github.com/ltltlt/go-source-code@v0.0.0-20190830023027-95be009773aa/cmd/compile/internal/ssa/gen/generic.rules (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Simplifications that apply to all backend architectures. As an example, this 6 // Go source code 7 // 8 // y := 0 * x 9 // 10 // can be translated into y := 0 without losing any information, which saves a 11 // pointless multiplication instruction. Other .rules files in this directory 12 // (for example AMD64.rules) contain rules specific to the architecture in the 13 // filename. The rules here apply to every architecture. 14 // 15 // The code for parsing this file lives in rulegen.go; this file generates 16 // ssa/rewritegeneric.go. 17 18 // values are specified using the following format: 19 // (op <type> [auxint] {aux} arg0 arg1 ...) 20 // the type, aux, and auxint fields are optional 21 // on the matching side 22 // - the type, aux, and auxint fields must match if they are specified. 23 // - the first occurrence of a variable defines that variable. Subsequent 24 // uses must match (be == to) the first use. 25 // - v is defined to be the value matched. 26 // - an additional conditional can be provided after the match pattern with "&&". 27 // on the generated side 28 // - the type of the top-level expression is the same as the one on the left-hand side. 29 // - the type of any subexpressions must be specified explicitly (or 30 // be specified in the op's type field). 31 // - auxint will be 0 if not specified. 32 // - aux will be nil if not specified. 33 34 // blocks are specified using the following format: 35 // (kind controlvalue succ0 succ1 ...) 36 // controlvalue must be "nil" or a value expression 37 // succ* fields must be variables 38 // For now, the generated successors must be a permutation of the matched successors. 39 40 // constant folding 41 (Trunc16to8 (Const16 [c])) -> (Const8 [int64(int8(c))]) 42 (Trunc32to8 (Const32 [c])) -> (Const8 [int64(int8(c))]) 43 (Trunc32to16 (Const32 [c])) -> (Const16 [int64(int16(c))]) 44 (Trunc64to8 (Const64 [c])) -> (Const8 [int64(int8(c))]) 45 (Trunc64to16 (Const64 [c])) -> (Const16 [int64(int16(c))]) 46 (Trunc64to32 (Const64 [c])) -> (Const32 [int64(int32(c))]) 47 (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))]) 48 (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float 49 (Cvt32to32F (Const32 [c])) -> (Const32F [f2i(float64(float32(int32(c))))]) 50 (Cvt32to64F (Const32 [c])) -> (Const64F [f2i(float64(int32(c)))]) 51 (Cvt64to32F (Const64 [c])) -> (Const32F [f2i(float64(float32(c)))]) 52 (Cvt64to64F (Const64 [c])) -> (Const64F [f2i(float64(c))]) 53 (Cvt32Fto32 (Const32F [c])) -> (Const32 [int64(int32(i2f(c)))]) 54 (Cvt32Fto64 (Const32F [c])) -> (Const64 [int64(i2f(c))]) 55 (Cvt64Fto32 (Const64F [c])) -> (Const32 [int64(int32(i2f(c)))]) 56 (Cvt64Fto64 (Const64F [c])) -> (Const64 [int64(i2f(c))]) 57 (Round32F x:(Const32F)) -> x 58 (Round64F x:(Const64F)) -> x 59 60 (Trunc16to8 (ZeroExt8to16 x)) -> x 61 (Trunc32to8 (ZeroExt8to32 x)) -> x 62 (Trunc32to16 (ZeroExt8to32 x)) -> (ZeroExt8to16 x) 63 (Trunc32to16 (ZeroExt16to32 x)) -> x 64 (Trunc64to8 (ZeroExt8to64 x)) -> x 65 (Trunc64to16 (ZeroExt8to64 x)) -> (ZeroExt8to16 x) 66 (Trunc64to16 (ZeroExt16to64 x)) -> x 67 (Trunc64to32 (ZeroExt8to64 x)) -> (ZeroExt8to32 x) 68 (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x) 69 (Trunc64to32 (ZeroExt32to64 x)) -> x 70 (Trunc16to8 (SignExt8to16 x)) -> x 71 (Trunc32to8 (SignExt8to32 x)) -> x 72 (Trunc32to16 (SignExt8to32 x)) -> (SignExt8to16 x) 73 (Trunc32to16 (SignExt16to32 x)) -> x 74 (Trunc64to8 (SignExt8to64 x)) -> x 75 (Trunc64to16 (SignExt8to64 x)) -> (SignExt8to16 x) 76 (Trunc64to16 (SignExt16to64 x)) -> x 77 (Trunc64to32 (SignExt8to64 x)) -> (SignExt8to32 x) 78 (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x) 79 (Trunc64to32 (SignExt32to64 x)) -> x 80 81 (ZeroExt8to16 (Const8 [c])) -> (Const16 [int64( uint8(c))]) 82 (ZeroExt8to32 (Const8 [c])) -> (Const32 [int64( uint8(c))]) 83 (ZeroExt8to64 (Const8 [c])) -> (Const64 [int64( uint8(c))]) 84 (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))]) 85 (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))]) 86 (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))]) 87 (SignExt8to16 (Const8 [c])) -> (Const16 [int64( int8(c))]) 88 (SignExt8to32 (Const8 [c])) -> (Const32 [int64( int8(c))]) 89 (SignExt8to64 (Const8 [c])) -> (Const64 [int64( int8(c))]) 90 (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))]) 91 (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))]) 92 (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))]) 93 94 (Neg8 (Const8 [c])) -> (Const8 [int64( -int8(c))]) 95 (Neg16 (Const16 [c])) -> (Const16 [int64(-int16(c))]) 96 (Neg32 (Const32 [c])) -> (Const32 [int64(-int32(c))]) 97 (Neg64 (Const64 [c])) -> (Const64 [-c]) 98 (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))]) 99 (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))]) 100 101 (Add8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c+d))]) 102 (Add16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c+d))]) 103 (Add32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c+d))]) 104 (Add64 (Const64 [c]) (Const64 [d])) -> (Const64 [c+d]) 105 (Add32F (Const32F [c]) (Const32F [d])) -> 106 (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision 107 (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))]) 108 (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c]) 109 (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c]) 110 111 (Sub8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c-d))]) 112 (Sub16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c-d))]) 113 (Sub32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c-d))]) 114 (Sub64 (Const64 [c]) (Const64 [d])) -> (Const64 [c-d]) 115 (Sub32F (Const32F [c]) (Const32F [d])) -> 116 (Const32F [f2i(float64(i2f32(c) - i2f32(d)))]) 117 (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))]) 118 119 (Mul8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c*d))]) 120 (Mul16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c*d))]) 121 (Mul32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c*d))]) 122 (Mul64 (Const64 [c]) (Const64 [d])) -> (Const64 [c*d]) 123 (Mul32F (Const32F [c]) (Const32F [d])) -> 124 (Const32F [f2i(float64(i2f32(c) * i2f32(d)))]) 125 (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))]) 126 127 (And8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c&d))]) 128 (And16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c&d))]) 129 (And32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c&d))]) 130 (And64 (Const64 [c]) (Const64 [d])) -> (Const64 [c&d]) 131 132 (Or8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c|d))]) 133 (Or16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c|d))]) 134 (Or32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c|d))]) 135 (Or64 (Const64 [c]) (Const64 [d])) -> (Const64 [c|d]) 136 137 (Xor8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c^d))]) 138 (Xor16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c^d))]) 139 (Xor32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c^d))]) 140 (Xor64 (Const64 [c]) (Const64 [d])) -> (Const64 [c^d]) 141 142 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c)/int8(d))]) 143 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))]) 144 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))]) 145 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c/d]) 146 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(uint8(c)/uint8(d)))]) 147 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))]) 148 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))]) 149 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))]) 150 (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))]) 151 (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))]) 152 153 // Convert x * 1 to x. 154 (Mul8 (Const8 [1]) x) -> x 155 (Mul16 (Const16 [1]) x) -> x 156 (Mul32 (Const32 [1]) x) -> x 157 (Mul64 (Const64 [1]) x) -> x 158 159 // Convert x * -1 to -x. 160 (Mul8 (Const8 [-1]) x) -> (Neg8 x) 161 (Mul16 (Const16 [-1]) x) -> (Neg16 x) 162 (Mul32 (Const32 [-1]) x) -> (Neg32 x) 163 (Mul64 (Const64 [-1]) x) -> (Neg64 x) 164 165 // Convert multiplication by a power of two to a shift. 