github.com/lovishpuri/go-40569/src@v0.0.0-20230519171745-f8623e7c56cf/runtime/stubs.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"internal/abi"
     9  	"internal/goarch"
    10  	"runtime/internal/math"
    11  	"unsafe"
    12  )
    13  
    14  // Should be a built-in for unsafe.Pointer?
    15  //
    16  //go:nosplit
    17  func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
    18  	return unsafe.Pointer(uintptr(p) + x)
    19  }
    20  
    21  // getg returns the pointer to the current g.
    22  // The compiler rewrites calls to this function into instructions
    23  // that fetch the g directly (from TLS or from the dedicated register).
    24  func getg() *g
    25  
    26  // mcall switches from the g to the g0 stack and invokes fn(g),
    27  // where g is the goroutine that made the call.
    28  // mcall saves g's current PC/SP in g->sched so that it can be restored later.
    29  // It is up to fn to arrange for that later execution, typically by recording
    30  // g in a data structure, causing something to call ready(g) later.
    31  // mcall returns to the original goroutine g later, when g has been rescheduled.
    32  // fn must not return at all; typically it ends by calling schedule, to let the m
    33  // run other goroutines.
    34  //
    35  // mcall can only be called from g stacks (not g0, not gsignal).
    36  //
    37  // This must NOT be go:noescape: if fn is a stack-allocated closure,
    38  // fn puts g on a run queue, and g executes before fn returns, the
    39  // closure will be invalidated while it is still executing.
    40  func mcall(fn func(*g))
    41  
    42  // systemstack runs fn on a system stack.
    43  // If systemstack is called from the per-OS-thread (g0) stack, or
    44  // if systemstack is called from the signal handling (gsignal) stack,
    45  // systemstack calls fn directly and returns.
    46  // Otherwise, systemstack is being called from the limited stack
    47  // of an ordinary goroutine. In this case, systemstack switches
    48  // to the per-OS-thread stack, calls fn, and switches back.
    49  // It is common to use a func literal as the argument, in order
    50  // to share inputs and outputs with the code around the call
    51  // to system stack:
    52  //
    53  //	... set up y ...
    54  //	systemstack(func() {
    55  //		x = bigcall(y)
    56  //	})
    57  //	... use x ...
    58  //
    59  //go:noescape
    60  func systemstack(fn func())
    61  
    62  //go:nosplit
    63  //go:nowritebarrierrec
    64  func badsystemstack() {
    65  	writeErrStr("fatal: systemstack called from unexpected goroutine")
    66  }
    67  
    68  // memclrNoHeapPointers clears n bytes starting at ptr.
    69  //
    70  // Usually you should use typedmemclr. memclrNoHeapPointers should be
    71  // used only when the caller knows that *ptr contains no heap pointers
    72  // because either:
    73  //
    74  // *ptr is initialized memory and its type is pointer-free, or
    75  //
    76  // *ptr is uninitialized memory (e.g., memory that's being reused
    77  // for a new allocation) and hence contains only "junk".
    78  //
    79  // memclrNoHeapPointers ensures that if ptr is pointer-aligned, and n
    80  // is a multiple of the pointer size, then any pointer-aligned,
    81  // pointer-sized portion is cleared atomically. Despite the function
    82  // name, this is necessary because this function is the underlying
    83  // implementation of typedmemclr and memclrHasPointers. See the doc of
    84  // memmove for more details.
    85  //
    86  // The (CPU-specific) implementations of this function are in memclr_*.s.
    87  //
    88  //go:noescape
    89  func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
    90  
    91  //go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers
    92  func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) {
    93  	memclrNoHeapPointers(ptr, n)
    94  }
    95  
    96  // memmove copies n bytes from "from" to "to".
    97  //
    98  // memmove ensures that any pointer in "from" is written to "to" with
    99  // an indivisible write, so that racy reads cannot observe a
   100  // half-written pointer. This is necessary to prevent the garbage
   101  // collector from observing invalid pointers, and differs from memmove
   102  // in unmanaged languages. However, memmove is only required to do
   103  // this if "from" and "to" may contain pointers, which can only be the
   104  // case if "from", "to", and "n" are all be word-aligned.
