github.com/lovishpuri/go-40569/src@v0.0.0-20230519171745-f8623e7c56cf/runtime/mgc.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector (GC).
     6  //
     7  // The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
     8  // GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
     9  // non-generational and non-compacting. Allocation is done using size segregated per P allocation
    10  // areas to minimize fragmentation while eliminating locks in the common case.
    11  //
    12  // The algorithm decomposes into several steps.
    13  // This is a high level description of the algorithm being used. For an overview of GC a good
    14  // place to start is Richard Jones' gchandbook.org.
    15  //
    16  // The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
    17  // Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
    18  // On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
    19  // 966-975.
    20  // For journal quality proofs that these steps are complete, correct, and terminate see
    21  // Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
    22  // Concurrency and Computation: Practice and Experience 15(3-5), 2003.
    23  //
    24  // 1. GC performs sweep termination.
    25  //
    26  //    a. Stop the world. This causes all Ps to reach a GC safe-point.
    27  //
    28  //    b. Sweep any unswept spans. There will only be unswept spans if
    29  //    this GC cycle was forced before the expected time.
    30  //
    31  // 2. GC performs the mark phase.
    32  //
    33  //    a. Prepare for the mark phase by setting gcphase to _GCmark
    34  //    (from _GCoff), enabling the write barrier, enabling mutator
    35  //    assists, and enqueueing root mark jobs. No objects may be
    36  //    scanned until all Ps have enabled the write barrier, which is
    37  //    accomplished using STW.
    38  //
    39  //    b. Start the world. From this point, GC work is done by mark
    40  //    workers started by the scheduler and by assists performed as
    41  //    part of allocation. The write barrier shades both the
    42  //    overwritten pointer and the new pointer value for any pointer
    43  //    writes (see mbarrier.go for details). Newly allocated objects
    44  //    are immediately marked black.
    45  //
    46  //    c. GC performs root marking jobs. This includes scanning all
    47  //    stacks, shading all globals, and shading any heap pointers in
    48  //    off-heap runtime data structures. Scanning a stack stops a
    49  //    goroutine, shades any pointers found on its stack, and then
    50  //    resumes the goroutine.
    51  //
    52  //    d. GC drains the work queue of grey objects, scanning each grey
    53  //    object to black and shading all pointers found in the object
    54  //    (which in turn may add those pointers to the work queue).
    55  //
    56  //    e. Because GC work is spread across local caches, GC uses a
    57  //    distributed termination algorithm to detect when there are no
    58  //    more root marking jobs or grey objects (see gcMarkDone). At this
    59  //    point, GC transitions to mark termination.
    60  //
    61  // 3. GC performs mark termination.
    62  //
    63  //    a. Stop the world.
    64  //
    65  //    b. Set gcphase to _GCmarktermination, and disable workers and
    66  //    assists.
    67  //
    68  //    c. Perform housekeeping like flushing mcaches.
    69  //
    70  // 4. GC performs the sweep phase.
    71  //
    72  //    a. Prepare for the sweep phase by setting gcphase to _GCoff,
    73  //    setting up sweep state and disabling the write barrier.
    74  //
    75  //    b. Start the world. From this point on, newly allocated objects
    76  //    are white, and allocating sweeps spans before use if necessary.
    77  //
    78  //    c. GC does concurrent sweeping in the background and in response
    79  //    to allocation. See description below.
    80  //
    81  // 5. When sufficient allocation has taken place, replay the sequence
    82  // starting with 1 above. See discussion of GC rate below.
    83  
    84  // Concurrent sweep.
    85  //
    86  // The sweep phase proceeds concurrently with normal program execution.
    87  // The heap is swept span-by-span both lazily (when a goroutine needs another span)
    88  // and concurrently in a background goroutine (this helps programs that are not CPU bound).
    89  // At the end of STW mark termination all spans are marked as "needs sweeping".
    90  //
    91  // The background sweeper goroutine simply sweeps spans one-by-one.
    92  //
    93  // To avoid requesting more OS memory while there are unswept spans, when a
    94  // goroutine needs another span, it first attempts to reclaim that much memory
    95  // by sweeping. When a goroutine needs to allocate a new small-object span, it
    96  // sweeps small-object spans for the same object size until it frees at least
    97  // one object. When a goroutine needs to allocate large-object span from heap,
    98  // it sweeps spans until it frees at least that many pages into heap. There is
    99  // one case where this may not suffice: if a goroutine sweeps and frees two
   100  // nonadjacent one-page spans to the heap, it will allocate a new two-page
   101  // span, but there can still be other one-page unswept spans which could be
   102  // combined into a two-page span.
   103  //
   104  // It's critical to ensure that no operations proceed on unswept spans (that would corrupt
   105  // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
   106  // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
   107  // When a goroutine explicitly frees an object or sets a finalizer, it ensures that
   108  // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
   109  // The finalizer goroutine is kicked off only when all spans are swept.
   110  // When the next GC starts, it sweeps all not-yet-swept spans (if any).
   111  
   112  // GC rate.
   113  // Next GC is after we've allocated an extra amount of memory proportional to
   114  // the amount already in use. The proportion is controlled by GOGC environment variable
   115  // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
   116  // (this mark is computed by the gcController.heapGoal method). This keeps the GC cost in
   117  // linear proportion to the allocation cost. Adjusting GOGC just changes the linear constant
   118  // (and also the amount of extra memory used).
   119  
   120  // Oblets
   121  //
   122  // In order to prevent long pauses while scanning large objects and to
   123  // improve parallelism, the garbage collector breaks up scan jobs for
   124  // objects larger than maxObletBytes into "oblets" of at most
   125  // maxObletBytes. When scanning encounters the beginning of a large
   126  // object, it scans only the first oblet and enqueues the remaining
   127  // oblets as new scan jobs.
   128  
   129  package runtime
   130  
   131  import (
   132  	"internal/cpu"
   133  	"runtime/internal/atomic"
   134  	"unsafe"
   135  )
   136  
   137  const (
   138  	_DebugGC         = 0
   139  	_ConcurrentSweep = true
   140  	_FinBlockSize    = 4 * 1024
   141  
   142  	// debugScanConservative enables debug logging for stack
   143  	// frames that are scanned conservatively.
   144  	debugScanConservative = false
   145  
   146  	// sweepMinHeapDistance is a lower bound on the heap distance
   147  	// (in bytes) reserved for concurrent sweeping between GC
   148  	// cycles.
   149  	sweepMinHeapDistance = 1024 * 1024
   150  )
   151  
   152  func gcinit() {
   153  	if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
   154  		throw("size of Workbuf is suboptimal")
   155  	}
   156  	// No sweep on the first cycle.
   157  	sweep.active.state.Store(sweepDrainedMask)
   158  
   159  	// Initialize GC pacer state.
   160  	// Use the environment variable GOGC for the initial gcPercent value.
   161  	// Use the environment variable GOMEMLIMIT for the initial memoryLimit value.
   162  	gcController.init(readGOGC(), readGOMEMLIMIT())
   163  
   164  	work.startSema = 1
   165  	work.markDoneSema = 1
   166  	lockInit(&work.sweepWaiters.lock, lockRankSweepWaiters)
   167  	lockInit(&work.assistQueue.lock, lockRankAssistQueue)
   168  	lockInit(&work.wbufSpans.lock, lockRankWbufSpans)
   169  }
   170  
   171  // gcenable is called after the bulk of the runtime initialization,
   172  // just before we're about to start letting user code run.
   173  // It kicks off the background sweeper goroutine, the background
   174  // scavenger goroutine, and enables GC.
   175  func gcenable() {
   176  	// Kick off sweeping and scavenging.
   177  	c := make(chan int, 2)
   178  	go bgsweep(c)
   179  	go bgscavenge(c)
   180  	<-c
   181  	<-c
   182  	memstats.enablegc = true // now that runtime is initialized, GC is okay
   183  }
   184  
   185  // Garbage collector phase.
   186  // Indicates to write barrier and synchronization task to perform.
   187  var gcphase uint32
   188  
   189  // The compiler knows about this variable.
   190  // If you change it, you must change builtin/runtime.go, too.
   191  // If you change the first four bytes, you must also change the write
   192  // barrier insertion code.
   193  var writeBarrier struct {
   194  	enabled bool    // compiler emits a check of this before calling write barrier
   195  	pad     [3]byte // compiler uses 32-bit load for "enabled" field
   196  	needed  bool    // identical to enabled, for now (TODO: dedup)
   197  	alignme uint64  // guarantee alignment so that compiler can use a 32 or 64-bit load
   198  }
   199  
   200  // gcBlackenEnabled is 1 if mutator assists and background mark
   201  // workers are allowed to blacken objects. This must only be set when
   202  // gcphase == _GCmark.
   203  var gcBlackenEnabled uint32
   204  
   205  const (
   206  	_GCoff             = iota // GC not running; sweeping in background, write barrier disabled
   207  	_GCmark                   // GC marking roots and workbufs: allocate black, write barrier ENABLED
   208  	_GCmarktermination        // GC mark termination: allocate black, P's help GC, write barrier ENABLED
   209  )
   210  
   211  //go:nosplit
   212  func setGCPhase(x uint32) {
   213  	atomic.Store(&gcphase, x)
   214  	writeBarrier.needed = gcphase == _GCmark || gcphase == _GCmarktermination
   215  	writeBarrier.enabled = writeBarrier.needed
   216  }
   217  
   218  // gcMarkWorkerMode represents the mode that a concurrent mark worker
   219  // should operate in.