166 (Mul8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 167 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 168 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 169 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 170 (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 171 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 172 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 173 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 174 175 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c % d))]) 176 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))]) 177 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))]) 178 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d]) 179 180 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(uint8(c) % uint8(d))]) 181 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))]) 182 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))]) 183 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))]) 184 185 (Lsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)]) 186 (Rsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)]) 187 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))]) 188 (Lsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))]) 189 (Rsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))]) 190 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))]) 191 (Lsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))]) 192 (Rsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))]) 193 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))]) 194 (Lsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) << uint64(d))]) 195 (Rsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) >> uint64(d))]) 196 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(uint8(c) >> uint64(d)))]) 197 198 // Fold IsInBounds when the range of the index cannot exceed the limit. 199 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c -> (ConstBool [1]) 200 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c -> (ConstBool [1]) 201 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1]) 202 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1]) 203 (IsInBounds x x) -> (ConstBool [0]) 204 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d -> (ConstBool [1]) 205 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 206 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 207 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 208 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 209 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 210 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 211 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 212 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 213 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 214 (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 215 (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 216 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). 217 (IsInBounds (Mod32u _ y) y) -> (ConstBool [1]) 218 (IsInBounds (Mod64u _ y) y) -> (ConstBool [1]) 219 // Right shifting a unsigned number limits its value. 220 (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 221 (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 222 (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 223 (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 224 (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) 225 (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) 226 (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) 227 (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) 228 (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) 229 (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d -> (ConstBool [1]) 230 231 (IsSliceInBounds x x) -> (ConstBool [1]) 232 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 233 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 234 (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1]) 235 (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1]) 236 (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 237 (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 238 (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1]) 239 240 (Eq64 x x) -> (ConstBool [1]) 241 (Eq32 x x) -> (ConstBool [1]) 242 (Eq16 x x) -> (ConstBool [1]) 243 (Eq8 x x) -> (ConstBool [1]) 244 (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)]) 245 (EqB (ConstBool [0]) x) -> (Not x) 246 (EqB (ConstBool [1]) x) -> x 247 248 (Neq64 x x) -> (ConstBool [0]) 249 (Neq32 x x) -> (ConstBool [0]) 250 (Neq16 x x) -> (ConstBool [0]) 251 (Neq8 x x) -> (ConstBool [0]) 252 (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)]) 253 (NeqB (ConstBool [0]) x) -> x 254 (NeqB (ConstBool [1]) x) -> (Not x) 255 (NeqB (Not x) (Not y)) -> (NeqB x y) 256 257 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x) 258 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x) 259 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x) 260 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Eq8 (Const8 <t> [int64(int8(c-d))]) x) 261 262 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x) 263 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x) 264 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x) 265 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x) 266 267 // Canonicalize x-const to x+(-const) 268 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x) 269 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x) 270 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x) 271 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 -> (Add8 (Const8 <t> [int64(int8(-c))]) x) 272 273 // fold negation into comparison operators 274 (Not (Eq64 x y)) -> (Neq64 x y) 275 (Not (Eq32 x y)) -> (Neq32 x y) 276 (Not (Eq16 x y)) -> (Neq16 x y) 277 (Not (Eq8 x y)) -> (Neq8 x y) 278 (Not (EqB x y)) -> (NeqB x y) 279 280 (Not (Neq64 x y)) -> (Eq64 x y) 281 (Not (Neq32 x y)) -> (Eq32 x y) 282 (Not (Neq16 x y)) -> (Eq16 x y) 283 (Not (Neq8 x y)) -> (Eq8 x y) 284 (Not (NeqB x y)) -> (EqB x y) 285 286 (Not (Greater64 x y)) -> (Leq64 x y) 287 (Not (Greater32 x y)) -> (Leq32 x y) 288 (Not (Greater16 x y)) -> (Leq16 x y) 289 (Not (Greater8 x y)) -> (Leq8 x y) 290 291 (Not (Greater64U x y)) -> (Leq64U x y) 292 (Not (Greater32U x y)) -> (Leq32U x y) 293 (Not (Greater16U x y)) -> (Leq16U x y) 294 (Not (Greater8U x y)) -> (Leq8U x y) 295 296 (Not (Geq64 x y)) -> (Less64 x y) 297 (Not (Geq32 x y)) -> (Less32 x y) 298 (Not (Geq16 x y)) -> (Less16 x y) 299 (Not (Geq8 x y)) -> (Less8 x y) 300 301 (Not (Geq64U x y)) -> (Less64U x y) 302 (Not (Geq32U x y)) -> (Less32U x y) 303 (Not (Geq16U x y)) -> (Less16U x y) 304 (Not (Geq8U x y)) -> (Less8U x y) 305 306 (Not (Less64 x y)) -> (Geq64 x y) 307 (Not (Less32 x y)) -> (Geq32 x y) 308 (Not (Less16 x y)) -> (Geq16 x y) 309 (Not (Less8 x y)) -> (Geq8 x y) 310 311 (Not (Less64U x y)) -> (Geq64U x y) 312 (Not (Less32U x y)) -> (Geq32U x y) 313 (Not (Less16U x y)) -> (Geq16U x y) 314 (Not (Less8U x y)) -> (Geq8U x y) 315 316 (Not (Leq64 x y)) -> (Greater64 x y) 317 (Not (Leq32 x y)) -> (Greater32 x y) 318 (Not (Leq16 x y)) -> (Greater16 x y) 319 (Not (Leq8 x y)) -> (Greater8 x y) 320 321 (Not (Leq64U x y)) -> (Greater64U x y) 322 (Not (Leq32U x y)) -> (Greater32U x y) 323 (Not (Leq16U x y)) -> (Greater16U x y) 324 (Not (Leq8U x y)) -> (Greater8U x y) 325 326 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: 327 // a[i].b = ...; a[i+1].b = ... 