   105  //
   106  // Implementations are in memmove_*.s.
   107  //
   108  //go:noescape
   109  func memmove(to, from unsafe.Pointer, n uintptr)
   110  
   111  // Outside assembly calls memmove. Make sure it has ABI wrappers.
   112  //
   113  //go:linkname memmove
   114  
   115  //go:linkname reflect_memmove reflect.memmove
   116  func reflect_memmove(to, from unsafe.Pointer, n uintptr) {
   117  	memmove(to, from, n)
   118  }
   119  
   120  // exported value for testing
   121  const hashLoad = float32(loadFactorNum) / float32(loadFactorDen)
   122  
   123  //go:nosplit
   124  func fastrand() uint32 {
   125  	mp := getg().m
   126  	// Implement wyrand: https://github.com/wangyi-fudan/wyhash
   127  	// Only the platform that math.Mul64 can be lowered
   128  	// by the compiler should be in this list.
   129  	if goarch.IsAmd64|goarch.IsArm64|goarch.IsPpc64|
   130  		goarch.IsPpc64le|goarch.IsMips64|goarch.IsMips64le|
   131  		goarch.IsS390x|goarch.IsRiscv64|goarch.IsLoong64 == 1 {
   132  		mp.fastrand += 0xa0761d6478bd642f
   133  		hi, lo := math.Mul64(mp.fastrand, mp.fastrand^0xe7037ed1a0b428db)
   134  		return uint32(hi ^ lo)
   135  	}
   136  
   137  	// Implement xorshift64+: 2 32-bit xorshift sequences added together.
   138  	// Shift triplet [17,7,16] was calculated as indicated in Marsaglia's
   139  	// Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
   140  	// This generator passes the SmallCrush suite, part of TestU01 framework:
   141  	// http://simul.iro.umontreal.ca/testu01/tu01.html
   142  	t := (*[2]uint32)(unsafe.Pointer(&mp.fastrand))
   143  	s1, s0 := t[0], t[1]
   144  	s1 ^= s1 << 17
   145  	s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16
   146  	t[0], t[1] = s0, s1
   147  	return s0 + s1
   148  }
   149  
   150  //go:nosplit
   151  func fastrandn(n uint32) uint32 {
   152  	// This is similar to fastrand() % n, but faster.
   153  	// See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
   154  	return uint32(uint64(fastrand()) * uint64(n) >> 32)
   155  }
   156  
   157  func fastrand64() uint64 {
   158  	mp := getg().m
   159  	// Implement wyrand: https://github.com/wangyi-fudan/wyhash
   160  	// Only the platform that math.Mul64 can be lowered
   161  	// by the compiler should be in this list.
   162  	if goarch.IsAmd64|goarch.IsArm64|goarch.IsPpc64|
   163  		goarch.IsPpc64le|goarch.IsMips64|goarch.IsMips64le|
   164  		goarch.IsS390x|goarch.IsRiscv64 == 1 {
   165  		mp.fastrand += 0xa0761d6478bd642f
   166  		hi, lo := math.Mul64(mp.fastrand, mp.fastrand^0xe7037ed1a0b428db)
   167  		return hi ^ lo
   168  	}
   169  
   170  	// Implement xorshift64+: 2 32-bit xorshift sequences added together.