   220  //
   221  // Concurrent marking happens through four different mechanisms. One
   222  // is mutator assists, which happen in response to allocations and are
   223  // not scheduled. The other three are variations in the per-P mark
   224  // workers and are distinguished by gcMarkWorkerMode.
   225  type gcMarkWorkerMode int
   226  
   227  const (
   228  	// gcMarkWorkerNotWorker indicates that the next scheduled G is not
   229  	// starting work and the mode should be ignored.
   230  	gcMarkWorkerNotWorker gcMarkWorkerMode = iota
   231  
   232  	// gcMarkWorkerDedicatedMode indicates that the P of a mark
   233  	// worker is dedicated to running that mark worker. The mark
   234  	// worker should run without preemption.
   235  	gcMarkWorkerDedicatedMode
   236  
   237  	// gcMarkWorkerFractionalMode indicates that a P is currently
   238  	// running the "fractional" mark worker. The fractional worker
   239  	// is necessary when GOMAXPROCS*gcBackgroundUtilization is not
   240  	// an integer and using only dedicated workers would result in
   241  	// utilization too far from the target of gcBackgroundUtilization.
   242  	// The fractional worker should run until it is preempted and
   243  	// will be scheduled to pick up the fractional part of
   244  	// GOMAXPROCS*gcBackgroundUtilization.
   245  	gcMarkWorkerFractionalMode
   246  
   247  	// gcMarkWorkerIdleMode indicates that a P is running the mark
   248  	// worker because it has nothing else to do. The idle worker
   249  	// should run until it is preempted and account its time
   250  	// against gcController.idleMarkTime.
   251  	gcMarkWorkerIdleMode
   252  )
   253  
   254  // gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes
   255  // to use in execution traces.
   256  var gcMarkWorkerModeStrings = [...]string{
   257  	"Not worker",
   258  	"GC (dedicated)",
   259  	"GC (fractional)",
   260  	"GC (idle)",
   261  }
   262  
   263  // pollFractionalWorkerExit reports whether a fractional mark worker
   264  // should self-preempt. It assumes it is called from the fractional
   265  // worker.
   266  func pollFractionalWorkerExit() bool {
   267  	// This should be kept in sync with the fractional worker
   268  	// scheduler logic in findRunnableGCWorker.
   269  	now := nanotime()
   270  	delta := now - gcController.markStartTime
   271  	if delta <= 0 {
   272  		return true
   273  	}
   274  	p := getg().m.p.ptr()
   275  	selfTime := p.gcFractionalMarkTime + (now - p.gcMarkWorkerStartTime)
   276  	// Add some slack to the utilization goal so that the
   277  	// fractional worker isn't behind again the instant it exits.
   278  	return float64(selfTime)/float64(delta) > 1.2*gcController.fractionalUtilizationGoal
   279  }
   280  
   281  var work workType
   282  
   283  type workType struct {
   284  	full  lfstack          // lock-free list of full blocks workbuf
   285  	empty lfstack          // lock-free list of empty blocks workbuf
   286  	pad0  cpu.CacheLinePad // prevents false-sharing between full/empty and nproc/nwait
   287  
   288  	wbufSpans struct {
   289  		lock mutex
   290  		// free is a list of spans dedicated to workbufs, but
   291  		// that don't currently contain any workbufs.
   292  		free mSpanList
   293  		// busy is a list of all spans containing workbufs on
   294  		// one of the workbuf lists.
   295  		busy mSpanList
   296  	}
   297  
   298  	// Restore 64-bit alignment on 32-bit.
   299  	_ uint32
   300  
   301  	// bytesMarked is the number of bytes marked this cycle. This
   302  	// includes bytes blackened in scanned objects, noscan objects
   303  	// that go straight to black, and permagrey objects scanned by
   304  	// markroot during the concurrent scan phase. This is updated
   305  	// atomically during the cycle. Updates may be batched
   306  	// arbitrarily, since the value is only read at the end of the
   307  	// cycle.
   308  	//
   309  	// Because of benign races during marking, this number may not
   310  	// be the exact number of marked bytes, but it should be very
   311  	// close.
   312  	//
   313  	// Put this field here because it needs 64-bit atomic access
   314  	// (and thus 8-byte alignment even on 32-bit architectures).
   315  	bytesMarked uint64
   316  
   317  	markrootNext uint32 // next markroot job
   318  	markrootJobs uint32 // number of markroot jobs
   319  
   320  	nproc  uint32
   321  	tstart int64
   322  	nwait  uint32
   323  
   324  	// Number of roots of various root types. Set by gcMarkRootPrepare.
   325  	//
   326  	// nStackRoots == len(stackRoots), but we have nStackRoots for
   327  	// consistency.
   328  	nDataRoots, nBSSRoots, nSpanRoots, nStackRoots int
   329  
   330  	// Base indexes of each root type. Set by gcMarkRootPrepare.
   331  	baseData, baseBSS, baseSpans, baseStacks, baseEnd uint32
   332  
   333  	// stackRoots is a snapshot of all of the Gs that existed
   334  	// before the beginning of concurrent marking. The backing
   335  	// store of this must not be modified because it might be
   336  	// shared with allgs.
   337  	stackRoots []*g
   338  
   339  	// Each type of GC state transition is protected by a lock.
   340  	// Since multiple threads can simultaneously detect the state
   341  	// transition condition, any thread that detects a transition
   342  	// condition must acquire the appropriate transition lock,
   343  	// re-check the transition condition and return if it no
   344  	// longer holds or perform the transition if it does.
   345  	// Likewise, any transition must invalidate the transition
   346  	// condition before releasing the lock. This ensures that each
   347  	// transition is performed by exactly one thread and threads
   348  	// that need the transition to happen block until it has
   349  	// happened.
   350  	//
   351  	// startSema protects the transition from "off" to mark or
   352  	// mark termination.
   353  	startSema uint32
   354  	// markDoneSema protects transitions from mark to mark termination.
   355  	markDoneSema uint32
   356  
   357  	bgMarkReady note   // signal background mark worker has started
   358  	bgMarkDone  uint32 // cas to 1 when at a background mark completion point
   359  	// Background mark completion signaling
   360  
   361  	// mode is the concurrency mode of the current GC cycle.
   362  	mode gcMode
   363  
   364  	// userForced indicates the current GC cycle was forced by an
   365  	// explicit user call.
   366  	userForced bool
   367  
   368  	// initialHeapLive is the value of gcController.heapLive at the
   369  	// beginning of this GC cycle.
   370  	initialHeapLive uint64
   371  
   372  	// assistQueue is a queue of assists that are blocked because
   373  	// there was neither enough credit to steal or enough work to
   374  	// do.
   375  	assistQueue struct {
   376  		lock mutex
   377  		q    gQueue
   378  	}
   379  
   380  	// sweepWaiters is a list of blocked goroutines to wake when
   381  	// we transition from mark termination to sweep.
   382  	sweepWaiters struct {
   383  		lock mutex
   384  		list gList
   385  	}
   386  
   387  	// cycles is the number of completed GC cycles, where a GC
   388  	// cycle is sweep termination, mark, mark termination, and
   389  	// sweep. This differs from memstats.numgc, which is
   390  	// incremented at mark termination.
   391  	cycles atomic.Uint32
   392  
   393  	// Timing/utilization stats for this cycle.
   394  	stwprocs, maxprocs                 int32
   395  	tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start
   396  
   397  	pauseNS    int64 // total STW time this cycle
   398  	pauseStart int64 // nanotime() of last STW
   399  
   400  	// debug.gctrace heap sizes for this cycle.
   401  	heap0, heap1, heap2 uint64
   402  
   403  	// Cumulative estimated CPU usage.
   404  	cpuStats
   405  }
   406  
   407  // GC runs a garbage collection and blocks the caller until the
   408  // garbage collection is complete. It may also block the entire
   409  // program.
   410  func GC() {
   411  	// We consider a cycle to be: sweep termination, mark, mark
   412  	// termination, and sweep. This function shouldn't return
   413  	// until a full cycle has been completed, from beginning to
   414  	// end. Hence, we always want to finish up the current cycle
   415  	// and start a new one. That means:
   416  	//
   417  	// 1. In sweep termination, mark, or mark termination of cycle
   418  	// N, wait until mark termination N completes and transitions
   419  	// to sweep N.
   420  	//
   421  	// 2. In sweep N, help with sweep N.
   422  	//
   423  	// At this point we can begin a full cycle N+1.
   424  	//
   425  	// 3. Trigger cycle N+1 by starting sweep termination N+1.
   426  	//
   427  	// 4. Wait for mark termination N+1 to complete.
   428  	//
   429  	// 5. Help with sweep N+1 until it's done.
   430  	//
   431  	// This all has to be written to deal with the fact that the
   432  	// GC may move ahead on its own. For example, when we block
   433  	// until mark termination N, we may wake up in cycle N+2.
   434  
   435  	// Wait until the current sweep termination, mark, and mark
   436  	// termination complete.
   437  	n := work.cycles.Load()
   438  	gcWaitOnMark(n)
   439  
   440  	// We're now in sweep N or later. Trigger GC cycle N+1, which
   441  	// will first finish sweep N if necessary and then enter sweep
   442  	// termination N+1.
   443  	gcStart(gcTrigger{kind: gcTriggerCycle, n: n + 1})
   444  
   445  	// Wait for mark termination N+1 to complete.
   446  	gcWaitOnMark(n + 1)
   447  
   448  	// Finish sweep N+1 before returning. We do this both to
   449  	// complete the cycle and because runtime.GC() is often used
   450  	// as part of tests and benchmarks to get the system into a
   451  	// relatively stable and isolated state.