328 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) -> 329 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) 330 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) -> 331 (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x)) 332 333 // Rewrite x*y + x*z to x*(y+z) 334 (Add64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Add64 <t> y z)) 335 (Add32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Add32 <t> y z)) 336 (Add16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Add16 <t> y z)) 337 (Add8 <t> (Mul8 x y) (Mul8 x z)) -> (Mul8 x (Add8 <t> y z)) 338 339 // Rewrite x*y - x*z to x*(y-z) 340 (Sub64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Sub64 <t> y z)) 341 (Sub32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Sub32 <t> y z)) 342 (Sub16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Sub16 <t> y z)) 343 (Sub8 <t> (Mul8 x y) (Mul8 x z)) -> (Mul8 x (Sub8 <t> y z)) 344 345 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce 346 // the number of the other rewrite rules for const shifts 347 (Lsh64x32 <t> x (Const32 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) 348 (Lsh64x16 <t> x (Const16 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) 349 (Lsh64x8 <t> x (Const8 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) 350 (Rsh64x32 <t> x (Const32 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) 351 (Rsh64x16 <t> x (Const16 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) 352 (Rsh64x8 <t> x (Const8 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) 353 (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) 354 (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) 355 (Rsh64Ux8 <t> x (Const8 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) 356 357 (Lsh32x32 <t> x (Const32 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) 358 (Lsh32x16 <t> x (Const16 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) 359 (Lsh32x8 <t> x (Const8 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) 360 (Rsh32x32 <t> x (Const32 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) 361 (Rsh32x16 <t> x (Const16 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) 362 (Rsh32x8 <t> x (Const8 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) 363 (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) 364 (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) 365 (Rsh32Ux8 <t> x (Const8 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) 366 367 (Lsh16x32 <t> x (Const32 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) 368 (Lsh16x16 <t> x (Const16 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) 369 (Lsh16x8 <t> x (Const8 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) 370 (Rsh16x32 <t> x (Const32 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) 371 (Rsh16x16 <t> x (Const16 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) 372 (Rsh16x8 <t> x (Const8 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) 373 (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) 374 (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) 375 (Rsh16Ux8 <t> x (Const8 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) 376 377 (Lsh8x32 <t> x (Const32 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) 378 (Lsh8x16 <t> x (Const16 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) 379 (Lsh8x8 <t> x (Const8 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) 380 (Rsh8x32 <t> x (Const32 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) 381 (Rsh8x16 <t> x (Const16 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) 382 (Rsh8x8 <t> x (Const8 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) 383 (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) 384 (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) 385 (Rsh8Ux8 <t> x (Const8 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) 386 387 // shifts by zero 388 (Lsh64x64 x (Const64 [0])) -> x 389 (Rsh64x64 x (Const64 [0])) -> x 390 (Rsh64Ux64 x (Const64 [0])) -> x 391 (Lsh32x64 x (Const64 [0])) -> x 392 (Rsh32x64 x (Const64 [0])) -> x 393 (Rsh32Ux64 x (Const64 [0])) -> x 394 (Lsh16x64 x (Const64 [0])) -> x 395 (Rsh16x64 x (Const64 [0])) -> x 396 (Rsh16Ux64 x (Const64 [0])) -> x 397 (Lsh8x64 x (Const64 [0])) -> x 398 (Rsh8x64 x (Const64 [0])) -> x 399 (Rsh8Ux64 x (Const64 [0])) -> x 400 401 // zero shifted. 402 (Lsh64x64 (Const64 [0]) _) -> (Const64 [0]) 403 (Lsh64x32 (Const64 [0]) _) -> (Const64 [0]) 404 (Lsh64x16 (Const64 [0]) _) -> (Const64 [0]) 405 (Lsh64x8 (Const64 [0]) _) -> (Const64 [0]) 406 (Rsh64x64 (Const64 [0]) _) -> (Const64 [0]) 407 (Rsh64x32 (Const64 [0]) _) -> (Const64 [0]) 408 (Rsh64x16 (Const64 [0]) _) -> (Const64 [0]) 409 (Rsh64x8 (Const64 [0]) _) -> (Const64 [0]) 410 (Rsh64Ux64 (Const64 [0]) _) -> (Const64 [0]) 411 (Rsh64Ux32 (Const64 [0]) _) -> (Const64 [0]) 412 (Rsh64Ux16 (Const64 [0]) _) -> (Const64 [0]) 413 (Rsh64Ux8 (Const64 [0]) _) -> (Const64 [0]) 414 (Lsh32x64 (Const32 [0]) _) -> (Const32 [0]) 415 (Lsh32x32 (Const32 [0]) _) -> (Const32 [0]) 416 (Lsh32x16 (Const32 [0]) _) -> (Const32 [0]) 417 (Lsh32x8 (Const32 [0]) _) -> (Const32 [0]) 418 (Rsh32x64 (Const32 [0]) _) -> (Const32 [0]) 419 (Rsh32x32 (Const32 [0]) _) -> (Const32 [0]) 420 (Rsh32x16 (Const32 [0]) _) -> (Const32 [0]) 421 (Rsh32x8 (Const32 [0]) _) -> (Const32 [0]) 422 (Rsh32Ux64 (Const32 [0]) _) -> (Const32 [0]) 423 (Rsh32Ux32 (Const32 [0]) _) -> (Const32 [0]) 424 (Rsh32Ux16 (Const32 [0]) _) -> (Const32 [0]) 425 (Rsh32Ux8 (Const32 [0]) _) -> (Const32 [0]) 426 (Lsh16x64 (Const16 [0]) _) -> (Const16 [0]) 427 (Lsh16x32 (Const16 [0]) _) -> (Const16 [0]) 428 (Lsh16x16 (Const16 [0]) _) -> (Const16 [0]) 429 (Lsh16x8 (Const16 [0]) _) -> (Const16 [0]) 430 (Rsh16x64 (Const16 [0]) _) -> (Const16 [0]) 431 (Rsh16x32 (Const16 [0]) _) -> (Const16 [0]) 432 (Rsh16x16 (Const16 [0]) _) -> (Const16 [0]) 433 (Rsh16x8 (Const16 [0]) _) -> (Const16 [0]) 434 (Rsh16Ux64 (Const16 [0]) _) -> (Const16 [0]) 435 (Rsh16Ux32 (Const16 [0]) _) -> (Const16 [0]) 436 (Rsh16Ux16 (Const16 [0]) _) -> (Const16 [0]) 437 (Rsh16Ux8 (Const16 [0]) _) -> (Const16 [0]) 438 (Lsh8x64 (Const8 [0]) _) -> (Const8 [0]) 439 (Lsh8x32 (Const8 [0]) _) -> (Const8 [0]) 440 (Lsh8x16 (Const8 [0]) _) -> (Const8 [0]) 441 (Lsh8x8 (Const8 [0]) _) -> (Const8 [0]) 442 (Rsh8x64 (Const8 [0]) _) -> (Const8 [0]) 443 (Rsh8x32 (Const8 [0]) _) -> (Const8 [0]) 444 (Rsh8x16 (Const8 [0]) _) -> (Const8 [0]) 445 (Rsh8x8 (Const8 [0]) _) -> (Const8 [0]) 446 (Rsh8Ux64 (Const8 [0]) _) -> (Const8 [0]) 447 (Rsh8Ux32 (Const8 [0]) _) -> (Const8 [0]) 448 (Rsh8Ux16 (Const8 [0]) _) -> (Const8 [0]) 449 (Rsh8Ux8 (Const8 [0]) _) -> (Const8 [0]) 450 451 // large left shifts of all values, and right shifts of unsigned values 452 (Lsh64x64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) 453 (Rsh64Ux64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) 454 (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 455 (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 456 (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 457 (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 458 (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 459 (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 460 461 // combine const shifts 462 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d])) 463 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d])) 464 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d])) 465 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64 x (Const64 <t> [c+d])) 466 467 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d])) 468 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d])) 469 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d])) 470 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64 x (Const64 <t> [c+d])) 471 472 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d])) 473 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d])) 474 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d])) 475 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64 x (Const64 <t> [c+d])) 476 477 // ((x >> c1) << c2) >> c3 478 (Rsh64Ux64 (Lsh64x64 (Rsh64Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 479 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 480 -> (Rsh64Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 481 (Rsh32Ux64 (Lsh32x64 (Rsh32Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 482 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 483 -> (Rsh32Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 484 (Rsh16Ux64 (Lsh16x64 (Rsh16Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 485 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 486 -> (Rsh16Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 487 (Rsh8Ux64 (Lsh8x64 (Rsh8Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 488 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 489 -> (Rsh8Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 490 491 // ((x << c1) >> c2) << c3 492 (Lsh64x64 (Rsh64Ux64 (Lsh64x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 493 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 494 -> (Lsh64x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 495 (Lsh32x64 (Rsh32Ux64 (Lsh32x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 496 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 497 -> (Lsh32x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 498 (Lsh16x64 (Rsh16Ux64 (Lsh16x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 499 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 500 -> (Lsh16x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 