github.com/ltltlt/go-source-code@v0.0.0-20190830023027-95be009773aa/crypto/x509/verify.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package x509
     6  
     7  import (
     8  	"bytes"
     9  	"encoding/asn1"
    10  	"errors"
    11  	"fmt"
    12  	"net"
    13  	"net/url"
    14  	"reflect"
    15  	"runtime"
    16  	"strconv"
    17  	"strings"
    18  	"time"
    19  	"unicode/utf8"
    20  )
    21  
    22  type InvalidReason int
    23  
    24  const (
    25  	// NotAuthorizedToSign results when a certificate is signed by another
    26  	// which isn't marked as a CA certificate.
    27  	NotAuthorizedToSign InvalidReason = iota
    28  	// Expired results when a certificate has expired, based on the time
    29  	// given in the VerifyOptions.
    30  	Expired
    31  	// CANotAuthorizedForThisName results when an intermediate or root
    32  	// certificate has a name constraint which doesn't permit a DNS or
    33  	// other name (including IP address) in the leaf certificate.
    34  	CANotAuthorizedForThisName
    35  	// TooManyIntermediates results when a path length constraint is
    36  	// violated.
    37  	TooManyIntermediates
    38  	// IncompatibleUsage results when the certificate's key usage indicates
    39  	// that it may only be used for a different purpose.
    40  	IncompatibleUsage
    41  	// NameMismatch results when the subject name of a parent certificate
    42  	// does not match the issuer name in the child.
    43  	NameMismatch
    44  	// NameConstraintsWithoutSANs results when a leaf certificate doesn't
    45  	// contain a Subject Alternative Name extension, but a CA certificate
    46  	// contains name constraints.
    47  	NameConstraintsWithoutSANs
    48  	// UnconstrainedName results when a CA certificate contains permitted
    49  	// name constraints, but leaf certificate contains a name of an
    50  	// unsupported or unconstrained type.
    51  	UnconstrainedName
    52  	// TooManyConstraints results when the number of comparision operations
    53  	// needed to check a certificate exceeds the limit set by
    54  	// VerifyOptions.MaxConstraintComparisions. This limit exists to
    55  	// prevent pathological certificates can consuming excessive amounts of
    56  	// CPU time to verify.
    57  	TooManyConstraints
    58  	// CANotAuthorizedForExtKeyUsage results when an intermediate or root
    59  	// certificate does not permit a requested extended key usage.
    60  	CANotAuthorizedForExtKeyUsage
    61  )
    62  
    63  // CertificateInvalidError results when an odd error occurs. Users of this
    64  // library probably want to handle all these errors uniformly.
    65  type CertificateInvalidError struct {
    66  	Cert   *Certificate
    67  	Reason InvalidReason
    68  	Detail string
    69  }
    70  
    71  func (e CertificateInvalidError) Error() string {
    72  	switch e.Reason {
    73  	case NotAuthorizedToSign:
    74  		return "x509: certificate is not authorized to sign other certificates"
    75  	case Expired:
    76  		return "x509: certificate has expired or is not yet valid"
    77  	case CANotAuthorizedForThisName:
    78  		return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
    79  	case CANotAuthorizedForExtKeyUsage:
    80  		return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
    81  	case TooManyIntermediates:
    82  		return "x509: too many intermediates for path length constraint"
    83  	case IncompatibleUsage:
    84  		return "x509: certificate specifies an incompatible key usage"
    85  	case NameMismatch:
    86  		return "x509: issuer name does not match subject from issuing certificate"
    87  	case NameConstraintsWithoutSANs:
    88  		return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
    89  	case UnconstrainedName:
    90  		return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
    91  	}
    92  	return "x509: unknown error"
    93  }
    94  
    95  // HostnameError results when the set of authorized names doesn't match the
    96  // requested name.
    97  type HostnameError struct {
    98  	Certificate *Certificate
    99  	Host        string
   100  }
   101  
   102  func (h HostnameError) Error() string {
   103  	c := h.Certificate
   104  
   105  	var valid string
   106  	if ip := net.ParseIP(h.Host); ip != nil {
   107  		// Trying to validate an IP
   108  		if len(c.IPAddresses) == 0 {
   109  			return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
   110  		}
   111  		for _, san := range c.IPAddresses {
   112  			if len(valid) > 0 {
   113  				valid += ", "
   114  			}
   115  			valid += san.String()
   116  		}
   117  	} else {
   118  		if c.hasSANExtension() {
   119  			valid = strings.Join(c.DNSNames, ", ")
   120  		} else {
   121  			valid = c.Subject.CommonName
   122  		}
   123  	}
   124  
   125  	if len(valid) == 0 {
   126  		return "x509: certificate is not valid for any names, but wanted to match " + h.Host
   127  	}
   128  	return "x509: certificate is valid for " + valid + ", not " + h.Host
   129  }
   130  
   131  // UnknownAuthorityError results when the certificate issuer is unknown
   132  type UnknownAuthorityError struct {
   133  	Cert *Certificate
   134  	// hintErr contains an error that may be helpful in determining why an
   135  	// authority wasn't found.