   452  	for work.cycles.Load() == n+1 && sweepone() != ^uintptr(0) {
   453  		sweep.nbgsweep++
   454  		Gosched()
   455  	}
   456  
   457  	// Callers may assume that the heap profile reflects the
   458  	// just-completed cycle when this returns (historically this
   459  	// happened because this was a STW GC), but right now the
   460  	// profile still reflects mark termination N, not N+1.
   461  	//
   462  	// As soon as all of the sweep frees from cycle N+1 are done,
   463  	// we can go ahead and publish the heap profile.
   464  	//
   465  	// First, wait for sweeping to finish. (We know there are no
   466  	// more spans on the sweep queue, but we may be concurrently
   467  	// sweeping spans, so we have to wait.)
   468  	for work.cycles.Load() == n+1 && !isSweepDone() {
   469  		Gosched()
   470  	}
   471  
   472  	// Now we're really done with sweeping, so we can publish the
   473  	// stable heap profile. Only do this if we haven't already hit
   474  	// another mark termination.
   475  	mp := acquirem()
   476  	cycle := work.cycles.Load()
   477  	if cycle == n+1 || (gcphase == _GCmark && cycle == n+2) {
   478  		mProf_PostSweep()
   479  	}
   480  	releasem(mp)
   481  }
   482  
   483  // gcWaitOnMark blocks until GC finishes the Nth mark phase. If GC has
   484  // already completed this mark phase, it returns immediately.
   485  func gcWaitOnMark(n uint32) {
   486  	for {
   487  		// Disable phase transitions.
   488  		lock(&work.sweepWaiters.lock)
   489  		nMarks := work.cycles.Load()
   490  		if gcphase != _GCmark {
   491  			// We've already completed this cycle's mark.
   492  			nMarks++
   493  		}
   494  		if nMarks > n {
   495  			// We're done.
   496  			unlock(&work.sweepWaiters.lock)
   497  			return
   498  		}
   499  
   500  		// Wait until sweep termination, mark, and mark
   501  		// termination of cycle N complete.
   502  		work.sweepWaiters.list.push(getg())
   503  		goparkunlock(&work.sweepWaiters.lock, waitReasonWaitForGCCycle, traceEvGoBlock, 1)
   504  	}
   505  }
   506  
   507  // gcMode indicates how concurrent a GC cycle should be.
   508  type gcMode int
   509  
   510  const (
   511  	gcBackgroundMode gcMode = iota // concurrent GC and sweep
   512  	gcForceMode                    // stop-the-world GC now, concurrent sweep
   513  	gcForceBlockMode               // stop-the-world GC now and STW sweep (forced by user)
   514  )
   515  
   516  // A gcTrigger is a predicate for starting a GC cycle. Specifically,
   517  // it is an exit condition for the _GCoff phase.
   518  type gcTrigger struct {
   519  	kind gcTriggerKind
   520  	now  int64  // gcTriggerTime: current time
   521  	n    uint32 // gcTriggerCycle: cycle number to start
   522  }
   523  
   524  type gcTriggerKind int
   525  
   526  const (
   527  	// gcTriggerHeap indicates that a cycle should be started when
   528  	// the heap size reaches the trigger heap size computed by the
   529  	// controller.
   530  	gcTriggerHeap gcTriggerKind = iota
   531  
   532  	// gcTriggerTime indicates that a cycle should be started when
   533  	// it's been more than forcegcperiod nanoseconds since the
   534  	// previous GC cycle.
   535  	gcTriggerTime
   536  
   537  	// gcTriggerCycle indicates that a cycle should be started if
   538  	// we have not yet started cycle number gcTrigger.n (relative
   539  	// to work.cycles).
   540  	gcTriggerCycle
   541  )
   542  
   543  // test reports whether the trigger condition is satisfied, meaning
   544  // that the exit condition for the _GCoff phase has been met. The exit
   545  // condition should be tested when allocating.
   546  func (t gcTrigger) test() bool {
   547  	if !memstats.enablegc || panicking.Load() != 0 || gcphase != _GCoff {
   548  		return false
   549  	}
   550  	switch t.kind {
   551  	case gcTriggerHeap:
   552  		// Non-atomic access to gcController.heapLive for performance. If
   553  		// we are going to trigger on this, this thread just
   554  		// atomically wrote gcController.heapLive anyway and we'll see our
   555  		// own write.
   556  		trigger, _ := gcController.trigger()
   557  		return gcController.heapLive.Load() >= trigger
   558  	case gcTriggerTime:
   559  		if gcController.gcPercent.Load() < 0 {
   560  			return false
   561  		}
   562  		lastgc := int64(atomic.Load64(&memstats.last_gc_nanotime))
   563  		return lastgc != 0 && t.now-lastgc > forcegcperiod
   564  	case gcTriggerCycle:
   565  		// t.n > work.cycles, but accounting for wraparound.
   566  		return int32(t.n-work.cycles.Load()) > 0
   567  	}
   568  	return true
   569  }
   570  
   571  // gcStart starts the GC. It transitions from _GCoff to _GCmark (if
   572  // debug.gcstoptheworld == 0) or performs all of GC (if
   573  // debug.gcstoptheworld != 0).
   574  //
   575  // This may return without performing this transition in some cases,
   576  // such as when called on a system stack or with locks held.
   577  func gcStart(trigger gcTrigger) {
   578  	// Since this is called from malloc and malloc is called in
   579  	// the guts of a number of libraries that might be holding
   580  	// locks, don't attempt to start GC in non-preemptible or
   581  	// potentially unstable situations.
   582  	mp := acquirem()
   583  	if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
   584  		releasem(mp)
   585  		return
   586  	}
   587  	releasem(mp)
   588  	mp = nil
   589  
   590  	// Pick up the remaining unswept/not being swept spans concurrently
   591  	//
   592  	// This shouldn't happen if we're being invoked in background
   593  	// mode since proportional sweep should have just finished
   594  	// sweeping everything, but rounding errors, etc, may leave a
   595  	// few spans unswept. In forced mode, this is necessary since
   596  	// GC can be forced at any point in the sweeping cycle.
   597  	//
   598  	// We check the transition condition continuously here in case
   599  	// this G gets delayed in to the next GC cycle.
   600  	for trigger.test() && sweepone() != ^uintptr(0) {
   601  		sweep.nbgsweep++
   602  	}
   603  
   604  	// Perform GC initialization and the sweep termination
   605  	// transition.
   606  	semacquire(&work.startSema)
   607  	// Re-check transition condition under transition lock.
   608  	if !trigger.test() {
   609  		semrelease(&work.startSema)
   610  		return
   611  	}
   612  
   613  	// In gcstoptheworld debug mode, upgrade the mode accordingly.
   614  	// We do this after re-checking the transition condition so
   615  	// that multiple goroutines that detect the heap trigger don't
   616  	// start multiple STW GCs.
   617  	mode := gcBackgroundMode
   618  	if debug.gcstoptheworld == 1 {
   619  		mode = gcForceMode
   620  	} else if debug.gcstoptheworld == 2 {
   621  		mode = gcForceBlockMode
   622  	}
   623  
   624  	// Ok, we're doing it! Stop everybody else
   625  	semacquire(&gcsema)
   626  	semacquire(&worldsema)
   627  
   628  	// For stats, check if this GC was forced by the user.
   629  	// Update it under gcsema to avoid gctrace getting wrong values.
   630  	work.userForced = trigger.kind == gcTriggerCycle
   631  
   632  	if traceEnabled() {
   633  		traceGCStart()
   634  	}
   635  
   636  	// Check that all Ps have finished deferred mcache flushes.
   637  	for _, p := range allp {
   638  		if fg := p.mcache.flushGen.Load(); fg != mheap_.sweepgen {
   639  			println("runtime: p", p.id, "flushGen", fg, "!= sweepgen", mheap_.sweepgen)
   640  			throw("p mcache not flushed")
   641  		}
   642  	}
   643  
   644  	gcBgMarkStartWorkers()
   645  
   646  	systemstack(gcResetMarkState)
   647  
   648  	work.stwprocs, work.maxprocs = gomaxprocs, gomaxprocs
   649  	if work.stwprocs > ncpu {
   650  		// This is used to compute CPU time of the STW phases,
   651  		// so it can't be more than ncpu, even if GOMAXPROCS is.
   652  		work.stwprocs = ncpu
   653  	}
   654  	work.heap0 = gcController.heapLive.Load()
   655  	work.pauseNS = 0
   656  	work.mode = mode
   657  
   658  	now := nanotime()
   659  	work.tSweepTerm = now
   660  	work.pauseStart = now
   661  	if traceEnabled() {
   662  		traceGCSTWStart(1)
   663  	}
   664  	systemstack(stopTheWorldWithSema)
   665  	// Finish sweep before we start concurrent scan.
   666  	systemstack(func() {
   667  		finishsweep_m()
   668  	})
   669  
   670  	// clearpools before we start the GC. If we wait they memory will not be
   671  	// reclaimed until the next GC cycle.
   672  	clearpools()
   673  
   674  	work.cycles.Add(1)
   675  
   676  	// Assists and workers can start the moment we start
   677  	// the world.
   678  	gcController.startCycle(now, int(gomaxprocs), trigger)
   679  
   680  	// Notify the CPU limiter that assists may begin.
   681  	gcCPULimiter.startGCTransition(true, now)
   682  
   683  	// In STW mode, disable scheduling of user Gs. This may also
   684  	// disable scheduling of this goroutine, so it may block as
   685  	// soon as we start the world again.
   686  	if mode != gcBackgroundMode {
   687  		schedEnableUser(false)
   688  	}
   689  
   690  	// Enter concurrent mark phase and enable
   691  	// write barriers.