501 (Lsh8x64 (Rsh8Ux64 (Lsh8x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 502 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 503 -> (Lsh8x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 504 505 // replace shifts with zero extensions 506 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) 507 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) 508 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) 509 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) 510 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) 511 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) 512 513 // replace shifts with sign extensions 514 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (SignExt8to16 (Trunc16to8 <typ.Int8> x)) 515 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32 (Trunc32to8 <typ.Int8> x)) 516 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64 (Trunc64to8 <typ.Int8> x)) 517 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <typ.Int16> x)) 518 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <typ.Int16> x)) 519 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <typ.Int32> x)) 520 521 // constant comparisons 522 (Eq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c == d)]) 523 (Eq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c == d)]) 524 (Eq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c == d)]) 525 (Eq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c == d)]) 526 527 (Neq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c != d)]) 528 (Neq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c != d)]) 529 (Neq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c != d)]) 530 (Neq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c != d)]) 531 532 (Greater64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c > d)]) 533 (Greater32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c > d)]) 534 (Greater16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c > d)]) 535 (Greater8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c > d)]) 536 537 (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))]) 538 (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))]) 539 (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))]) 540 (Greater8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) > uint8(d))]) 541 542 (Geq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c >= d)]) 543 (Geq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c >= d)]) 544 (Geq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c >= d)]) 545 (Geq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c >= d)]) 546 547 (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))]) 548 (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))]) 549 (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))]) 550 (Geq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) >= uint8(d))]) 551 552 (Less64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c < d)]) 553 (Less32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c < d)]) 554 (Less16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c < d)]) 555 (Less8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c < d)]) 556 557 (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))]) 558 (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))]) 559 (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))]) 560 (Less8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) < uint8(d))]) 561 562 (Leq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c <= d)]) 563 (Leq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c <= d)]) 564 (Leq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c <= d)]) 565 (Leq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c <= d)]) 566 567 (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))]) 568 (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))]) 569 (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))]) 570 (Leq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) <= uint8(d))]) 571 572 // constant floating point comparisons 573 (Eq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))]) 574 (Eq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))]) 575 576 (Neq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))]) 577 (Neq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))]) 578 579 (Greater64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))]) 580 (Greater32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))]) 581 582 (Geq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))]) 583 (Geq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))]) 584 585 (Less64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))]) 586 (Less32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))]) 587 588 (Leq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))]) 589 (Leq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))]) 590 591 // simplifications 592 (Or64 x x) -> x 593 (Or32 x x) -> x 594 (Or16 x x) -> x 595 (Or8 x x) -> x 596 (Or64 (Const64 [0]) x) -> x 597 (Or32 (Const32 [0]) x) -> x 598 (Or16 (Const16 [0]) x) -> x 599 (Or8 (Const8 [0]) x) -> x 600 (Or64 (Const64 [-1]) _) -> (Const64 [-1]) 601 (Or32 (Const32 [-1]) _) -> (Const32 [-1]) 602 (Or16 (Const16 [-1]) _) -> (Const16 [-1]) 603 (Or8 (Const8 [-1]) _) -> (Const8 [-1]) 604 (And64 x x) -> x 605 (And32 x x) -> x 606 (And16 x x) -> x 607 (And8 x x) -> x 608 (And64 (Const64 [-1]) x) -> x 609 (And32 (Const32 [-1]) x) -> x 610 (And16 (Const16 [-1]) x) -> x 611 (And8 (Const8 [-1]) x) -> x 612 (And64 (Const64 [0]) _) -> (Const64 [0]) 613 (And32 (Const32 [0]) _) -> (Const32 [0]) 614 (And16 (Const16 [0]) _) -> (Const16 [0]) 615 (And8 (Const8 [0]) _) -> (Const8 [0]) 616 (Xor64 x x) -> (Const64 [0]) 617 (Xor32 x x) -> (Const32 [0]) 618 (Xor16 x x) -> (Const16 [0]) 619 (Xor8 x x) -> (Const8 [0]) 620 (Xor64 (Const64 [0]) x) -> x 621 (Xor32 (Const32 [0]) x) -> x 622 (Xor16 (Const16 [0]) x) -> x 623 (Xor8 (Const8 [0]) x) -> x 624 (Add64 (Const64 [0]) x) -> x 625 (Add32 (Const32 [0]) x) -> x 626 (Add16 (Const16 [0]) x) -> x 627 (Add8 (Const8 [0]) x) -> x 628 (Sub64 x x) -> (Const64 [0]) 629 (Sub32 x x) -> (Const32 [0]) 630 (Sub16 x x) -> (Const16 [0]) 631 (Sub8 x x) -> (Const8 [0]) 632 (Mul64 (Const64 [0]) _) -> (Const64 [0]) 633 (Mul32 (Const32 [0]) _) -> (Const32 [0]) 634 (Mul16 (Const16 [0]) _) -> (Const16 [0]) 635 (Mul8 (Const8 [0]) _) -> (Const8 [0]) 636 (Com8 (Com8 x)) -> x 637 (Com16 (Com16 x)) -> x 638 (Com32 (Com32 x)) -> x 639 (Com64 (Com64 x)) -> x 640 (Com8 (Const8 [c])) -> (Const8 [^c]) 641 (Com16 (Const16 [c])) -> (Const16 [^c]) 642 (Com32 (Const32 [c])) -> (Const32 [^c]) 643 (Com64 (Const64 [c])) -> (Const64 [^c]) 644 (Neg8 (Sub8 x y)) -> (Sub8 y x) 645 (Neg16 (Sub16 x y)) -> (Sub16 y x) 646 (Neg32 (Sub32 x y)) -> (Sub32 y x) 647 (Neg64 (Sub64 x y)) -> (Sub64 y x) 648 (Add8 (Const8 [1]) (Com8 x)) -> (Neg8 x) 649 (Add16 (Const16 [1]) (Com16 x)) -> (Neg16 x) 650 (Add32 (Const32 [1]) (Com32 x)) -> (Neg32 x) 651 (Add64 (Const64 [1]) (Com64 x)) -> (Neg64 x) 652 653 (And64 x (And64 x y)) -> (And64 x y) 654 (And32 x (And32 x y)) -> (And32 x y) 655 (And16 x (And16 x y)) -> (And16 x y) 656 (And8 x (And8 x y)) -> (And8 x y) 657 (Or64 x (Or64 x y)) -> (Or64 x y) 658 (Or32 x (Or32 x y)) -> (Or32 x y) 659 (Or16 x (Or16 x y)) -> (Or16 x y) 660 (Or8 x (Or8 x y)) -> (Or8 x y) 661 (Xor64 x (Xor64 x y)) -> y 662 (Xor32 x (Xor32 x y)) -> y 663 (Xor16 x (Xor16 x y)) -> y 664 (Xor8 x (Xor8 x y)) -> y 665 666 // Ands clear bits. Ors set bits. 667 // If a subsequent Or will set all the bits 668 // that an And cleared, we can skip the And. 669 // This happens in bitmasking code like: 670 // x &^= 3 << shift // clear two old bits 671 // x |= v << shift // set two new bits 672 // when shift is a small constant and v ends up a constant 3. 