elements
   413  		// and the types of corresponding elements unify.
   414  		if y, ok := y.(*Tuple); ok {
   415  			if x.Len() == y.Len() {
   416  				if x != nil {
   417  					for i, v := range x.vars {
   418  						w := y.vars[i]
   419  						if !u.nify(v.typ, w.typ, p) {
   420  							return false
   421  						}
   422  					}
   423  				}
   424  				return true
   425  			}
   426  		}
   427  
   428  	case *Signature:
   429  		// Two function types unify if they have the same number of parameters
   430  		// and result values, corresponding parameter and result types unify,
   431  		// and either both functions are variadic or neither is.
   432  		// Parameter and result names are not required to match.
   433  		// TODO(gri) handle type parameters or document why we can ignore them.
   434  		if y, ok := y.(*Signature); ok {
   435  			return x.variadic == y.variadic &&
   436  				u.nify(x.params, y.params, p) &&
   437  				u.nify(x.results, y.results, p)
   438  		}
   439  
   440  	case *Interface:
   441  		// Two interface types unify if they have the same set of methods with
   442  		// the same names, and corresponding function types unify.
   443  		// Lower-case method names from different packages are always different.
   444  		// The order of the methods is irrelevant.
   445  		if y, ok := y.(*Interface); ok {
   446  			xset := x.typeSet()
   447  			yset := y.typeSet()
   448  			if xset.comparable != yset.comparable {
   449  				return false
   450  			}
   451  			if !xset.terms.equal(yset.terms) {
   452  				return false
   453  			}
   454  			a := xset.methods
   455  			b := yset.methods
   456  			if len(a) == len(b) {
   457  				// Interface types are the only types where cycles can occur
   458  				// that are not "terminated" via named types; and such cycles
   459  				// can only be created via method parameter types that are
   460  				// anonymous interfaces (directly or indirectly) embedding
   461  				// the current interface. Example:
   462  				//
   463  				//    type T interface {
   464  				//        m() interface{T}
   465  				//    }
   466  				//
   467  				// If two such (differently named) interfaces are compared,
   468  				// endless recursion occurs if the cycle is not detected.
   469  				//
   470  				// If x and y were compared before, they must be equal
   471  				// (if they were not, the recursion would have stopped);
   472  				// search the ifacePair stack for the same pair.
   473  				//
   474  				// This is a quadratic algorithm, but in practice these stacks
   475  				// are extremely short (bounded by the nesting depth of interface
   476  				// type declarations that recur via parameter types, an extremely
   477  				// rare occurrence). An alternative implementation might use a
   478  				// "visited" map, but that is probably less efficient overall.
   479  				q := &ifacePair{x, y, p}
   480  				for p != nil {
   481  					if p.identical(q) {
   482  						return true // same pair was compared before
   483  					}
   484  					p = p.prev
   485  				}
   486  				if debug {
   487  					assertSortedMethods(a)
   488  					assertSortedMethods(b)
   489  				}
   490  				for i, f := range a {
   491  					g := b[i]
   492  					if f.Id() != g.Id() || !u.nify(f.typ, g.typ, q) {
   493  						return false
   494  					}
   495  				}
   496  				return true
   497  			}
   498  		}
   499  
   500  	case *Map:
   501  		// Two map types unify if their key and value types unify.
   502  		if y, ok := y.(*Map); ok {
   503  			return u.nify(x.key, y.key, p) && u.nify(x.elem, y.elem, p)
   504  		}
   505  
   506  	case *Chan:
   507  		// Two channel types unify if their value types unify.
   508  		if y, ok := y.(*Chan); ok {
   509  			return u.nify(x.elem, y.elem, p)
   510  		}
   511  
   512  	case *Named:
   513  		// Two named types unify if their type names originate
   514  		// in the same type declaration. If they are instantiated,
   515  		// their type argument lists must unify.
   516  		if y, ok := y.(*Named); ok {
   517  			// Check type arguments before origins so they unify
   518  			// even if the origins don't match; for better error
   519  			// messages (see go.dev/issue/53692).
   520  			xargs := x.TypeArgs().list()
   521  			yargs := y.TypeArgs().list()
   522  			if len(xargs) != len(yargs) {
   523  				return false
   524  			}
   525  			for i, xarg := range xargs {
   526  				if !u.nify(xarg, yargs[i], p) {
   527  					return false
   528  				}
   529  			}
   530  			return indenticalOrigin(x, y)
   531  		}
   532  
   533  	case *TypeParam:
   534  		// x must be an unbound type parameter (see comment above).
   535  		if debug {
   536  			assert(u.asTypeParam(x) == nil)
   537  		}
   538  		// By definition, a valid type argument must be in the type set of
   539  		// the respective type constraint. Therefore, the type argument's
   540  		// underlying type must be in the set of underlying types of that
   541  		// constraint. If there is a single such underlying type, it's the
   542  		// constraint's core type. It must match the type argument's under-
   543  		// lying type, irrespective of whether the actual type argument,
   544  		// which may be a defined type, is actually in the type set (that
   545  		// will be determined at instantiation time).
   546  		// Thus, if we have the core type of an unbound type parameter,
   547  		// we know the structure of the possible types satisfying such
   548  		// parameters. Use that core type for further unification
   549  		// (see go.dev/issue/50755 for a test case).
   550  		if enableCoreTypeUnification {
   551  			// Because the core type is always an underlying type,
   552  			// unification will take care of matching against a
   553  			// defined or literal type automatically.
   554  			// If y is also an unbound type parameter, we will end
   555  			// up here again with x and y swapped, so we don't
   556  			// need to take care of that case separately.
   557  			if cx := coreType(x); cx != nil {
   558  				if traceInference {
   559  					u.tracef("core %s ≡ %s", x, y)
   560  				}
   561  				return u.nify(cx, y, p)
   562  			}
   563  		}
   564  		// x != y and there's nothing to do
   565  
   566  	case nil:
   567  		// avoid a crash in case of nil type
   568  
   569  	default:
   570  		panic(sprintf(nil, nil, true, "u.nify(%s, %s)", x, y))
   571  	}
   572  
   573  	return false
   574  }