   692  	//
   693  	// Because the world is stopped, all Ps will
   694  	// observe that write barriers are enabled by
   695  	// the time we start the world and begin
   696  	// scanning.
   697  	//
   698  	// Write barriers must be enabled before assists are
   699  	// enabled because they must be enabled before
   700  	// any non-leaf heap objects are marked. Since
   701  	// allocations are blocked until assists can
   702  	// happen, we want enable assists as early as
   703  	// possible.
   704  	setGCPhase(_GCmark)
   705  
   706  	gcBgMarkPrepare() // Must happen before assist enable.
   707  	gcMarkRootPrepare()
   708  
   709  	// Mark all active tinyalloc blocks. Since we're
   710  	// allocating from these, they need to be black like
   711  	// other allocations. The alternative is to blacken
   712  	// the tiny block on every allocation from it, which
   713  	// would slow down the tiny allocator.
   714  	gcMarkTinyAllocs()
   715  
   716  	// At this point all Ps have enabled the write
   717  	// barrier, thus maintaining the no white to
   718  	// black invariant. Enable mutator assists to
   719  	// put back-pressure on fast allocating
   720  	// mutators.
   721  	atomic.Store(&gcBlackenEnabled, 1)
   722  
   723  	// In STW mode, we could block the instant systemstack
   724  	// returns, so make sure we're not preemptible.
   725  	mp = acquirem()
   726  
   727  	// Concurrent mark.
   728  	systemstack(func() {
   729  		now = startTheWorldWithSema(traceEnabled())
   730  		work.pauseNS += now - work.pauseStart
   731  		work.tMark = now
   732  		memstats.gcPauseDist.record(now - work.pauseStart)
   733  
   734  		// Release the CPU limiter.
   735  		gcCPULimiter.finishGCTransition(now)
   736  	})
   737  
   738  	// Release the world sema before Gosched() in STW mode
   739  	// because we will need to reacquire it later but before
   740  	// this goroutine becomes runnable again, and we could
   741  	// self-deadlock otherwise.
   742  	semrelease(&worldsema)
   743  	releasem(mp)
   744  
   745  	// Make sure we block instead of returning to user code
   746  	// in STW mode.
   747  	if mode != gcBackgroundMode {
   748  		Gosched()
   749  	}
   750  
   751  	semrelease(&work.startSema)
   752  }
   753  
   754  // gcMarkDoneFlushed counts the number of P's with flushed work.
   755  //
   756  // Ideally this would be a captured local in gcMarkDone, but forEachP
   757  // escapes its callback closure, so it can't capture anything.
   758  //
   759  // This is protected by markDoneSema.
   760  var gcMarkDoneFlushed uint32
   761  
   762  // gcMarkDone transitions the GC from mark to mark termination if all
   763  // reachable objects have been marked (that is, there are no grey
   764  // objects and can be no more in the future). Otherwise, it flushes
   765  // all local work to the global queues where it can be discovered by
   766  // other workers.
   767  //
   768  // This should be called when all local mark work has been drained and
   769  // there are no remaining workers. Specifically, when
   770  //
   771  //	work.nwait == work.nproc && !gcMarkWorkAvailable(p)
   772  //
   773  // The calling context must be preemptible.
   774  //
   775  // Flushing local work is important because idle Ps may have local
   776  // work queued. This is the only way to make that work visible and
   777  // drive GC to completion.
   778  //
   779  // It is explicitly okay to have write barriers in this function. If
   780  // it does transition to mark termination, then all reachable objects
   781  // have been marked, so the write barrier cannot shade any more
   782  // objects.
   783  func gcMarkDone() {
   784  	// Ensure only one thread is running the ragged barrier at a
   785  	// time.
   786  	semacquire(&work.markDoneSema)
   787  
   788  top:
   789  	// Re-check transition condition under transition lock.
   790  	//
   791  	// It's critical that this checks the global work queues are
   792  	// empty before performing the ragged barrier. Otherwise,
   793  	// there could be global work that a P could take after the P
   794  	// has passed the ragged barrier.
   795  	if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) {
   796  		semrelease(&work.markDoneSema)
   797  		return
   798  	}
   799  
   800  	// forEachP needs worldsema to execute, and we'll need it to
   801  	// stop the world later, so acquire worldsema now.
   802  	semacquire(&worldsema)
   803  
   804  	// Flush all local buffers and collect flushedWork flags.
   805  	gcMarkDoneFlushed = 0
   806  	systemstack(func() {
   807  		gp := getg().m.curg
   808  		// Mark the user stack as preemptible so that it may be scanned.
   809  		// Otherwise, our attempt to force all P's to a safepoint could
   810  		// result in a deadlock as we attempt to preempt a worker that's
   811  		// trying to preempt us (e.g. for a stack scan).
   812  		casGToWaiting(gp, _Grunning, waitReasonGCMarkTermination)
   813  		forEachP(func(pp *p) {
   814  			// Flush the write barrier buffer, since this may add
   815  			// work to the gcWork.
   816  			wbBufFlush1(pp)
   817  
   818  			// Flush the gcWork, since this may create global work
   819  			// and set the flushedWork flag.
   820  			//
   821  			// TODO(austin): Break up these workbufs to
   822  			// better distribute work.
   823  			pp.gcw.dispose()
   824  			// Collect the flushedWork flag.
   825  			if pp.gcw.flushedWork {
   826  				atomic.Xadd(&gcMarkDoneFlushed, 1)
   827  				pp.gcw.flushedWork = false
   828  			}
   829  		})
   830  		casgstatus(gp, _Gwaiting, _Grunning)
   831  	})
   832  
   833  	if gcMarkDoneFlushed != 0 {
   834  		// More grey objects were discovered since the
   835  		// previous termination check, so there may be more
   836  		// work to do. Keep going. It's possible the
   837  		// transition condition became true again during the
   838  		// ragged barrier, so re-check it.
   839  		semrelease(&worldsema)
   840  		goto top
   841  	}
   842  
   843  	// There was no global work, no local work, and no Ps
   844  	// communicated work since we took markDoneSema. Therefore
   845  	// there are no grey objects and no more objects can be
   846  	// shaded. Transition to mark termination.
   847  	now := nanotime()
   848  	work.tMarkTerm = now
   849  	work.pauseStart = now
   850  	getg().m.preemptoff = "gcing"
   851  	if traceEnabled() {
   852  		traceGCSTWStart(0)
   853  	}
   854  	systemstack(stopTheWorldWithSema)
   855  	// The gcphase is _GCmark, it will transition to _GCmarktermination
   856  	// below. The important thing is that the wb remains active until
   857  	// all marking is complete. This includes writes made by the GC.
   858  
   859  	// There is sometimes work left over when we enter mark termination due
   860  	// to write barriers performed after the completion barrier above.
   861  	// Detect this and resume concurrent mark. This is obviously
   862  	// unfortunate.
   863  	//
   864  	// See issue #27993 for details.
   865  	//
   866  	// Switch to the system stack to call wbBufFlush1, though in this case
   867  	// it doesn't matter because we're non-preemptible anyway.
   868  	restart := false
   869  	systemstack(func() {
   870  		for _, p := range allp {
   871  			wbBufFlush1(p)
   872  			if !p.gcw.empty() {
   873  				restart = true
   874  				break
   875  			}
   876  		}
   877  	})
   878  	if restart {
   879  		getg().m.preemptoff = ""
   880  		systemstack(func() {
   881  			now := startTheWorldWithSema(traceEnabled())
   882  			work.pauseNS += now - work.pauseStart
   883  			memstats.gcPauseDist.record(now - work.pauseStart)
   884  		})
   885  		semrelease(&worldsema)
   886  		goto top
   887  	}
   888  
   889  	gcComputeStartingStackSize()
   890  
   891  	// Disable assists and background workers. We must do
   892  	// this before waking blocked assists.
   893  	atomic.Store(&gcBlackenEnabled, 0)
   894  
   895  	// Notify the CPU limiter that GC assists will now cease.
   896  	gcCPULimiter.startGCTransition(false, now)
   897  
   898  	// Wake all blocked assists. These will run when we
   899  	// start the world again.
   900  	gcWakeAllAssists()
   901  
   902  	// Likewise, release the transition lock. Blocked
   903  	// workers and assists will run when we start the
   904  	// world again.
   905  	semrelease(&work.markDoneSema)
   906  
   907  	// In STW mode, re-enable user goroutines. These will be
   908  	// queued to run after we start the world.
   909  	schedEnableUser(true)
   910  
   911  	// endCycle depends on all gcWork cache stats being flushed.
   912  	// The termination algorithm above ensured that up to
   913  	// allocations since the ragged barrier.
   914  	gcController.endCycle(now, int(gomaxprocs), work.userForced)
   915  
   916  	// Perform mark termination. This will restart the world.
   917  	gcMarkTermination()
   918  }
   919  
   920  // World must be stopped and mark assists and background workers must be
   921  // disabled.
   922  func gcMarkTermination() {
   923  	// Start marktermination (write barrier remains enabled for now).
   924  	setGCPhase(_GCmarktermination)
   925  
   926  	work.heap1 = gcController.heapLive.Load()
   927  	startTime := nanotime()
   928  
   929  	mp := acquirem()
   930  	mp.preemptoff = "gcing"
   931  	mp.traceback = 2
   932  	curgp := mp.curg
   933  	casGToWaiting(curgp, _Grunning, waitReasonGarbageCollection)
   934  
   935  	// Run gc on the g0 stack. We do this so that the g stack
   936  	// we're currently running on will no longer change. Cuts
   937  	// the root set down a bit (g0 stacks are not scanned, and
   938  	// we don't need to scan gc's internal state).  We also
   939  	// need to switch to g0 so we can shrink the stack.