673 (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 -> (Or8 (Const8 <t> [c1]) x) 674 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 <t> [c1]) x) 675 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 <t> [c1]) x) 676 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 <t> [c1]) x) 677 678 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x) 679 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x) 680 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x) 681 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x) 682 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x) 683 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x) 684 685 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x 686 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x 687 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x 688 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x 689 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x 690 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x 691 692 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x 693 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x 694 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x 695 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x 696 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x 697 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x 698 699 (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1]) 700 (Slicemask (Const32 [0])) -> (Const32 [0]) 701 (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1]) 702 (Slicemask (Const64 [0])) -> (Const64 [0]) 703 704 // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands 705 // leading zeros can be shifted left, then right 706 (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32 707 -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)])) 708 // trailing zeros can be shifted right, then left 709 (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32 710 -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)])) 711 712 // simplifications often used for lengths. e.g. len(s[i:i+5])==5 713 (Sub64 (Add64 x y) x) -> y 714 (Sub64 (Add64 x y) y) -> x 715 (Sub32 (Add32 x y) x) -> y 716 (Sub32 (Add32 x y) y) -> x 717 (Sub16 (Add16 x y) x) -> y 718 (Sub16 (Add16 x y) y) -> x 719 (Sub8 (Add8 x y) x) -> y 720 (Sub8 (Add8 x y) y) -> x 721 722 // basic phi simplifications 723 (Phi (Const8 [c]) (Const8 [c])) -> (Const8 [c]) 724 (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c]) 725 (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c]) 726 (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c]) 727 728 // user nil checks 729 (NeqPtr p (ConstNil)) -> (IsNonNil p) 730 (EqPtr p (ConstNil)) -> (Not (IsNonNil p)) 731 (IsNonNil (ConstNil)) -> (ConstBool [0]) 732 733 // slice and interface comparisons 734 // The frontend ensures that we can only compare against nil, 735 // so we need only compare the first word (interface type or slice ptr). 736 (EqInter x y) -> (EqPtr (ITab x) (ITab y)) 737 (NeqInter x y) -> (NeqPtr (ITab x) (ITab y)) 738 (EqSlice x y) -> (EqPtr (SlicePtr x) (SlicePtr y)) 739 (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y)) 740 741 // Load of store of same address, with compatibly typed value and same size 742 (Load <t1> p1 (Store {t2} p2 x _)) && isSamePtr(p1,p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.(*types.Type).Size() -> x 743 744 // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits 745 (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitFloat(t1) -> (Const64F [x]) 746 (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitFloat(t1) -> (Const32F [f2i(float64(math.Float32frombits(uint32(x))))]) 747 (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitInt(t1) -> (Const64 [x]) 748 (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitInt(t1) -> (Const32 [int64(int32(math.Float32bits(float32(i2f(x)))))]) 749 750 // Eliminate stores of values that have just been loaded from the same location. 751 // We also handle the common case where there are some intermediate stores to non-overlapping struct fields. 752 (Store {t1} p1 (Load <t2> p2 mem) mem) && 753 isSamePtr(p1, p2) && 754 t2.Size() == t1.(*types.Type).Size() -> mem 755 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ oldmem)) && 756 isSamePtr(p1, p2) && 757 isSamePtr(p1, p3) && 758 t2.Size() == t1.(*types.Type).Size() && 759 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) -> mem 760 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ oldmem))) && 761 isSamePtr(p1, p2) && 762 isSamePtr(p1, p3) && 763 isSamePtr(p1, p4) && 764 t2.Size() == t1.(*types.Type).Size() && 765 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && 766 !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) -> mem 767 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ (Store {t5} (OffPtr [o5] p5) _ oldmem)))) && 768 isSamePtr(p1, p2) && 769 isSamePtr(p1, p3) && 770 isSamePtr(p1, p4) && 771 isSamePtr(p1, p5) && 772 t2.Size() == t1.(*types.Type).Size() && 773 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && 774 !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) && 775 !overlap(o1, t2.Size(), o5, t5.(*types.Type).Size()) -> mem 776 777 // Collapse OffPtr 778 (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b]) 779 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p 780 781 // indexing operations 782 // Note: bounds check has already been done 783 (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [t.ElemType().Size()]))) 784 (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.ElemType().Size()]))) 785 786 // struct operations 787 (StructSelect (StructMake1 x)) -> x 788 (StructSelect [0] (StructMake2 x _)) -> x 789 (StructSelect [1] (StructMake2 _ x)) -> x 790 (StructSelect [0] (StructMake3 x _ _)) -> x 791 (StructSelect [1] (StructMake3 _ x _)) -> x 792 (StructSelect [2] (StructMake3 _ _ x)) -> x 793 (StructSelect [0] (StructMake4 x _ _ _)) -> x 794 (StructSelect [1] (StructMake4 _ x _ _)) -> x 795 (StructSelect [2] (StructMake4 _ _ x _)) -> x 796 (StructSelect [3] (StructMake4 _ _ _ x)) -> x 797 798 (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 799 (StructMake0) 800 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 801 (StructMake1 802 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) 803 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 804 (StructMake2 805 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 806 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) 807 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 808 (StructMake3 809 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 810 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 811 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) 812 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 813 (StructMake4 814 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 815 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 816 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) 817 (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) 818 819 (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) -> 820 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) 821 822 (Store _ (StructMake0) mem) -> mem 823 (Store dst (StructMake1 <t> f0) mem) -> 824 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) 825 (Store dst (StructMake2 <t> f0 f1) mem) -> 826 (Store {t.FieldType(1)} 827 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 828 f1 829 (Store {t.FieldType(0)} 830 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 831 f0 mem)) 832 (Store dst (StructMake3 <t> f0 f1 f2) mem) -> 833 (Store {t.FieldType(2)} 834 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 835 f2 836 (Store {t.FieldType(1)} 837 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 838 f1 839 (Store {t.FieldType(0)} 840 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 841 f0 mem))) 842 (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) -> 843 (Store {t.FieldType(3)} 844 (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) 845 f3 846 (Store {t.FieldType(2)} 847 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 848 f2 849 (Store {t.FieldType(1)} 850 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 851 f1 852 (Store {t.FieldType(0)} 853 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 854 f0 mem)))) 855 856 // Putting struct{*byte} and similar into direct interfaces. 857 (IMake typ (StructMake1 val)) -> (IMake typ val) 858 (StructSelect [0] x:(IData _)) -> x 859 860 // un-SSAable values use mem->mem copies 861 (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) -> 862 (Move {t} [t.(*types.Type).Size()] dst src mem) 863 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) -> 864 (Move {t} [t.(*types.Type).Size()] dst src (VarDef {x} mem)) 865 866 // array ops 867 (ArraySelect (ArrayMake1 x)) -> x 868 869 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 -> 870 (ArrayMake0) 871 872 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 873 (ArrayMake1 (Load <t.ElemType()> ptr mem)) 874 875 (Store _ (ArrayMake0) mem) -> mem 876 (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem) 877 878 // Putting [1]{*byte} and similar into direct interfaces. 