github.com/ltltlt/go-source-code@v0.0.0-20190830023027-95be009773aa/cmd/compile/internal/ssa/value.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "cmd/compile/internal/types" 9 "cmd/internal/src" 10 "fmt" 11 "math" 12 "sort" 13 "strings" 14 ) 15 16 // A Value represents a value in the SSA representation of the program. 17 // The ID and Type fields must not be modified. The remainder may be modified 18 // if they preserve the value of the Value (e.g. changing a (mul 2 x) to an (add x x)). 19 type Value struct { 20 // A unique identifier for the value. For performance we allocate these IDs 21 // densely starting at 1. There is no guarantee that there won't be occasional holes, though. 22 ID ID 23 24 // The operation that computes this value. See op.go. 25 Op Op 26 27 // The type of this value. Normally this will be a Go type, but there 28 // are a few other pseudo-types, see type.go. 29 Type *types.Type 30 31 // Auxiliary info for this value. The type of this information depends on the opcode and type. 32 // AuxInt is used for integer values, Aux is used for other values. 33 // Floats are stored in AuxInt using math.Float64bits(f). 34 AuxInt int64 35 Aux interface{} 36 37 // Arguments of this value 38 Args []*Value 39 40 // Containing basic block 41 Block *Block 42 43 // Source position 44 Pos src.XPos 45 46 // Use count. Each appearance in Value.Args and Block.Control counts once. 47 Uses int32 48 49 // Storage for the first three args 50 argstorage [3]*Value 51 } 52 53 // Examples: 54 // Opcode aux args 55 // OpAdd nil 2 56 // OpConst string 0 string constant 57 // OpConst int64 0 int64 constant 58 // OpAddcq int64 1 amd64 op: v = arg[0] + constant 59 60 // short form print. Just v#. 61 func (v *Value) String() string { 62 if v == nil { 63 return "nil" // should never happen, but not panicking helps with debugging 64 } 65 return fmt.Sprintf("v%d", v.ID) 66 } 67 68 func (v *Value) AuxInt8() int8 { 69 if opcodeTable[v.Op].auxType != auxInt8 { 70 v.Fatalf("op %s doesn't have an int8 aux field", v.Op) 71 } 72 return int8(v.AuxInt) 73 } 74 75 func (v *Value) AuxInt16() int16 { 76 if opcodeTable[v.Op].auxType != auxInt16 { 77 v.Fatalf("op %s doesn't have an int16 aux field", v.Op) 78 } 79 return int16(v.AuxInt) 80 } 81 82 func (v *Value) AuxInt32() int32 { 83 if opcodeTable[v.Op].auxType != auxInt32 { 84 v.Fatalf("op %s doesn't have an int32 aux field", v.Op) 85 } 86 return int32(v.AuxInt) 87 } 88 89 func (v *Value) AuxFloat() float64 { 90 if opcodeTable[v.Op].auxType != auxFloat32 && opcodeTable[v.Op].auxType != auxFloat64 { 91 v.Fatalf("op %s doesn't have a float aux field", v.Op) 92 } 93 return math.Float64frombits(uint64(v.AuxInt)) 94 } 95 func (v *Value) AuxValAndOff() ValAndOff { 96 if opcodeTable[v.Op].auxType != auxSymValAndOff { 97 v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op) 98 } 99 return ValAndOff(v.AuxInt) 100 } 101 102 // long form print. v# = opcode <type> [aux] args [: reg] (names) 103 func (v *Value) LongString() string { 104 s := fmt.Sprintf("v%d = %s", v.ID, v.Op) 105 s += " <" + v.Type.String() + ">" 106 s += v.auxString() 107 for _, a := range v.Args { 108 s += fmt.Sprintf(" %v", a) 109 } 110 r := v.Block.Func.RegAlloc 111 if int(v.ID) < len(r) && r[v.ID] != nil { 112 s += " : " + r[v.ID].String() 113 } 114 var names []string 115 for name, values := range v.Block.Func.NamedValues { 116 for _, value := range values { 117 if value == v { 118 names = append(names, name.String()) 119 break // drop duplicates. 