   940  	systemstack(func() {
   941  		gcMark(startTime)
   942  		// Must return immediately.
   943  		// The outer function's stack may have moved
   944  		// during gcMark (it shrinks stacks, including the
   945  		// outer function's stack), so we must not refer
   946  		// to any of its variables. Return back to the
   947  		// non-system stack to pick up the new addresses
   948  		// before continuing.
   949  	})
   950  
   951  	systemstack(func() {
   952  		work.heap2 = work.bytesMarked
   953  		if debug.gccheckmark > 0 {
   954  			// Run a full non-parallel, stop-the-world
   955  			// mark using checkmark bits, to check that we
   956  			// didn't forget to mark anything during the
   957  			// concurrent mark process.
   958  			startCheckmarks()
   959  			gcResetMarkState()
   960  			gcw := &getg().m.p.ptr().gcw
   961  			gcDrain(gcw, 0)
   962  			wbBufFlush1(getg().m.p.ptr())
   963  			gcw.dispose()
   964  			endCheckmarks()
   965  		}
   966  
   967  		// marking is complete so we can turn the write barrier off
   968  		setGCPhase(_GCoff)
   969  		gcSweep(work.mode)
   970  	})
   971  
   972  	mp.traceback = 0
   973  	casgstatus(curgp, _Gwaiting, _Grunning)
   974  
   975  	if traceEnabled() {
   976  		traceGCDone()
   977  	}
   978  
   979  	// all done
   980  	mp.preemptoff = ""
   981  
   982  	if gcphase != _GCoff {
   983  		throw("gc done but gcphase != _GCoff")
   984  	}
   985  
   986  	// Record heapInUse for scavenger.
   987  	memstats.lastHeapInUse = gcController.heapInUse.load()
   988  
   989  	// Update GC trigger and pacing, as well as downstream consumers
   990  	// of this pacing information, for the next cycle.
   991  	systemstack(gcControllerCommit)
   992  
   993  	// Update timing memstats
   994  	now := nanotime()
   995  	sec, nsec, _ := time_now()
   996  	unixNow := sec*1e9 + int64(nsec)
   997  	work.pauseNS += now - work.pauseStart
   998  	work.tEnd = now
   999  	memstats.gcPauseDist.record(now - work.pauseStart)
  1000  	atomic.Store64(&memstats.last_gc_unix, uint64(unixNow)) // must be Unix time to make sense to user
  1001  	atomic.Store64(&memstats.last_gc_nanotime, uint64(now)) // monotonic time for us
  1002  	memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
  1003  	memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
  1004  	memstats.pause_total_ns += uint64(work.pauseNS)
  1005  
  1006  	sweepTermCpu := int64(work.stwprocs) * (work.tMark - work.tSweepTerm)
  1007  	// We report idle marking time below, but omit it from the
  1008  	// overall utilization here since it's "free".
  1009  	markAssistCpu := gcController.assistTime.Load()
  1010  	markDedicatedCpu := gcController.dedicatedMarkTime.Load()
  1011  	markFractionalCpu := gcController.fractionalMarkTime.Load()
  1012  	markIdleCpu := gcController.idleMarkTime.Load()
  1013  	markTermCpu := int64(work.stwprocs) * (work.tEnd - work.tMarkTerm)
  1014  	scavAssistCpu := scavenge.assistTime.Load()
  1015  	scavBgCpu := scavenge.backgroundTime.Load()
  1016  
  1017  	// Update cumulative GC CPU stats.
  1018  	work.cpuStats.gcAssistTime += markAssistCpu
  1019  	work.cpuStats.gcDedicatedTime += markDedicatedCpu + markFractionalCpu
  1020  	work.cpuStats.gcIdleTime += markIdleCpu
  1021  	work.cpuStats.gcPauseTime += sweepTermCpu + markTermCpu
  1022  	work.cpuStats.gcTotalTime += sweepTermCpu + markAssistCpu + markDedicatedCpu + markFractionalCpu + markIdleCpu + markTermCpu
  1023  
  1024  	// Update cumulative scavenge CPU stats.
  1025  	work.cpuStats.scavengeAssistTime += scavAssistCpu
  1026  	work.cpuStats.scavengeBgTime += scavBgCpu
  1027  	work.cpuStats.scavengeTotalTime += scavAssistCpu + scavBgCpu
  1028  
  1029  	// Update total CPU.
  1030  	work.cpuStats.totalTime = sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs)
  1031  	work.cpuStats.idleTime += sched.idleTime.Load()
  1032  
  1033  	// Compute userTime. We compute this indirectly as everything that's not the above.
  1034  	//
  1035  	// Since time spent in _Pgcstop is covered by gcPauseTime, and time spent in _Pidle
  1036  	// is covered by idleTime, what we're left with is time spent in _Prunning and _Psyscall,
  1037  	// the latter of which is fine because the P will either go idle or get used for something
  1038  	// else via sysmon. Meanwhile if we subtract GC time from whatever's left, we get non-GC
  1039  	// _Prunning time. Note that this still leaves time spent in sweeping and in the scheduler,
  1040  	// but that's fine. The overwhelming majority of this time will be actual user time.
  1041  	work.cpuStats.userTime = work.cpuStats.totalTime - (work.cpuStats.gcTotalTime +
  1042  		work.cpuStats.scavengeTotalTime + work.cpuStats.idleTime)
  1043  
  1044  	// Compute overall GC CPU utilization.
  1045  	// Omit idle marking time from the overall utilization here since it's "free".
  1046  	memstats.gc_cpu_fraction = float64(work.cpuStats.gcTotalTime-work.cpuStats.gcIdleTime) / float64(work.cpuStats.totalTime)
  1047  
  1048  	// Reset assist time and background time stats.
  1049  	//
  1050  	// Do this now, instead of at the start of the next GC cycle, because
  1051  	// these two may keep accumulating even if the GC is not active.
  1052  	scavenge.assistTime.Store(0)
  1053  	scavenge.backgroundTime.Store(0)
  1054  
  1055  	// Reset idle time stat.
  1056  	sched.idleTime.Store(0)
  1057  
  1058  	// Reset sweep state.
  1059  	sweep.nbgsweep = 0
  1060  	sweep.npausesweep = 0
  1061  
  1062  	if work.userForced {
  1063  		memstats.numforcedgc++
  1064  	}
  1065  
  1066  	// Bump GC cycle count and wake goroutines waiting on sweep.
  1067  	lock(&work.sweepWaiters.lock)
  1068  	memstats.numgc++
  1069  	injectglist(&work.sweepWaiters.list)
  1070  	unlock(&work.sweepWaiters.lock)
  1071  
  1072  	// Increment the scavenge generation now.
  1073  	//
  1074  	// This moment represents peak heap in use because we're
  1075  	// about to start sweeping.
  1076  	mheap_.pages.scav.index.nextGen()
  1077  
  1078  	// Release the CPU limiter.
  1079  	gcCPULimiter.finishGCTransition(now)
  1080  
  1081  	// Finish the current heap profiling cycle and start a new
  1082  	// heap profiling cycle. We do this before starting the world
  1083  	// so events don't leak into the wrong cycle.
  1084  	mProf_NextCycle()
  1085  
  1086  	// There may be stale spans in mcaches that need to be swept.
  1087  	// Those aren't tracked in any sweep lists, so we need to
  1088  	// count them against sweep completion until we ensure all
  1089  	// those spans have been forced out.
  1090  	sl := sweep.active.begin()
  1091  	if !sl.valid {
  1092  		throw("failed to set sweep barrier")
  1093  	}
  1094  
  1095  	systemstack(func() { startTheWorldWithSema(traceEnabled()) })
  1096  
  1097  	// Flush the heap profile so we can start a new cycle next GC.
  1098  	// This is relatively expensive, so we don't do it with the
  1099  	// world stopped.
  1100  	mProf_Flush()
  1101  
  1102  	// Prepare workbufs for freeing by the sweeper. We do this
  1103  	// asynchronously because it can take non-trivial time.
  1104  	prepareFreeWorkbufs()
  1105  
  1106  	// Free stack spans. This must be done between GC cycles.
  1107  	systemstack(freeStackSpans)
  1108  
  1109  	// Ensure all mcaches are flushed. Each P will flush its own
  1110  	// mcache before allocating, but idle Ps may not. Since this
  1111  	// is necessary to sweep all spans, we need to ensure all
  1112  	// mcaches are flushed before we start the next GC cycle.
  1113  	//
  1114  	// While we're here, flush the page cache for idle Ps to avoid
  1115  	// having pages get stuck on them. These pages are hidden from
  1116  	// the scavenger, so in small idle heaps a significant amount
  1117  	// of additional memory might be held onto.
  1118  	systemstack(func() {
  1119  		forEachP(func(pp *p) {
  1120  			pp.mcache.prepareForSweep()
  1121  			if pp.status == _Pidle {
  1122  				systemstack(func() {
  1123  					lock(&mheap_.lock)
  1124  					pp.pcache.flush(&mheap_.pages)
  1125  					unlock(&mheap_.lock)
  1126  				})
  1127  			}
  1128  		})
  1129  	})
  1130  	// Now that we've swept stale spans in mcaches, they don't
  1131  	// count against unswept spans.
  1132  	sweep.active.end(sl)
  1133  
  1134  	// Print gctrace before dropping worldsema. As soon as we drop
  1135  	// worldsema another cycle could start and smash the stats
  1136  	// we're trying to print.