   171  	// Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
   172  	// This generator passes the SmallCrush suite, part of TestU01 framework:
   173  	// http://simul.iro.umontreal.ca/testu01/tu01.html
   174  	t := (*[2]uint32)(unsafe.Pointer(&mp.fastrand))
   175  	s1, s0 := t[0], t[1]
   176  	s1 ^= s1 << 17
   177  	s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16
   178  	r := uint64(s0 + s1)
   179  
   180  	s0, s1 = s1, s0
   181  	s1 ^= s1 << 17
   182  	s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16
   183  	r += uint64(s0+s1) << 32
   184  
   185  	t[0], t[1] = s0, s1
   186  	return r
   187  }
   188  
   189  func fastrandu() uint {
   190  	if goarch.PtrSize == 4 {
   191  		return uint(fastrand())
   192  	}
   193  	return uint(fastrand64())
   194  }
   195  
   196  //go:linkname rand_fastrand64 math/rand.fastrand64
   197  func rand_fastrand64() uint64 { return fastrand64() }
   198  
   199  //go:linkname sync_fastrandn sync.fastrandn
   200  func sync_fastrandn(n uint32) uint32 { return fastrandn(n) }
   201  
   202  //go:linkname net_fastrandu net.fastrandu
   203  func net_fastrandu() uint { return fastrandu() }
   204  
   205  //go:linkname os_fastrand os.fastrand
   206  func os_fastrand() uint32 { return fastrand() }
   207  
   208  // in internal/bytealg/equal_*.s
   209  //
   210  //go:noescape
   211  func memequal(a, b unsafe.Pointer, size uintptr) bool
   212  
   213  // noescape hides a pointer from escape analysis.  noescape is
   214  // the identity function but escape analysis doesn't think the
   215  // output depends on the input.  noescape is inlined and currently
   216  // compiles down to zero instructions.
   217  // USE CAREFULLY!
   218  //
   219  //go:nosplit
   220  func noescape(p unsafe.Pointer) unsafe.Pointer {
   221  	x := uintptr(p)
   222  	return unsafe.Pointer(x ^ 0)
   223  }
   224  
   225  // noEscapePtr hides a pointer from escape analysis. See noescape.
   226  // USE CAREFULLY!
   227  //
   228  //go:nosplit
   229  func noEscapePtr[T any](p *T) *T {
   230  	x := uintptr(unsafe.Pointer(p))
   231  	return (*T)(unsafe.Pointer(x ^ 0))
   232  }
   233  
   234  // Not all cgocallback frames are actually cgocallback,
   235  // so not all have these arguments. Mark them uintptr so that the GC
   236  // does not misinterpret memory when the arguments are not present.
   237  // cgocallback is not called from Go, only from crosscall2.
   238  // This in turn calls cgocallbackg, which is where we'll find
   239  // pointer-declared arguments.
   240  //
   241  // When fn is nil (frame is saved g), call dropm instead,
   242  // this is used when the C thread is exiting.
   243  func cgocallback(fn, frame, ctxt uintptr)
   244  
   245  func gogo(buf *gobuf)
   246  
   247  func asminit()
   248  func setg(gg *g)
   249  func breakpoint()
   250  
   251  // reflectcall calls fn with arguments described by stackArgs, stackArgsSize,
   252  // frameSize, and regArgs.
   253  //
   254  // Arguments passed on the stack and space for return values passed on the stack
   255  // must be laid out at the space pointed to by stackArgs (with total length
   256  // stackArgsSize) according to the ABI.
   257  //
   258  // stackRetOffset must be some value <= stackArgsSize that indicates the
   259  // offset within stackArgs where the return value space begins.
   260  //
   261  // frameSize is the total size of the argument frame at stackArgs and must
   262  // therefore be >= stackArgsSize. It must include additional space for spilling
   263  // register arguments for stack growth and preemption.
   264  //
   265  // TODO(mknyszek): Once we don't need the additional spill space, remove frameSize,
   266  // since frameSize will be redundant with stackArgsSize.
   267  //
   268  // Arguments passed in registers must be laid out in regArgs according to the ABI.
   269  // regArgs will hold any return values passed in registers after the call.
   270  //
   271  // reflectcall copies stack arguments from stackArgs to the goroutine stack, and
   272  // then copies back stackArgsSize-stackRetOffset bytes back to the return space
   273  // in stackArgs once fn has completed. It also "unspills" argument registers from
   274  // regArgs before calling fn, and spills them back into regArgs immediately
   275  // following the call to fn. If there are results being returned on the stack,
   276  // the caller should pass the argument frame type as stackArgsType so that
   277  // reflectcall can execute appropriate write barriers during the copy.
   278  //
   279  // reflectcall expects regArgs.ReturnIsPtr to be populated indicating which
   280  // registers on the return path will contain Go pointers. It will then store
   281  // these pointers in regArgs.Ptrs such that they are visible to the GC.
   282  //
   283  // Package reflect passes a frame type. In package runtime, there is only
   284  // one call that copies results back, in callbackWrap in syscall_windows.go, and it
   285  // does NOT pass a frame type, meaning there are no write barriers invoked. See that
   286  // call site for justification.