   136  	hintErr error
   137  	// hintCert contains a possible authority certificate that was rejected
   138  	// because of the error in hintErr.
   139  	hintCert *Certificate
   140  }
   141  
   142  func (e UnknownAuthorityError) Error() string {
   143  	s := "x509: certificate signed by unknown authority"
   144  	if e.hintErr != nil {
   145  		certName := e.hintCert.Subject.CommonName
   146  		if len(certName) == 0 {
   147  			if len(e.hintCert.Subject.Organization) > 0 {
   148  				certName = e.hintCert.Subject.Organization[0]
   149  			} else {
   150  				certName = "serial:" + e.hintCert.SerialNumber.String()
   151  			}
   152  		}
   153  		s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
   154  	}
   155  	return s
   156  }
   157  
   158  // SystemRootsError results when we fail to load the system root certificates.
   159  type SystemRootsError struct {
   160  	Err error
   161  }
   162  
   163  func (se SystemRootsError) Error() string {
   164  	msg := "x509: failed to load system roots and no roots provided"
   165  	if se.Err != nil {
   166  		return msg + "; " + se.Err.Error()
   167  	}
   168  	return msg
   169  }
   170  
   171  // errNotParsed is returned when a certificate without ASN.1 contents is
   172  // verified. Platform-specific verification needs the ASN.1 contents.
   173  var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
   174  
   175  // VerifyOptions contains parameters for Certificate.Verify. It's a structure
   176  // because other PKIX verification APIs have ended up needing many options.
   177  type VerifyOptions struct {
   178  	DNSName       string
   179  	Intermediates *CertPool
   180  	Roots         *CertPool // if nil, the system roots are used
   181  	CurrentTime   time.Time // if zero, the current time is used
   182  	// KeyUsage specifies which Extended Key Usage values are acceptable. A leaf
   183  	// certificate is accepted if it contains any of the listed values. An empty
   184  	// list means ExtKeyUsageServerAuth. To accept any key usage, include
   185  	// ExtKeyUsageAny.
   186  	//
   187  	// Certificate chains are required to nest these extended key usage values.
   188  	// (This matches the Windows CryptoAPI behavior, but not the spec.)
   189  	KeyUsages []ExtKeyUsage
   190  	// MaxConstraintComparisions is the maximum number of comparisons to
   191  	// perform when checking a given certificate's name constraints. If
   192  	// zero, a sensible default is used. This limit prevents pathalogical
   193  	// certificates from consuming excessive amounts of CPU time when
   194  	// validating.
   195  	MaxConstraintComparisions int
   196  }
   197  
   198  const (
   199  	leafCertificate = iota
   200  	intermediateCertificate
   201  	rootCertificate
   202  )
   203  
   204  // rfc2821Mailbox represents a “mailbox” (which is an email address to most
   205  // people) by breaking it into the “local” (i.e. before the '@') and “domain”
   206  // parts.
   207  type rfc2821Mailbox struct {
   208  	local, domain string
   209  }
   210  
   211  // parseRFC2821Mailbox parses an email address into local and domain parts,
   212  // based on the ABNF for a “Mailbox” from RFC 2821. According to
   213  // https://tools.ietf.org/html/rfc5280#section-4.2.1.6 that's correct for an
   214  // rfc822Name from a certificate: “The format of an rfc822Name is a "Mailbox"
   215  // as defined in https://tools.ietf.org/html/rfc2821#section-4.1.2”.
   216  func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
   217  	if len(in) == 0 {
   218  		return mailbox, false
   219  	}
   220  
   221  	localPartBytes := make([]byte, 0, len(in)/2)
   222  
   223  	if in[0] == '"' {
   224  		// Quoted-string = DQUOTE *qcontent DQUOTE
   225  		// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
   226  		// qcontent = qtext / quoted-pair
   227  		// qtext = non-whitespace-control /
   228  		//         %d33 / %d35-91 / %d93-126
   229  		// quoted-pair = ("\" text) / obs-qp
   230  		// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
   231  		//
   232  		// (Names beginning with “obs-” are the obsolete syntax from
   233  		// https://tools.ietf.org/html/rfc2822#section-4. Since it has
   234  		// been 16 years, we no longer accept that.)