  1137  	if debug.gctrace > 0 {
  1138  		util := int(memstats.gc_cpu_fraction * 100)
  1139  
  1140  		var sbuf [24]byte
  1141  		printlock()
  1142  		print("gc ", memstats.numgc,
  1143  			" @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
  1144  			util, "%: ")
  1145  		prev := work.tSweepTerm
  1146  		for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
  1147  			if i != 0 {
  1148  				print("+")
  1149  			}
  1150  			print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
  1151  			prev = ns
  1152  		}
  1153  		print(" ms clock, ")
  1154  		for i, ns := range []int64{
  1155  			sweepTermCpu,
  1156  			gcController.assistTime.Load(),
  1157  			gcController.dedicatedMarkTime.Load() + gcController.fractionalMarkTime.Load(),
  1158  			gcController.idleMarkTime.Load(),
  1159  			markTermCpu,
  1160  		} {
  1161  			if i == 2 || i == 3 {
  1162  				// Separate mark time components with /.
  1163  				print("/")
  1164  			} else if i != 0 {
  1165  				print("+")
  1166  			}
  1167  			print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
  1168  		}
  1169  		print(" ms cpu, ",
  1170  			work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
  1171  			gcController.lastHeapGoal>>20, " MB goal, ",
  1172  			gcController.lastStackScan.Load()>>20, " MB stacks, ",
  1173  			gcController.globalsScan.Load()>>20, " MB globals, ",
  1174  			work.maxprocs, " P")
  1175  		if work.userForced {
  1176  			print(" (forced)")
  1177  		}
  1178  		print("\n")
  1179  		printunlock()
  1180  	}
  1181  
  1182  	// Set any arena chunks that were deferred to fault.
  1183  	lock(&userArenaState.lock)
  1184  	faultList := userArenaState.fault
  1185  	userArenaState.fault = nil
  1186  	unlock(&userArenaState.lock)
  1187  	for _, lc := range faultList {
  1188  		lc.mspan.setUserArenaChunkToFault()
  1189  	}
  1190  
  1191  	// Enable huge pages on some metadata if we cross a heap threshold.
  1192  	if gcController.heapGoal() > minHeapForMetadataHugePages {
  1193  		mheap_.enableMetadataHugePages()
  1194  	}
  1195  
  1196  	semrelease(&worldsema)
  1197  	semrelease(&gcsema)
  1198  	// Careful: another GC cycle may start now.
  1199  
  1200  	releasem(mp)
  1201  	mp = nil
  1202  
  1203  	// now that gc is done, kick off finalizer thread if needed
  1204  	if !concurrentSweep {
  1205  		// give the queued finalizers, if any, a chance to run
  1206  		Gosched()
  1207  	}
  1208  }
  1209  
  1210  // gcBgMarkStartWorkers prepares background mark worker goroutines. These
  1211  // goroutines will not run until the mark phase, but they must be started while
  1212  // the work is not stopped and from a regular G stack. The caller must hold
  1213  // worldsema.
  1214  func gcBgMarkStartWorkers() {
  1215  	// Background marking is performed by per-P G's. Ensure that each P has
  1216  	// a background GC G.
  1217  	//
  1218  	// Worker Gs don't exit if gomaxprocs is reduced. If it is raised
  1219  	// again, we can reuse the old workers; no need to create new workers.
  1220  	for gcBgMarkWorkerCount < gomaxprocs {
  1221  		go gcBgMarkWorker()
  1222  
  1223  		notetsleepg(&work.bgMarkReady, -1)
  1224  		noteclear(&work.bgMarkReady)
  1225  		// The worker is now guaranteed to be added to the pool before
  1226  		// its P's next findRunnableGCWorker.
  1227  
  1228  		gcBgMarkWorkerCount++
  1229  	}
  1230  }
  1231  
  1232  // gcBgMarkPrepare sets up state for background marking.
  1233  // Mutator assists must not yet be enabled.
  1234  func gcBgMarkPrepare() {
  1235  	// Background marking will stop when the work queues are empty
  1236  	// and there are no more workers (note that, since this is
  1237  	// concurrent, this may be a transient state, but mark
  1238  	// termination will clean it up). Between background workers
  1239  	// and assists, we don't really know how many workers there
  1240  	// will be, so we pretend to have an arbitrarily large number
  1241  	// of workers, almost all of which are "waiting". While a
  1242  	// worker is working it decrements nwait. If nproc == nwait,
  1243  	// there are no workers.
  1244  	work.nproc = ^uint32(0)
  1245  	work.nwait = ^uint32(0)
  1246  }
  1247  
  1248  // gcBgMarkWorkerNode is an entry in the gcBgMarkWorkerPool. It points to a single
  1249  // gcBgMarkWorker goroutine.
  1250  type gcBgMarkWorkerNode struct {
  1251  	// Unused workers are managed in a lock-free stack. This field must be first.
  1252  	node lfnode
  1253  
  1254  	// The g of this worker.
  1255  	gp guintptr
  1256  
  1257  	// Release this m on park. This is used to communicate with the unlock
  1258  	// function, which cannot access the G's stack. It is unused outside of
  1259  	// gcBgMarkWorker().
  1260  	m muintptr
  1261  }
  1262  
  1263  func gcBgMarkWorker() {
  1264  	gp := getg()
  1265  
  1266  	// We pass node to a gopark unlock function, so it can't be on
  1267  	// the stack (see gopark). Prevent deadlock from recursively
  1268  	// starting GC by disabling preemption.
  1269  	gp.m.preemptoff = "GC worker init"
  1270  	node := new(gcBgMarkWorkerNode)
  1271  	gp.m.preemptoff = ""
  1272  
  1273  	node.gp.set(gp)
  1274  
  1275  	node.m.set(acquirem())
  1276  	notewakeup(&work.bgMarkReady)
  1277  	// After this point, the background mark worker is generally scheduled
  1278  	// cooperatively by gcController.findRunnableGCWorker. While performing
  1279  	// work on the P, preemption is disabled because we are working on
  1280  	// P-local work buffers. When the preempt flag is set, this puts itself
  1281  	// into _Gwaiting to be woken up by gcController.findRunnableGCWorker
  1282  	// at the appropriate time.
  1283  	//
  1284  	// When preemption is enabled (e.g., while in gcMarkDone), this worker
  1285  	// may be preempted and schedule as a _Grunnable G from a runq. That is
  1286  	// fine; it will eventually gopark again for further scheduling via
  1287  	// findRunnableGCWorker.
  1288  	//
  1289  	// Since we disable preemption before notifying bgMarkReady, we
  1290  	// guarantee that this G will be in the worker pool for the next
  1291  	// findRunnableGCWorker. This isn't strictly necessary, but it reduces
  1292  	// latency between _GCmark starting and the workers starting.
  1293  
  1294  	for {
  1295  		// Go to sleep until woken by
  1296  		// gcController.findRunnableGCWorker.
  1297  		gopark(func(g *g, nodep unsafe.Pointer) bool {
  1298  			node := (*gcBgMarkWorkerNode)(nodep)
  1299  
  1300  			if mp := node.m.ptr(); mp != nil {
  1301  				// The worker G is no longer running; release
  1302  				// the M.
  1303  				//
  1304  				// N.B. it is _safe_ to release the M as soon
  1305  				// as we are no longer performing P-local mark
  1306  				// work.
  1307  				//
  1308  				// However, since we cooperatively stop work
  1309  				// when gp.preempt is set, if we releasem in
  1310  				// the loop then the following call to gopark
  1311  				// would immediately preempt the G. This is
  1312  				// also safe, but inefficient: the G must
  1313  				// schedule again only to enter gopark and park
  1314  				// again. Thus, we defer the release until
  1315  				// after parking the G.
  1316  				releasem(mp)
  1317  			}
  1318  
  1319  			// Release this G to the pool.
  1320  			gcBgMarkWorkerPool.push(&node.node)
  1321  			// Note that at this point, the G may immediately be
  1322  			// rescheduled and may be running.
  1323  			return true
  1324  		}, unsafe.Pointer(node), waitReasonGCWorkerIdle, traceEvGoBlock, 0)
  1325  
  1326  		// Preemption must not occur here, or another G might see
  1327  		// p.gcMarkWorkerMode.
  1328  
  1329  		// Disable preemption so we can use the gcw. If the
  1330  		// scheduler wants to preempt us, we'll stop draining,
  1331  		// dispose the gcw, and then preempt.
  1332  		node.m.set(acquirem())
  1333  		pp := gp.m.p.ptr() // P can't change with preemption disabled.
  1334  
  1335  		if gcBlackenEnabled == 0 {
  1336  			println("worker mode", pp.gcMarkWorkerMode)
  1337  			throw("gcBgMarkWorker: blackening not enabled")
  1338  		}
  1339  
  1340  		if pp.gcMarkWorkerMode == gcMarkWorkerNotWorker {
  1341  			throw("gcBgMarkWorker: mode not set")
  1342  		}
  1343  
  1344  		startTime := nanotime()
  1345  		pp.gcMarkWorkerStartTime = startTime
  1346  		var trackLimiterEvent bool
  1347  		if pp.gcMarkWorkerMode == gcMarkWorkerIdleMode {
  1348  			trackLimiterEvent = pp.limiterEvent.start(limiterEventIdleMarkWork, startTime)
  1349  		}
  1350  
  1351  		decnwait := atomic.Xadd(&work.nwait, -1)
  1352  		if decnwait == work.nproc {
  1353  			println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
  1354  			throw("work.nwait was > work.nproc")
  1355  		}
  1356  
  1357  		systemstack(func() {
  1358  			// Mark our goroutine preemptible so its stack
  1359  			// can be scanned. This lets two mark workers
  1360  			// scan each other (otherwise, they would
  1361  			// deadlock). We must not modify anything on
  1362  			// the G stack. However, stack shrinking is
  1363  			// disabled for mark workers, so it is safe to
  1364  			// read from the G stack.