120 } 121 } 122 } 123 if len(names) != 0 { 124 sort.Strings(names) // Otherwise a source of variation in debugging output. 125 s += " (" + strings.Join(names, ", ") + ")" 126 } 127 return s 128 } 129 130 func (v *Value) auxString() string { 131 switch opcodeTable[v.Op].auxType { 132 case auxBool: 133 if v.AuxInt == 0 { 134 return " [false]" 135 } else { 136 return " [true]" 137 } 138 case auxInt8: 139 return fmt.Sprintf(" [%d]", v.AuxInt8()) 140 case auxInt16: 141 return fmt.Sprintf(" [%d]", v.AuxInt16()) 142 case auxInt32: 143 return fmt.Sprintf(" [%d]", v.AuxInt32()) 144 case auxInt64, auxInt128: 145 return fmt.Sprintf(" [%d]", v.AuxInt) 146 case auxFloat32, auxFloat64: 147 return fmt.Sprintf(" [%g]", v.AuxFloat()) 148 case auxString: 149 return fmt.Sprintf(" {%q}", v.Aux) 150 case auxSym, auxTyp: 151 if v.Aux != nil { 152 return fmt.Sprintf(" {%v}", v.Aux) 153 } 154 case auxSymOff, auxSymInt32, auxTypSize: 155 s := "" 156 if v.Aux != nil { 157 s = fmt.Sprintf(" {%v}", v.Aux) 158 } 159 if v.AuxInt != 0 { 160 s += fmt.Sprintf(" [%v]", v.AuxInt) 161 } 162 return s 163 case auxSymValAndOff: 164 s := "" 165 if v.Aux != nil { 166 s = fmt.Sprintf(" {%v}", v.Aux) 167 } 168 return s + fmt.Sprintf(" [%s]", v.AuxValAndOff()) 169 } 170 return "" 171 } 172 173 func (v *Value) AddArg(w *Value) { 174 if v.Args == nil { 175 v.resetArgs() // use argstorage 176 } 177 v.Args = append(v.Args, w) 178 w.Uses++ 179 } 180 func (v *Value) AddArgs(a ...*Value) { 181 if v.Args == nil { 182 v.resetArgs() // use argstorage 183 } 184 v.Args = append(v.Args, a...) 185 for _, x := range a { 186 x.Uses++ 187 } 188 } 189 func (v *Value) SetArg(i int, w *Value) { 190 v.Args[i].Uses-- 191 v.Args[i] = w 192 w.Uses++ 193 } 194 func (v *Value) RemoveArg(i int) { 195 v.Args[i].Uses-- 196 copy(v.Args[i:], v.Args[i+1:]) 197 v.Args[len(v.Args)-1] = nil // aid GC 198 v.Args = v.Args[:len(v.Args)-1] 199 } 200 func (v *Value) SetArgs1(a *Value) { 201 v.resetArgs() 202 v.AddArg(a) 203 } 204 func (v *Value) SetArgs2(a *Value, b *Value) { 205 v.resetArgs() 206 v.AddArg(a) 207 v.AddArg(b) 208 } 209 210 func (v *Value) resetArgs() { 211 for _, a := range v.Args { 212 a.Uses-- 213 } 214 v.argstorage[0] = nil 215 v.argstorage[1] = nil 216 v.argstorage[2] = nil 217 v.Args = v.argstorage[:0] 218 } 219 220 func (v *Value) reset(op Op) { 221 v.Op = op 222 v.resetArgs() 223 v.AuxInt = 0 224 v.Aux = nil 225 } 226 227 // copyInto makes a new value identical to v and adds it to the end of b. 228 func (v *Value) copyInto(b *Block) *Value { 229 c := b.NewValue0(v.Pos, v.Op, v.Type) // Lose the position, this causes line number churn otherwise. 230 c.Aux = v.Aux 231 c.AuxInt = v.AuxInt 232 c.AddArgs(v.Args...) 233 for _, a := range v.Args { 234 if a.Type.IsMemory() { 235 v.Fatalf("can't move a value with a memory arg %s", v.LongString()) 236 } 237 } 238 return c 239 } 240 241 // copyIntoNoXPos makes a new value identical to v and adds it to the end of b. 242 // The copied value receives no source code position to avoid confusing changes 243 // in debugger information (the intended user is the register allocator). 