   235  		in = in[1:]
   236  	QuotedString:
   237  		for {
   238  			if len(in) == 0 {
   239  				return mailbox, false
   240  			}
   241  			c := in[0]
   242  			in = in[1:]
   243  
   244  			switch {
   245  			case c == '"':
   246  				break QuotedString
   247  
   248  			case c == '\\':
   249  				// quoted-pair
   250  				if len(in) == 0 {
   251  					return mailbox, false
   252  				}
   253  				if in[0] == 11 ||
   254  					in[0] == 12 ||
   255  					(1 <= in[0] && in[0] <= 9) ||
   256  					(14 <= in[0] && in[0] <= 127) {
   257  					localPartBytes = append(localPartBytes, in[0])
   258  					in = in[1:]
   259  				} else {
   260  					return mailbox, false
   261  				}
   262  
   263  			case c == 11 ||
   264  				c == 12 ||
   265  				// Space (char 32) is not allowed based on the
   266  				// BNF, but RFC 3696 gives an example that
   267  				// assumes that it is. Several “verified”
   268  				// errata continue to argue about this point.
   269  				// We choose to accept it.
   270  				c == 32 ||
   271  				c == 33 ||
   272  				c == 127 ||
   273  				(1 <= c && c <= 8) ||
   274  				(14 <= c && c <= 31) ||
   275  				(35 <= c && c <= 91) ||
   276  				(93 <= c && c <= 126):
   277  				// qtext
   278  				localPartBytes = append(localPartBytes, c)
   279  
   280  			default:
   281  				return mailbox, false
   282  			}
   283  		}
   284  	} else {
   285  		// Atom ("." Atom)*
   286  	NextChar:
   287  		for len(in) > 0 {
   288  			// atext from https://tools.ietf.org/html/rfc2822#section-3.2.4
   289  			c := in[0]
   290  
   291  			switch {
   292  			case c == '\\':
   293  				// Examples given in RFC 3696 suggest that
   294  				// escaped characters can appear outside of a
   295  				// quoted string. Several “verified” errata
   296  				// continue to argue the point. We choose to
   297  				// accept it.
   298  				in = in[1:]
   299  				if len(in) == 0 {
   300  					return mailbox, false
   301  				}
   302  				fallthrough
   303  
   304  			case ('0' <= c && c <= '9') ||
   305  				('a' <= c && c <= 'z') ||
   306  				('A' <= c && c <= 'Z') ||
   307  				c == '!' || c == '#' || c == '$' || c == '%' ||
   308  				c == '&' || c == '\'' || c == '*' || c == '+' ||
   309  				c == '-' || c == '/' || c == '=' || c == '?' ||
   310  				c == '^' || c == '_' || c == '`' || c == '{' ||
   311  				c == '|' || c == '}' || c == '~' || c == '.':
   312  				localPartBytes = append(localPartBytes, in[0])
   313  				in = in[1:]
   314  
   315  			default:
   316  				break NextChar
   317  			}
   318  		}
   319  
   320  		if len(localPartBytes) == 0 {
   321  			return mailbox, false
   322  		}
   323  
   324  		// https://tools.ietf.org/html/rfc3696#section-3
   325  		// “period (".") may also appear, but may not be used to start
   326  		// or end the local part, nor may two or more consecutive
   327  		// periods appear.”
   328  		twoDots := []byte{'.', '.'}
   329  		if localPartBytes[0] == '.' ||
   330  			localPartBytes[len(localPartBytes)-1] == '.' ||
   331  			bytes.Contains(localPartBytes, twoDots) {
   332  			return mailbox, false
   333  		}
   334  	}
   335  
   336  	if len(in) == 0 || in[0] != '@' {
   337  		return mailbox, false
   338  	}
   339  	in = in[1:]
   340  
   341  	// The RFC species a format for domains, but that's known to be
   342  	// violated in practice so we accept that anything after an '@' is the
   343  	// domain part.