879 (IMake typ (ArrayMake1 val)) -> (IMake typ val) 880 (ArraySelect [0] x:(IData _)) -> x 881 882 // string ops 883 // Decomposing StringMake and lowering of StringPtr and StringLen 884 // happens in a later pass, dec, so that these operations are available 885 // to other passes for optimizations. 886 (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 887 (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 888 (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" -> 889 (StringMake (ConstNil) (Const32 <typ.Int> [0])) 890 (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" -> 891 (StringMake (ConstNil) (Const64 <typ.Int> [0])) 892 (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" -> 893 (StringMake 894 (Addr <typ.BytePtr> {fe.StringData(s.(string))} 895 (SB)) 896 (Const32 <typ.Int> [int64(len(s.(string)))])) 897 (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" -> 898 (StringMake 899 (Addr <typ.BytePtr> {fe.StringData(s.(string))} 900 (SB)) 901 (Const64 <typ.Int> [int64(len(s.(string)))])) 902 903 // slice ops 904 // Only a few slice rules are provided here. See dec.rules for 905 // a more comprehensive set. 906 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 907 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 908 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c]) 909 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c]) 910 (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x) 911 (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x) 912 (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x) 913 (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x) 914 (ConstSlice) && config.PtrSize == 4 -> 915 (SliceMake 916 (ConstNil <v.Type.ElemType().PtrTo()>) 917 (Const32 <typ.Int> [0]) 918 (Const32 <typ.Int> [0])) 919 (ConstSlice) && config.PtrSize == 8 -> 920 (SliceMake 921 (ConstNil <v.Type.ElemType().PtrTo()>) 922 (Const64 <typ.Int> [0]) 923 (Const64 <typ.Int> [0])) 924 925 // interface ops 926 (ConstInterface) -> 927 (IMake 928 (ConstNil <typ.BytePtr>) 929 (ConstNil <typ.BytePtr>)) 930 931 (NilCheck (GetG mem) mem) -> mem 932 933 (If (Not cond) yes no) -> (If cond no yes) 934 (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no) 935 (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes) 936 937 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. 938 (Convert (Add64 (Convert ptr mem) off) mem) -> (Add64 ptr off) 939 (Convert (Convert ptr mem) mem) -> ptr 940 941 // Decompose compound argument values 942 (Arg {n} [off]) && v.Type.IsString() -> 943 (StringMake 944 (Arg <typ.BytePtr> {n} [off]) 945 (Arg <typ.Int> {n} [off+config.PtrSize])) 946 947 (Arg {n} [off]) && v.Type.IsSlice() -> 948 (SliceMake 949 (Arg <v.Type.ElemType().PtrTo()> {n} [off]) 950 (Arg <typ.Int> {n} [off+config.PtrSize]) 951 (Arg <typ.Int> {n} [off+2*config.PtrSize])) 952 953 (Arg {n} [off]) && v.Type.IsInterface() -> 954 (IMake 955 (Arg <typ.BytePtr> {n} [off]) 956 (Arg <typ.BytePtr> {n} [off+config.PtrSize])) 957 958 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 -> 959 (ComplexMake 960 (Arg <typ.Float64> {n} [off]) 961 (Arg <typ.Float64> {n} [off+8])) 962 963 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 -> 964 (ComplexMake 965 (Arg <typ.Float32> {n} [off]) 966 (Arg <typ.Float32> {n} [off+4])) 967 968 (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 969 (StructMake0) 970 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 971 (StructMake1 972 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])) 973 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 974 (StructMake2 975 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 976 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])) 977 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 978 (StructMake3 979 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 980 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 981 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])) 982 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 983 (StructMake4 984 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 985 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 986 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]) 987 (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)])) 988 989 (Arg <t>) && t.IsArray() && t.NumElem() == 0 -> 990 (ArrayMake0) 991 (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 992 (ArrayMake1 (Arg <t.ElemType()> {n} [off])) 993 994 // strength reduction of divide by a constant. 995 // See ../magic.go for a detailed description of these algorithms. 996 997 // Unsigned divide by power of 2. Strength reduce to a shift. 998 (Div8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) 999 (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) 1000 (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) 1001 (Div64u n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) 1002 (Div64u n (Const64 [-1<<63])) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) 1003 1004 // Signed non-negative divide by power of 2. 1005 (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) 1006 (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) 1007 (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) 1008 (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) 1009 (Div64 n (Const64 [-1<<63])) && isNonNegative(n) -> (Const64 [0]) 1010 1011 // Unsigned divide, not a power of 2. Strength reduce to a multiply. 1012 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. 1013 (Div8u x (Const8 [c])) && umagicOK(8, c) -> 1014 (Trunc32to8 1015 (Rsh32Ux64 <typ.UInt32> 1016 (Mul32 <typ.UInt32> 1017 (Const32 <typ.UInt32> [int64(1<<8+umagic(8,c).m)]) 1018 (ZeroExt8to32 x)) 1019 (Const64 <typ.UInt64> [8+umagic(8,c).s]))) 1020 1021 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. 1022 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 -> 1023 (Trunc64to16 1024 (Rsh64Ux64 <typ.UInt64> 1025 (Mul64 <typ.UInt64> 1026 (Const64 <typ.UInt64> [int64(1<<16+umagic(16,c).m)]) 1027 (ZeroExt16to64 x)) 1028 (Const64 <typ.UInt64> [16+umagic(16,c).s]))) 1029 1030 // For 16-bit divides on 32-bit machines 1031 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 -> 1032 (Trunc32to16 1033 (Rsh32Ux64 <typ.UInt32> 1034 (Mul32 <typ.UInt32> 1035 (Const32 <typ.UInt32> [int64(1<<15+umagic(16,c).m/2)]) 1036 (ZeroExt16to32 x)) 1037 (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) 1038 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 -> 1039 (Trunc32to16 1040 (Rsh32Ux64 <typ.UInt32> 1041 (Mul32 <typ.UInt32> 1042 (Const32 <typ.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)]) 1043 (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) 1044 (Const64 <typ.UInt64> [16+umagic(16,c).s-2]))) 1045 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 -> 1046 (Trunc32to16 1047 (Rsh32Ux64 <typ.UInt32> 1048 (Avg32u 1049 (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) 1050 (Mul32 <typ.UInt32> 1051 (Const32 <typ.UInt32> [int64(umagic(16,c).m)]) 1052 (ZeroExt16to32 x))) 1053 (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) 1054 1055 // For 32-bit divides on 32-bit machines 1056 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 -> 1057 (Rsh32Ux64 <typ.UInt32> 1058 (Hmul32u <typ.UInt32> 1059 (Const32 <typ.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))]) 1060 x) 1061 (Const64 <typ.UInt64> [umagic(32,c).s-1])) 1062 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 -> 1063 (Rsh32Ux64 <typ.UInt32> 1064 (Hmul32u <typ.UInt32> 1065 (Const32 <typ.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))]) 1066 (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) 1067 (Const64 <typ.UInt64> [umagic(32,c).s-2])) 1068 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 -> 1069 (Rsh32Ux64 <typ.UInt32> 1070 (Avg32u 1071 x 1072 (Hmul32u <typ.UInt32> 1073 (Const32 <typ.UInt32> [int64(int32(umagic(32,c).m))]) 1074 x)) 1075 (Const64 <typ.UInt64> [umagic(32,c).s-1])) 1076 1077 // For 32-bit divides on 64-bit machines 1078 // We'll use a regular (non-hi) multiply for this case. 1079 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 -> 1080 (Trunc64to32 1081 (Rsh64Ux64 <typ.UInt64> 1082 (Mul64 <typ.UInt64> 1083 (Const64 <typ.UInt64> [int64(1<<31+umagic(32,c).m/2)]) 1084 (ZeroExt32to64 x)) 1085 (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) 1086 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 -> 1087 (Trunc64to32 1088 (Rsh64Ux64 <typ.UInt64> 1089 (Mul64 <typ.UInt64> 1090 (Const64 <typ.