   287  //
   288  // Package reflect accesses this symbol through a linkname.
   289  //
   290  // Arguments passed through to reflectcall do not escape. The type is used
   291  // only in a very limited callee of reflectcall, the stackArgs are copied, and
   292  // regArgs is only used in the reflectcall frame.
   293  //
   294  //go:noescape
   295  func reflectcall(stackArgsType *_type, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   296  
   297  func procyield(cycles uint32)
   298  
   299  type neverCallThisFunction struct{}
   300  
   301  // goexit is the return stub at the top of every goroutine call stack.
   302  // Each goroutine stack is constructed as if goexit called the
   303  // goroutine's entry point function, so that when the entry point
   304  // function returns, it will return to goexit, which will call goexit1
   305  // to perform the actual exit.
   306  //
   307  // This function must never be called directly. Call goexit1 instead.
   308  // gentraceback assumes that goexit terminates the stack. A direct
   309  // call on the stack will cause gentraceback to stop walking the stack
   310  // prematurely and if there is leftover state it may panic.
   311  func goexit(neverCallThisFunction)
   312  
   313  // publicationBarrier performs a store/store barrier (a "publication"
   314  // or "export" barrier). Some form of synchronization is required
   315  // between initializing an object and making that object accessible to
   316  // another processor. Without synchronization, the initialization
   317  // writes and the "publication" write may be reordered, allowing the
   318  // other processor to follow the pointer and observe an uninitialized
   319  // object. In general, higher-level synchronization should be used,
   320  // such as locking or an atomic pointer write. publicationBarrier is
   321  // for when those aren't an option, such as in the implementation of
   322  // the memory manager.
   323  //
   324  // There's no corresponding barrier for the read side because the read
   325  // side naturally has a data dependency order. All architectures that
   326  // Go supports or seems likely to ever support automatically enforce
   327  // data dependency ordering.
   328  func publicationBarrier()
   329  
   330  // getcallerpc returns the program counter (PC) of its caller's caller.
   331  // getcallersp returns the stack pointer (SP) of its caller's caller.
   332  // The implementation may be a compiler intrinsic; there is not
   333  // necessarily code implementing this on every platform.
   334  //
   335  // For example:
   336  //
   337  //	func f(arg1, arg2, arg3 int) {
   338  //		pc := getcallerpc()
   339  //		sp := getcallersp()
   340  //	}
   341  //
   342  // These two lines find the PC and SP immediately following
   343  // the call to f (where f will return).
   344  //
   345  // The call to getcallerpc and getcallersp must be done in the
   346  // frame being asked about.
   347  //
   348  // The result of getcallersp is correct at the time of the return,
   349  // but it may be invalidated by any subsequent call to a function
   350  // that might relocate the stack in order to grow or shrink it.
   351  // A general rule is that the result of getcallersp should be used
   352  // immediately and can only be passed to nosplit functions.
   353  
   354  //go:noescape
   355  func getcallerpc() uintptr
   356  
   357  //go:noescape
   358  func getcallersp() uintptr // implemented as an intrinsic on all platforms
   359  
   360  // getclosureptr returns the pointer to the current closure.
   361  // getclosureptr can only be used in an assignment statement
   362  // at the entry of a function. Moreover, go:nosplit directive
   363  // must be specified at the declaration of caller function,
   364  // so that the function prolog does not clobber the closure register.
   365  // for example:
   366  //
   367  //	//go:nosplit
   368  //	func f(arg1, arg2, arg3 int) {
   369  //		dx := getclosureptr()
   370  //	}
   371  //
   372  // The compiler rewrites calls to this function into instructions that fetch the
   373  // pointer from a well-known register (DX on x86 architecture, etc.) directly.
   374  func getclosureptr() uintptr
   375  
   376  //go:noescape
   377  func asmcgocall(fn, arg unsafe.Pointer) int32
   378  
   379  func morestack()
   380  func morestack_noctxt()
   381  func rt0_go()
   382  
   383  // return0 is a stub used to return 0 from deferproc.