   344  	if _, ok := domainToReverseLabels(in); !ok {
   345  		return mailbox, false
   346  	}
   347  
   348  	mailbox.local = string(localPartBytes)
   349  	mailbox.domain = in
   350  	return mailbox, true
   351  }
   352  
   353  // domainToReverseLabels converts a textual domain name like foo.example.com to
   354  // the list of labels in reverse order, e.g. ["com", "example", "foo"].
   355  func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
   356  	for len(domain) > 0 {
   357  		if i := strings.LastIndexByte(domain, '.'); i == -1 {
   358  			reverseLabels = append(reverseLabels, domain)
   359  			domain = ""
   360  		} else {
   361  			reverseLabels = append(reverseLabels, domain[i+1:len(domain)])
   362  			domain = domain[:i]
   363  		}
   364  	}
   365  
   366  	if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
   367  		// An empty label at the end indicates an absolute value.
   368  		return nil, false
   369  	}
   370  
   371  	for _, label := range reverseLabels {
   372  		if len(label) == 0 {
   373  			// Empty labels are otherwise invalid.
   374  			return nil, false
   375  		}
   376  
   377  		for _, c := range label {
   378  			if c < 33 || c > 126 {
   379  				// Invalid character.
   380  				return nil, false
   381  			}
   382  		}
   383  	}
   384  
   385  	return reverseLabels, true
   386  }
   387  
   388  func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
   389  	// If the constraint contains an @, then it specifies an exact mailbox
   390  	// name.
   391  	if strings.Contains(constraint, "@") {
   392  		constraintMailbox, ok := parseRFC2821Mailbox(constraint)
   393  		if !ok {
   394  			return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
   395  		}
   396  		return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
   397  	}
   398  
   399  	// Otherwise the constraint is like a DNS constraint of the domain part
   400  	// of the mailbox.
   401  	return matchDomainConstraint(mailbox.domain, constraint)
   402  }
   403  
   404  func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
   405  	// https://tools.ietf.org/html/rfc5280#section-4.2.1.10
   406  	// “a uniformResourceIdentifier that does not include an authority
   407  	// component with a host name specified as a fully qualified domain
   408  	// name (e.g., if the URI either does not include an authority
   409  	// component or includes an authority component in which the host name
   410  	// is specified as an IP address), then the application MUST reject the
   411  	// certificate.”
   412  
   413  	host := uri.Host
   414  	if len(host) == 0 {
   415  		return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
   416  	}
   417  
   418  	if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
   419  		var err error
   420  		host, _, err = net.SplitHostPort(uri.Host)
   421  		if err != nil {
   422  			return false, err
   423  		}
   424  	}
   425  
   426  	if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
   427  		net.ParseIP(host) != nil {
   428  		return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
   429  	}
   430  
   431  	return matchDomainConstraint(host, constraint)
   432  }
   433  
   434  func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
   435  	if len(ip) != len(constraint.IP) {
   436  		return false, nil
   437  	}
   438  
   439  	for i := range ip {
   440  		if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
   441  			return false, nil
   442  		}
   443  	}
   444  
   445  	return true, nil
   446  }
   447  
   448  func matchDomainConstraint(domain, constraint string) (bool, error) {
   449  	// The meaning of zero length constraints is not specified, but this
   450  	// code follows NSS and accepts them as matching everything.
   451  	if len(constraint) == 0 {
   452  		return true, nil
   453  	}
   454  
   455  	domainLabels, ok := domainToReverseLabels(domain)
   456  	if !ok {
   457  		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
   458  	}
   459  
   460  	// RFC 5280 says that a leading period in a domain name means that at
   461  	// least one label must be prepended, but only for URI and email
   462  	// constraints, not DNS constraints. The code also supports that
   463  	// behaviour for DNS constraints.
   464  
   465  	mustHaveSubdomains := false
   466  	if constraint[0] == '.' {
   467  		mustHaveSubdomains = true
   468  		constraint = constraint[1:]
   469  	}
   470  
   471  	constraintLabels, ok := domainToReverseLabels(constraint)
   472  	if !ok {
   473  		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
   474  	}
   475  
   476  	if len(domainLabels) < len(constraintLabels) ||
   477  		(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
   478  		return false, nil
   479  	}
   480  
   481  	for i, constraintLabel := range constraintLabels {
   482  		if !strings.EqualFold(constraintLabel, domainLabels[i]) {
   483  			return false, nil
   484  		}
   485  	}
   486  
   487  	return true, nil
   488  }
   489  
   490  // checkNameConstraints checks that c permits a child certificate to claim the
   491  // given name, of type nameType. The argument parsedName contains the parsed
   492  // form of name, suitable for passing to the match function. The total number
   493  // of comparisons is tracked in the given count and should not exceed the given
   494  // limit.