244 func (v *Value) copyIntoNoXPos(b *Block) *Value { 245 return v.copyIntoWithXPos(b, src.NoXPos) 246 } 247 248 // copyIntoWithXPos makes a new value identical to v and adds it to the end of b. 249 // The supplied position is used as the position of the new value. 250 func (v *Value) copyIntoWithXPos(b *Block, pos src.XPos) *Value { 251 c := b.NewValue0(pos, v.Op, v.Type) 252 c.Aux = v.Aux 253 c.AuxInt = v.AuxInt 254 c.AddArgs(v.Args...) 255 for _, a := range v.Args { 256 if a.Type.IsMemory() { 257 v.Fatalf("can't move a value with a memory arg %s", v.LongString()) 258 } 259 } 260 return c 261 } 262 263 func (v *Value) Logf(msg string, args ...interface{}) { v.Block.Logf(msg, args...) } 264 func (v *Value) Log() bool { return v.Block.Log() } 265 func (v *Value) Fatalf(msg string, args ...interface{}) { 266 v.Block.Func.fe.Fatalf(v.Pos, msg, args...) 267 } 268 269 // isGenericIntConst returns whether v is a generic integer constant. 270 func (v *Value) isGenericIntConst() bool { 271 return v != nil && (v.Op == OpConst64 || v.Op == OpConst32 || v.Op == OpConst16 || v.Op == OpConst8) 272 } 273 274 // Reg returns the register assigned to v, in cmd/internal/obj/$ARCH numbering. 275 func (v *Value) Reg() int16 { 276 reg := v.Block.Func.RegAlloc[v.ID] 277 if reg == nil { 278 v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) 279 } 280 return reg.(*Register).objNum 281 } 282 283 // Reg0 returns the register assigned to the first output of v, in cmd/internal/obj/$ARCH numbering. 284 func (v *Value) Reg0() int16 { 285 reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[0] 286 if reg == nil { 287 v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func) 288 } 289 return reg.(*Register).objNum 290 } 291 292 // Reg1 returns the register assigned to the second output of v, in cmd/internal/obj/$ARCH numbering. 293 func (v *Value) Reg1() int16 { 294 reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[1] 295 if reg == nil { 296 v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func) 297 } 298 return reg.(*Register).objNum 299 } 300 301 func (v *Value) RegName() string { 302 reg := v.Block.Func.RegAlloc[v.ID] 303 if reg == nil { 304 v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) 305 } 306 return reg.(*Register).name 307 } 308 309 // MemoryArg returns the memory argument for the Value. 310 // The returned value, if non-nil, will be memory-typed (or a tuple with a memory-typed second part). 311 // Otherwise, nil is returned. 312 func (v *Value) MemoryArg() *Value { 313 if v.Op == OpPhi { 314 v.Fatalf("MemoryArg on Phi") 315 } 316 na := len(v.Args) 317 if na == 0 { 318 return nil 319 } 320 if m := v.Args[na-1]; m.Type.IsMemory() { 321 return m 322 } 323 return nil 324 } 325 326 // LackingPos indicates whether v is a value that is unlikely to have a correct 327 // position assigned to it. Ignoring such values leads to more user-friendly positions 328 // assigned to nearby values and the blocks containing them. 329 func (v *Value) LackingPos() bool { 330 // The exact definition of LackingPos is somewhat heuristically defined and may change 331 // in the future, for example if some of these operations are generated more carefully 332 // with respect to their source position. 333 return v.Op == OpVarDef || v.Op == OpVarKill || v.Op == OpVarLive || v.Op == OpPhi || 334 (v.Op == OpFwdRef || v.Op == OpCopy) && v.Type == types.TypeMem 335 }