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)]) 1091 (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) 1092 (Const64 <typ.UInt64> [32+umagic(32,c).s-2]))) 1093 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 -> 1094 (Trunc64to32 1095 (Rsh64Ux64 <typ.UInt64> 1096 (Avg64u 1097 (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) 1098 (Mul64 <typ.UInt64> 1099 (Const64 <typ.UInt32> [int64(umagic(32,c).m)]) 1100 (ZeroExt32to64 x))) 1101 (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) 1102 1103 // For 64-bit divides on 64-bit machines 1104 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) 1105 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 -> 1106 (Rsh64Ux64 <typ.UInt64> 1107 (Hmul64u <typ.UInt64> 1108 (Const64 <typ.UInt64> [int64(1<<63+umagic(64,c).m/2)]) 1109 x) 1110 (Const64 <typ.UInt64> [umagic(64,c).s-1])) 1111 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 -> 1112 (Rsh64Ux64 <typ.UInt64> 1113 (Hmul64u <typ.UInt64> 1114 (Const64 <typ.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)]) 1115 (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) 1116 (Const64 <typ.UInt64> [umagic(64,c).s-2])) 1117 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 -> 1118 (Rsh64Ux64 <typ.UInt64> 1119 (Avg64u 1120 x 1121 (Hmul64u <typ.UInt64> 1122 (Const64 <typ.UInt64> [int64(umagic(64,c).m)]) 1123 x)) 1124 (Const64 <typ.UInt64> [umagic(64,c).s-1])) 1125 1126 // Signed divide by a negative constant. Rewrite to divide by a positive constant. 1127 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Neg8 (Div8 <t> n (Const8 <t> [-c]))) 1128 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c]))) 1129 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c]))) 1130 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c]))) 1131 1132 // Dividing by the most-negative number. Result is always 0 except 1133 // if the input is also the most-negative number. 1134 // We can detect that using the sign bit of x & -x. 1135 (Div8 <t> x (Const8 [-1<<7 ])) -> (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) 1136 (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) 1137 (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) 1138 (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) 1139 1140 // Signed divide by power of 2. 1141 // n / c = n >> log(c) if n >= 0 1142 // = (n+c-1) >> log(c) if n < 0 1143 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). 1144 (Div8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> 1145 (Rsh8x64 1146 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [ 8-log2(c)]))) 1147 (Const64 <typ.UInt64> [log2(c)])) 1148 (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> 1149 (Rsh16x64 1150 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [16-log2(c)]))) 1151 (Const64 <typ.UInt64> [log2(c)])) 1152 (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> 1153 (Rsh32x64 1154 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [32-log2(c)]))) 1155 (Const64 <typ.UInt64> [log2(c)])) 1156 (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> 1157 (Rsh64x64 1158 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [64-log2(c)]))) 1159 (Const64 <typ.UInt64> [log2(c)])) 1160 1161 // Signed divide, not a power of 2. Strength reduce to a multiply. 1162 (Div8 <t> x (Const8 [c])) && smagicOK(8,c) -> 1163 (Sub8 <t> 1164 (Rsh32x64 <t> 1165 (Mul32 <typ.UInt32> 1166 (Const32 <typ.UInt32> [int64(smagic(8,c).m)]) 1167 (SignExt8to32 x)) 1168 (Const64 <typ.UInt64> [8+smagic(8,c).s])) 1169 (Rsh32x64 <t> 1170 (SignExt8to32 x) 1171 (Const64 <typ.UInt64> [31]))) 1172 (Div16 <t> x (Const16 [c])) && smagicOK(16,c) -> 1173 (Sub16 <t> 1174 (Rsh32x64 <t> 1175 (Mul32 <typ.UInt32> 1176 (Const32 <typ.UInt32> [int64(smagic(16,c).m)]) 1177 (SignExt16to32 x)) 1178 (Const64 <typ.UInt64> [16+smagic(16,c).s])) 1179 (Rsh32x64 <t> 1180 (SignExt16to32 x) 1181 (Const64 <typ.UInt64> [31]))) 1182 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 -> 1183 (Sub32 <t> 1184 (Rsh64x64 <t> 1185 (Mul64 <typ.UInt64> 1186 (Const64 <typ.UInt64> [int64(smagic(32,c).m)]) 1187 (SignExt32to64 x)) 1188 (Const64 <typ.UInt64> [32+smagic(32,c).s])) 1189 (Rsh64x64 <t> 1190 (SignExt32to64 x) 1191 (Const64 <typ.UInt64> [63]))) 1192 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 -> 1193 (Sub32 <t> 1194 (Rsh32x64 <t> 1195 (Hmul32 <t> 1196 (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m/2))]) 1197 x) 1198 (Const64 <typ.UInt64> [smagic(32,c).s-1])) 1199 (Rsh32x64 <t> 1200 x 1201 (Const64 <typ.UInt64> [31]))) 1202 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 -> 1203 (Sub32 <t> 1204 (Rsh32x64 <t> 1205 (Add32 <t> 1206 (Hmul32 <t> 1207 (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m))]) 1208 x) 1209 x) 1210 (Const64 <typ.UInt64> [smagic(32,c).s])) 1211 (Rsh32x64 <t> 1212 x 1213 (Const64 <typ.UInt64> [31]))) 1214 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 -> 1215 (Sub64 <t> 1216 (Rsh64x64 <t> 1217 (Hmul64 <t> 1218 (Const64 <typ.UInt64> [int64(smagic(64,c).m/2)]) 1219 x) 1220 (Const64 <typ.UInt64> [smagic(64,c).s-1])) 1221 (Rsh64x64 <t> 1222 x 1223 (Const64 <typ.UInt64> [63]))) 1224 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 -> 1225 (Sub64 <t> 1226 (Rsh64x64 <t> 1227 (Add64 <t> 1228 (Hmul64 <t> 1229 (Const64 <typ.UInt64> [int64(smagic(64,c).m)]) 1230 x) 1231 x) 1232 (Const64 <typ.UInt64> [smagic(64,c).s])) 1233 (Rsh64x64 <t> 1234 x 1235 (Const64 <typ.UInt64> [63]))) 1236 1237 // Unsigned mod by power of 2 constant. 1238 (Mod8u <t> n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) 1239 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) 1240 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) 1241 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) 1242 (Mod64u <t> n (Const64 [-1<<63])) -> (And64 n (Const64 <t> [1<<63-1])) 1243 1244 // Signed non-negative mod by power of 2 constant. 1245 (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) 1246 (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) 1247 (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) 1248 (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) 1249 (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) -> n 1250 1251 // Signed mod by negative constant. 1252 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Mod8 <t> n (Const8 <t> [-c])) 1253 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c])) 1254 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c])) 1255 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c])) 1256 1257 // All other mods by constants, do A%B = A-(A/B*B). 1258 // This implements % with two * and a bunch of ancillary ops. 1259 // One of the * is free if the user's code also computes A/B. 1260 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) 1261 -> (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1262 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) 1263 -> (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1264 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) 1265 -> (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1266 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) 1267 -> (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1268 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK(8 ,c) 1269 -> (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1270 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c) 1271 -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1272 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c) 1273 -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1274 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c) 1275 -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1276 1277 // Reassociate expressions involving 1278 // constants such that constants come first, 1279 // exposing obvious constant-folding opportunities. 1280 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C 1281 // is constant, which pushes constants to the outside 1282 // of the expression. At that point, any constant-folding 1283 // opportunities should be obvious. 