  1365  			casGToWaiting(gp, _Grunning, waitReasonGCWorkerActive)
  1366  			switch pp.gcMarkWorkerMode {
  1367  			default:
  1368  				throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
  1369  			case gcMarkWorkerDedicatedMode:
  1370  				gcDrain(&pp.gcw, gcDrainUntilPreempt|gcDrainFlushBgCredit)
  1371  				if gp.preempt {
  1372  					// We were preempted. This is
  1373  					// a useful signal to kick
  1374  					// everything out of the run
  1375  					// queue so it can run
  1376  					// somewhere else.
  1377  					if drainQ, n := runqdrain(pp); n > 0 {
  1378  						lock(&sched.lock)
  1379  						globrunqputbatch(&drainQ, int32(n))
  1380  						unlock(&sched.lock)
  1381  					}
  1382  				}
  1383  				// Go back to draining, this time
  1384  				// without preemption.
  1385  				gcDrain(&pp.gcw, gcDrainFlushBgCredit)
  1386  			case gcMarkWorkerFractionalMode:
  1387  				gcDrain(&pp.gcw, gcDrainFractional|gcDrainUntilPreempt|gcDrainFlushBgCredit)
  1388  			case gcMarkWorkerIdleMode:
  1389  				gcDrain(&pp.gcw, gcDrainIdle|gcDrainUntilPreempt|gcDrainFlushBgCredit)
  1390  			}
  1391  			casgstatus(gp, _Gwaiting, _Grunning)
  1392  		})
  1393  
  1394  		// Account for time and mark us as stopped.
  1395  		now := nanotime()
  1396  		duration := now - startTime
  1397  		gcController.markWorkerStop(pp.gcMarkWorkerMode, duration)
  1398  		if trackLimiterEvent {
  1399  			pp.limiterEvent.stop(limiterEventIdleMarkWork, now)
  1400  		}
  1401  		if pp.gcMarkWorkerMode == gcMarkWorkerFractionalMode {
  1402  			atomic.Xaddint64(&pp.gcFractionalMarkTime, duration)
  1403  		}
  1404  
  1405  		// Was this the last worker and did we run out
  1406  		// of work?
  1407  		incnwait := atomic.Xadd(&work.nwait, +1)
  1408  		if incnwait > work.nproc {
  1409  			println("runtime: p.gcMarkWorkerMode=", pp.gcMarkWorkerMode,
  1410  				"work.nwait=", incnwait, "work.nproc=", work.nproc)
  1411  			throw("work.nwait > work.nproc")
  1412  		}
  1413  
  1414  		// We'll releasem after this point and thus this P may run
  1415  		// something else. We must clear the worker mode to avoid
  1416  		// attributing the mode to a different (non-worker) G in
  1417  		// traceGoStart.
  1418  		pp.gcMarkWorkerMode = gcMarkWorkerNotWorker
  1419  
  1420  		// If this worker reached a background mark completion
  1421  		// point, signal the main GC goroutine.
  1422  		if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
  1423  			// We don't need the P-local buffers here, allow
  1424  			// preemption because we may schedule like a regular
  1425  			// goroutine in gcMarkDone (block on locks, etc).
  1426  			releasem(node.m.ptr())
  1427  			node.m.set(nil)
  1428  
  1429  			gcMarkDone()
  1430  		}
  1431  	}
  1432  }
  1433  
  1434  // gcMarkWorkAvailable reports whether executing a mark worker
  1435  // on p is potentially useful. p may be nil, in which case it only
  1436  // checks the global sources of work.
  1437  func gcMarkWorkAvailable(p *p) bool {
  1438  	if p != nil && !p.gcw.empty() {
  1439  		return true
  1440  	}
  1441  	if !work.full.empty() {
  1442  		return true // global work available
  1443  	}
  1444  	if work.markrootNext < work.markrootJobs {
  1445  		return true // root scan work available
  1446  	}
  1447  	return false
  1448  }
  1449  
  1450  // gcMark runs the mark (or, for concurrent GC, mark termination)
  1451  // All gcWork caches must be empty.
  1452  // STW is in effect at this point.
  1453  func gcMark(startTime int64) {
  1454  	if debug.allocfreetrace > 0 {
  1455  		tracegc()
  1456  	}
  1457  
  1458  	if gcphase != _GCmarktermination {
  1459  		throw("in gcMark expecting to see gcphase as _GCmarktermination")
  1460  	}
  1461  	work.tstart = startTime
  1462  
  1463  	// Check that there's no marking work remaining.
  1464  	if work.full != 0 || work.markrootNext < work.markrootJobs {
  1465  		print("runtime: full=", hex(work.full), " next=", work.markrootNext, " jobs=", work.markrootJobs, " nDataRoots=", work.nDataRoots, " nBSSRoots=", work.nBSSRoots, " nSpanRoots=", work.nSpanRoots, " nStackRoots=", work.nStackRoots, "\n")
  1466  		panic("non-empty mark queue after concurrent mark")
  1467  	}
  1468  
  1469  	if debug.gccheckmark > 0 {
  1470  		// This is expensive when there's a large number of
  1471  		// Gs, so only do it if checkmark is also enabled.
  1472  		gcMarkRootCheck()
  1473  	}
  1474  
  1475  	// Drop allg snapshot. allgs may have grown, in which case
  1476  	// this is the only reference to the old backing store and
  1477  	// there's no need to keep it around.
  1478  	work.stackRoots = nil
  1479  
  1480  	// Clear out buffers and double-check that all gcWork caches
  1481  	// are empty. This should be ensured by gcMarkDone before we
  1482  	// enter mark termination.
  1483  	//
  1484  	// TODO: We could clear out buffers just before mark if this
  1485  	// has a non-negligible impact on STW time.
  1486  	for _, p := range allp {
  1487  		// The write barrier may have buffered pointers since
  1488  		// the gcMarkDone barrier. However, since the barrier
  1489  		// ensured all reachable objects were marked, all of
  1490  		// these must be pointers to black objects. Hence we
  1491  		// can just discard the write barrier buffer.
  1492  		if debug.gccheckmark > 0 {
  1493  			// For debugging, flush the buffer and make
  1494  			// sure it really was all marked.
  1495  			wbBufFlush1(p)
  1496  		} else {
  1497  			p.wbBuf.reset()
  1498  		}
  1499  
  1500  		gcw := &p.gcw
  1501  		if !gcw.empty() {
  1502  			printlock()
  1503  			print("runtime: P ", p.id, " flushedWork ", gcw.flushedWork)
  1504  			if gcw.wbuf1 == nil {
  1505  				print(" wbuf1=<nil>")
  1506  			} else {
  1507  				print(" wbuf1.n=", gcw.wbuf1.nobj)
  1508  			}
  1509  			if gcw.wbuf2 == nil {
  1510  				print(" wbuf2=<nil>")
  1511  			} else {
  1512  				print(" wbuf2.n=", gcw.wbuf2.nobj)
  1513  			}
  1514  			print("\n")
  1515  			throw("P has cached GC work at end of mark termination")
  1516  		}
  1517  		// There may still be cached empty buffers, which we
  1518  		// need to flush since we're going to free them. Also,
  1519  		// there may be non-zero stats because we allocated
  1520  		// black after the gcMarkDone barrier.
  1521  		gcw.dispose()
  1522  	}
  1523  
  1524  	// Flush scanAlloc from each mcache since we're about to modify
  1525  	// heapScan directly. If we were to flush this later, then scanAlloc
  1526  	// might have incorrect information.
  1527  	//
  1528  	// Note that it's not important to retain this information; we know
  1529  	// exactly what heapScan is at this point via scanWork.
  1530  	for _, p := range allp {
  1531  		c := p.mcache
  1532  		if c == nil {
  1533  			continue
  1534  		}
  1535  		c.scanAlloc = 0
  1536  	}
  1537  
  1538  	// Reset controller state.
  1539  	gcController.resetLive(work.bytesMarked)
  1540  }
  1541  
  1542  // gcSweep must be called on the system stack because it acquires the heap
  1543  // lock. See mheap for details.
  1544  //
  1545  // The world must be stopped.
  1546  //
  1547  //go:systemstack
  1548  func gcSweep(mode gcMode) {
  1549  	assertWorldStopped()
  1550  
  1551  	if gcphase != _GCoff {
  1552  		throw("gcSweep being done but phase is not GCoff")
  1553  	}
  1554  
  1555  	lock(&mheap_.lock)
  1556  	mheap_.sweepgen += 2
  1557  	sweep.active.reset()
  1558  	mheap_.pagesSwept.Store(0)
  1559  	mheap_.sweepArenas = mheap_.allArenas
  1560  	mheap_.reclaimIndex.Store(0)
  1561  	mheap_.reclaimCredit.Store(0)
  1562  	unlock(&mheap_.lock)
  1563  
  1564  	sweep.centralIndex.clear()
  1565  
  1566  	if !_ConcurrentSweep || mode == gcForceBlockMode {
  1567  		// Special case synchronous sweep.
  1568  		// Record that no proportional sweeping has to happen.
  1569  		lock(&mheap_.lock)
  1570  		mheap_.sweepPagesPerByte = 0
  1571  		unlock(&mheap_.lock)
  1572  		// Sweep all spans eagerly.
  1573  		for sweepone() != ^uintptr(0) {
  1574  			sweep.npausesweep++
  1575  		}
  1576  		// Free workbufs eagerly.