   384  // It is called at the very end of deferproc to signal
   385  // the calling Go function that it should not jump
   386  // to deferreturn.
   387  // in asm_*.s
   388  func return0()
   389  
   390  // in asm_*.s
   391  // not called directly; definitions here supply type information for traceback.
   392  // These must have the same signature (arg pointer map) as reflectcall.
   393  func call16(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   394  func call32(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   395  func call64(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   396  func call128(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   397  func call256(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   398  func call512(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   399  func call1024(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   400  func call2048(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   401  func call4096(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   402  func call8192(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   403  func call16384(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   404  func call32768(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   405  func call65536(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   406  func call131072(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   407  func call262144(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   408  func call524288(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   409  func call1048576(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   410  func call2097152(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   411  func call4194304(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   412  func call8388608(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   413  func call16777216(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   414  func call33554432(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   415  func call67108864(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   416  func call134217728(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   417  func call268435456(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   418  func call536870912(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   419  func call1073741824(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
   420  
   421  func systemstack_switch()
   422  
   423  // alignUp rounds n up to a multiple of a. a must be a power of 2.
   424  func alignUp(n, a uintptr) uintptr {
   425  	return (n + a - 1) &^ (a - 1)
   426  }
   427  
   428  // alignDown rounds n down to a multiple of a. a must be a power of 2.
   429  func alignDown(n, a uintptr) uintptr {
   430  	return n &^ (a - 1)
   431  }
   432  
   433  // divRoundUp returns ceil(n / a).
   434  func divRoundUp(n, a uintptr) uintptr {
   435  	// a is generally a power of two. This will get inlined and
   436  	// the compiler will optimize the division.
   437  	return (n + a - 1) / a
   438  }
   439  
   440  // checkASM reports whether assembly runtime checks have passed.
   441  func checkASM() bool
   442  
   443  func memequal_varlen(a, b unsafe.Pointer) bool
   444  
   445  // bool2int returns 0 if x is false or 1 if x is true.
   446  func bool2int(x bool) int {
   447  	// Avoid branches. In the SSA compiler, this compiles to
   448  	// exactly what you would want it to.
   449  	return int(uint8(*(*uint8)(unsafe.Pointer(&x))))
   450  }
   451  
   452  // abort crashes the runtime in situations where even throw might not
   453  // work. In general it should do something a debugger will recognize
   454  // (e.g., an INT3 on x86). A crash in abort is recognized by the
   455  // signal handler, which will attempt to tear down the runtime
   456  // immediately.
   457  func abort()
   458  
   459  // Called from compiled code; declared for vet; do NOT call from Go.
   460  func gcWriteBarrier1()
   461  func gcWriteBarrier2()
   462  func gcWriteBarrier3()
   463  func gcWriteBarrier4()
   464  func gcWriteBarrier5()
   465  func gcWriteBarrier6()
   466  func gcWriteBarrier7()
   467  func gcWriteBarrier8()
   468  func duffzero()
   469  func duffcopy()
   470  
   471  // Called from linker-generated .initarray; declared for go vet; do NOT call from Go.
   472  func addmoduledata()
   473  
   474  // Injected by the signal handler for panicking signals.
   475  // Initializes any registers that have fixed meaning at calls but
   476  // are scratch in bodies and calls sigpanic.
   477  // On many platforms it just jumps to sigpanic.
   478  func sigpanic0()
   479  
   480  // intArgRegs is used by the various register assignment
   481  // algorithm implementations in the runtime. These include:.
   482  // - Finalizers (mfinal.go)
   483  // - Windows callbacks (syscall_windows.go)
   484  //
   485  // Both are stripped-down versions of the algorithm since they
   486  // only have to deal with a subset of cases (finalizers only
   487  // take a pointer or interface argument, Go Windows callbacks
   488  // don't support floating point).
   489  //
   490  // It should be modified with care and are generally only
   491  // modified when testing this package.
   492  //
   493  // It should never be set higher than its internal/abi
   494  // constant counterparts, because the system relies on a
   495  // structure that is at least large enough to hold the
   496  // registers the system supports.
   497  //
   498  // Protected by finlock.
   499  var intArgRegs = abi.IntArgRegs