1284 1285 // x + (C + z) -> C + (x + z) 1286 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x)) 1287 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x)) 1288 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x)) 1289 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Add8 <t> z x)) 1290 1291 // x + (C - z) -> C + (x - z) 1292 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1293 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1294 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1295 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1296 (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1297 (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1298 (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1299 (Add8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1300 1301 // x + (z - C) -> (x + z) - C 1302 (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1303 (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1304 (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1305 (Add8 (Sub8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1306 (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1307 (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1308 (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1309 (Add8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1310 1311 // x - (C - z) -> x + (z - C) -> (x + z) - C 1312 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1313 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1314 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1315 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1316 1317 // x - (z - C) -> x + (C - z) -> (x - z) + C 1318 (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1319 (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1320 (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1321 (Sub8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1322 1323 // x & (C & z) -> C & (x & z) 1324 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x)) 1325 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x)) 1326 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x)) 1327 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (And8 i (And8 <t> z x)) 1328 1329 // x | (C | z) -> C | (x | z) 1330 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x)) 1331 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x)) 1332 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x)) 1333 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Or8 i (Or8 <t> z x)) 1334 1335 // x ^ (C ^ z) -> C ^ (x ^ z) 1336 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x)) 1337 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x)) 1338 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x)) 1339 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Xor8 i (Xor8 <t> z x)) 1340 1341 // C + (D + x) -> (C + D) + x 1342 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x) 1343 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x) 1344 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x) 1345 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c+d))]) x) 1346 1347 // C + (D - x) -> (C + D) - x 1348 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x) 1349 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1350 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1351 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1352 1353 // C + (x - D) -> (C - D) + x 1354 (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x) 1355 (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1356 (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1357 (Add8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1358 1359 // C - (x - D) -> (C + D) - x 1360 (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x) 1361 (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1362 (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1363 (Sub8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1364 1365 // C - (D - x) -> (C - D) + x 1366 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x) 1367 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1368 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1369 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1370 1371 // C & (D & x) -> (C & D) & x 1372 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x) 1373 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x) 1374 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x) 1375 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) -> (And8 (Const8 <t> [int64(int8(c&d))]) x) 1376 1377 // C | (D | x) -> (C | D) | x 1378 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x) 1379 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x) 1380 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x) 1381 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) -> (Or8 (Const8 <t> [int64(int8(c|d))]) x) 1382 1383 // C ^ (D ^ x) -> (C ^ D) ^ x 1384 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x) 1385 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x) 1386 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x) 1387 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) -> (Xor8 (Const8 <t> [int64(int8(c^d))]) x) 1388 1389 // C * (D * x) = (C * D) * x 1390 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x) 1391 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x) 1392 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x) 1393 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) -> (Mul8 (Const8 <t> [int64(int8(c*d))]) x) 1394 1395 // floating point optimizations 1396 (Add32F x (Const32F [0])) -> x 1397 (Add64F x (Const64F [0])) -> x 1398 (Sub32F x (Const32F [0])) -> x 1399 (Sub64F x (Const64F [0])) -> x 1400 (Mul32F x (Const32F [f2i(1)])) -> x 1401 (Mul64F x (Const64F [f2i(1)])) -> x 1402 (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x) 1403 (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x) 1404 (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x) 1405 (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x) 1406 (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))])) 1407 (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c)) -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))])) 1408 1409 (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))]) 1410 1411 // recognize runtime.newobject and don't Zero/Nilcheck it 1412 (Zero (Load (OffPtr [c] (SP)) mem) mem) 1413 && mem.Op == OpStaticCall 1414 && isSameSym(mem.Aux, "runtime.newobject") 1415 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1416 -> mem 1417 (Store (Load (OffPtr [c] (SP)) mem) x mem) 1418 && isConstZero(x) 1419 && mem.Op == OpStaticCall 1420 && isSameSym(mem.Aux, "runtime.newobject") 1421 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1422 -> mem 1423 (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) 1424 && isConstZero(x) 1425 && mem.Op == OpStaticCall 1426 && isSameSym(mem.Aux, "runtime.newobject") 1427 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1428 -> mem 1429 // nil checks just need to rewrite to something useless. 1430 // they will be deadcode eliminated soon afterwards. 1431 (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _) 1432 && isSameSym(sym, "runtime.newobject") 1433 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1434 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1435 -> (Invalid) 1436 (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _) 1437 && isSameSym(sym, "runtime.newobject") 1438 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1439 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1440 -> (Invalid) 1441 1442 // Address comparison shows up in type assertions. 1443 (EqPtr x x) -> (ConstBool [1]) 1444 (EqPtr (Addr {a} x) (Addr {b} x)) -> (ConstBool [b2i(a == b)]) 1445 1446 // Inline small runtime.memmove calls with constant length. 1447 (StaticCall {sym} s1:(Store _ (Const64 [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) 1448 && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config) 1449 -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) 1450 (StaticCall {sym} s1:(Store _ (Const32 [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) 1451 && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config) 1452 -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) 1453 1454 // De-virtualize interface calls into static calls. 1455 // Note that (ITab (IMake)) doesn't get 1456 // rewritten until after the first opt pass, 1457 // so this rule should trigger reliably. 1458 (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil -> 1459 (StaticCall [argsize] {devirt(v, itab, off)} mem)