  1577  		prepareFreeWorkbufs()
  1578  		for freeSomeWbufs(false) {
  1579  		}
  1580  		// All "free" events for this mark/sweep cycle have
  1581  		// now happened, so we can make this profile cycle
  1582  		// available immediately.
  1583  		mProf_NextCycle()
  1584  		mProf_Flush()
  1585  		return
  1586  	}
  1587  
  1588  	// Background sweep.
  1589  	lock(&sweep.lock)
  1590  	if sweep.parked {
  1591  		sweep.parked = false
  1592  		ready(sweep.g, 0, true)
  1593  	}
  1594  	unlock(&sweep.lock)
  1595  }
  1596  
  1597  // gcResetMarkState resets global state prior to marking (concurrent
  1598  // or STW) and resets the stack scan state of all Gs.
  1599  //
  1600  // This is safe to do without the world stopped because any Gs created
  1601  // during or after this will start out in the reset state.
  1602  //
  1603  // gcResetMarkState must be called on the system stack because it acquires
  1604  // the heap lock. See mheap for details.
  1605  //
  1606  //go:systemstack
  1607  func gcResetMarkState() {
  1608  	// This may be called during a concurrent phase, so lock to make sure
  1609  	// allgs doesn't change.
  1610  	forEachG(func(gp *g) {
  1611  		gp.gcscandone = false // set to true in gcphasework
  1612  		gp.gcAssistBytes = 0
  1613  	})
  1614  
  1615  	// Clear page marks. This is just 1MB per 64GB of heap, so the
  1616  	// time here is pretty trivial.
  1617  	lock(&mheap_.lock)
  1618  	arenas := mheap_.allArenas
  1619  	unlock(&mheap_.lock)
  1620  	for _, ai := range arenas {
  1621  		ha := mheap_.arenas[ai.l1()][ai.l2()]
  1622  		for i := range ha.pageMarks {
  1623  			ha.pageMarks[i] = 0
  1624  		}
  1625  	}
  1626  
  1627  	work.bytesMarked = 0
  1628  	work.initialHeapLive = gcController.heapLive.Load()
  1629  }
  1630  
  1631  // Hooks for other packages
  1632  
  1633  var poolcleanup func()
  1634  var boringCaches []unsafe.Pointer // for crypto/internal/boring
  1635  
  1636  //go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
  1637  func sync_runtime_registerPoolCleanup(f func()) {
  1638  	poolcleanup = f
  1639  }
  1640  
  1641  //go:linkname boring_registerCache crypto/internal/boring/bcache.registerCache
  1642  func boring_registerCache(p unsafe.Pointer) {
  1643  	boringCaches = append(boringCaches, p)
  1644  }
  1645  
  1646  func clearpools() {
  1647  	// clear sync.Pools
  1648  	if poolcleanup != nil {
  1649  		poolcleanup()
  1650  	}
  1651  
  1652  	// clear boringcrypto caches
  1653  	for _, p := range boringCaches {
  1654  		atomicstorep(p, nil)
  1655  	}
  1656  
  1657  	// Clear central sudog cache.
  1658  	// Leave per-P caches alone, they have strictly bounded size.
  1659  	// Disconnect cached list before dropping it on the floor,
  1660  	// so that a dangling ref to one entry does not pin all of them.
  1661  	lock(&sched.sudoglock)
  1662  	var sg, sgnext *sudog
  1663  	for sg = sched.sudogcache; sg != nil; sg = sgnext {
  1664  		sgnext = sg.next
  1665  		sg.next = nil
  1666  	}
  1667  	sched.sudogcache = nil
  1668  	unlock(&sched.sudoglock)
  1669  
  1670  	// Clear central defer pool.
  1671  	// Leave per-P pools alone, they have strictly bounded size.
  1672  	lock(&sched.deferlock)
  1673  	// disconnect cached list before dropping it on the floor,
  1674  	// so that a dangling ref to one entry does not pin all of them.
  1675  	var d, dlink *_defer
  1676  	for d = sched.deferpool; d != nil; d = dlink {
  1677  		dlink = d.link
  1678  		d.link = nil
  1679  	}
  1680  	sched.deferpool = nil
  1681  	unlock(&sched.deferlock)
  1682  }
  1683  
  1684  // Timing
  1685  
  1686  // itoaDiv formats val/(10**dec) into buf.
  1687  func itoaDiv(buf []byte, val uint64, dec int) []byte {
  1688  	i := len(buf) - 1
  1689  	idec := i - dec
  1690  	for val >= 10 || i >= idec {
  1691  		buf[i] = byte(val%10 + '0')
  1692  		i--
  1693  		if i == idec {
  1694  			buf[i] = '.'
  1695  			i--
  1696  		}
  1697  		val /= 10
  1698  	}
  1699  	buf[i] = byte(val + '0')
  1700  	return buf[i:]
  1701  }
  1702  
  1703  // fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
  1704  func fmtNSAsMS(buf []byte, ns uint64) []byte {
  1705  	if ns >= 10e6 {
  1706  		// Format as whole milliseconds.
  1707  		return itoaDiv(buf, ns/1e6, 0)
  1708  	}
  1709  	// Format two digits of precision, with at most three decimal places.
  1710  	x := ns / 1e3
  1711  	if x == 0 {
  1712  		buf[0] = '0'
  1713  		return buf[:1]
  1714  	}
  1715  	dec := 3
  1716  	for x >= 100 {
  1717  		x /= 10
  1718  		dec--
  1719  	}
  1720  	return itoaDiv(buf, x, dec)
  1721  }
  1722  
  1723  // Helpers for testing GC.
  1724  
  1725  // gcTestMoveStackOnNextCall causes the stack to be moved on a call
  1726  // immediately following the call to this. It may not work correctly
  1727  // if any other work appears after this call (such as returning).
  1728  // Typically the following call should be marked go:noinline so it
  1729  // performs a stack check.
  1730  //
  1731  // In rare cases this may not cause the stack to move, specifically if
  1732  // there's a preemption between this call and the next.
  1733  func gcTestMoveStackOnNextCall() {
  1734  	gp := getg()
  1735  	gp.stackguard0 = stackForceMove
  1736  }
  1737  
  1738  // gcTestIsReachable performs a GC and returns a bit set where bit i
  1739  // is set if ptrs[i] is reachable.
  1740  func gcTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
  1741  	// This takes the pointers as unsafe.Pointers in order to keep
  1742  	// them live long enough for us to attach specials. After
  1743  	// that, we drop our references to them.
  1744  
  1745  	if len(ptrs) > 64 {
  1746  		panic("too many pointers for uint64 mask")
  1747  	}
  1748  
  1749  	// Block GC while we attach specials and drop our references
  1750  	// to ptrs. Otherwise, if a GC is in progress, it could mark
  1751  	// them reachable via this function before we have a chance to
  1752  	// drop them.
  1753  	semacquire(&gcsema)
  1754  
  1755  	// Create reachability specials for ptrs.
  1756  	specials := make([]*specialReachable, len(ptrs))
  1757  	for i, p := range ptrs {
  1758  		lock(&mheap_.speciallock)
  1759  		s := (*specialReachable)(mheap_.specialReachableAlloc.alloc())
  1760  		unlock(&mheap_.speciallock)
  1761  		s.special.kind = _KindSpecialReachable
  1762  		if !addspecial(p, &s.special) {
  1763  			throw("already have a reachable special (duplicate pointer?)")
  1764  		}
  1765  		specials[i] = s
  1766  		// Make sure we don't retain ptrs.
  1767  		ptrs[i] = nil
  1768  	}
  1769  
  1770  	semrelease(&gcsema)
  1771  
  1772  	// Force a full GC and sweep.
  1773  	GC()
  1774  
  1775  	// Process specials.
  1776  	for i, s := range specials {
  1777  		if !s.done {
  1778  			printlock()
  1779  			println("runtime: object", i, "was not swept")
  1780  			throw("IsReachable failed")
  1781  		}
  1782  		if s.reachable {
  1783  			mask |= 1 << i
  1784  		}
  1785  		lock(&mheap_.speciallock)
  1786  		mheap_.specialReachableAlloc.free(unsafe.Pointer(s))
  1787  		unlock(&mheap_.speciallock)
  1788  	}
  1789  
  1790  	return mask
  1791  }
  1792  
  1793  // gcTestPointerClass returns the category of what p points to, one of:
  1794  // "heap", "stack", "data", "bss", "other". This is useful for checking
  1795  // that a test is doing what it's intended to do.
  1796  //
  1797  // This is nosplit simply to avoid extra pointer shuffling that may
  1798  // complicate a test.
  1799  //
  1800  //go:nosplit
  1801  func gcTestPointerClass(p unsafe.Pointer) string {
  1802  	p2 := uintptr(noescape(p))
  1803  	gp := getg()
  1804  	if gp.stack.lo <= p2 && p2 < gp.stack.hi {
  1805  		return "stack"
  1806  	}
  1807  	if base, _, _ := findObject(p2, 0, 0); base != 0 {
  1808  		return "heap"
  1809  	}
  1810  	for _, datap := range activeModules() {
  1811  		if datap.data <= p2 && p2 < datap.edata || datap.noptrdata <= p2 && p2 < datap.enoptrdata {
  1812  			return "data"
  1813  		}
  1814  		if datap.bss <= p2 && p2 < datap.ebss || datap.noptrbss <= p2 && p2 <= datap.enoptrbss {
  1815  			return "bss"
  1816  		}
  1817  	}
  1818  	KeepAlive(p)
  1819  	return "other"
  1820  }