   495  func (c *Certificate) checkNameConstraints(count *int,
   496  	maxConstraintComparisons int,
   497  	nameType string,
   498  	name string,
   499  	parsedName interface{},
   500  	match func(parsedName, constraint interface{}) (match bool, err error),
   501  	permitted, excluded interface{}) error {
   502  
   503  	excludedValue := reflect.ValueOf(excluded)
   504  
   505  	*count += excludedValue.Len()
   506  	if *count > maxConstraintComparisons {
   507  		return CertificateInvalidError{c, TooManyConstraints, ""}
   508  	}
   509  
   510  	for i := 0; i < excludedValue.Len(); i++ {
   511  		constraint := excludedValue.Index(i).Interface()
   512  		match, err := match(parsedName, constraint)
   513  		if err != nil {
   514  			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
   515  		}
   516  
   517  		if match {
   518  			return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
   519  		}
   520  	}
   521  
   522  	permittedValue := reflect.ValueOf(permitted)
   523  
   524  	*count += permittedValue.Len()
   525  	if *count > maxConstraintComparisons {
   526  		return CertificateInvalidError{c, TooManyConstraints, ""}
   527  	}
   528  
   529  	ok := true
   530  	for i := 0; i < permittedValue.Len(); i++ {
   531  		constraint := permittedValue.Index(i).Interface()
   532  
   533  		var err error
   534  		if ok, err = match(parsedName, constraint); err != nil {
   535  			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
   536  		}
   537  
   538  		if ok {
   539  			break
   540  		}
   541  	}
   542  
   543  	if !ok {
   544  		return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
   545  	}
   546  
   547  	return nil
   548  }
   549  
   550  // isValid performs validity checks on c given that it is a candidate to append
   551  // to the chain in currentChain.
   552  func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
   553  	if len(c.UnhandledCriticalExtensions) > 0 {
   554  		return UnhandledCriticalExtension{}
   555  	}
   556  
   557  	if len(currentChain) > 0 {
   558  		child := currentChain[len(currentChain)-1]
   559  		if !bytes.Equal(child.RawIssuer, c.RawSubject) {
   560  			return CertificateInvalidError{c, NameMismatch, ""}
   561  		}
   562  	}
   563  
   564  	now := opts.CurrentTime
   565  	if now.IsZero() {
   566  		now = time.Now()
   567  	}
   568  	if now.Before(c.NotBefore) || now.After(c.NotAfter) {
   569  		return CertificateInvalidError{c, Expired, ""}
   570  	}
   571  
   572  	maxConstraintComparisons := opts.MaxConstraintComparisions
   573  	if maxConstraintComparisons == 0 {
   574  		maxConstraintComparisons = 250000
   575  	}
   576  	comparisonCount := 0
   577  
   578  	var leaf *Certificate
   579  	if certType == intermediateCertificate || certType == rootCertificate {
   580  		if len(currentChain) == 0 {
   581  			return errors.New("x509: internal error: empty chain when appending CA cert")
   582  		}
   583  		leaf = currentChain[0]
   584  	}
   585  
   586  	if (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints() {
   587  		sanExtension, ok := leaf.getSANExtension()
   588  		if !ok {
   589  			// This is the deprecated, legacy case of depending on
   590  			// the CN as a hostname. Chains modern enough to be
   591  			// using name constraints should not be depending on
   592  			// CNs.
   593  			return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""}
   594  		}
   595  
   596  		err := forEachSAN(sanExtension, func(tag int, data []byte) error {
   597  			switch tag {
   598  			case nameTypeEmail:
   599  				name := string(data)
   600  				mailbox, ok := parseRFC2821Mailbox(name)
   601  				if !ok {
   602  					return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
   603  				}
   604  
   605  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
   606  					func(parsedName, constraint interface{}) (bool, error) {
   607  						return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
   608  					}, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
   609  					return err
   610  				}
   611  
   612  			case nameTypeDNS:
   613  				name := string(data)
   614  				if _, ok := domainToReverseLabels(name); !ok {
   615  					return fmt.Errorf("x509: cannot parse dnsName %q", name)
   616  				}
   617  
   618  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
   619  					func(parsedName, constraint interface{}) (bool, error) {
   620  						return matchDomainConstraint(parsedName.(string), constraint.(string))
   621  					}, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
   622  					return err
   623  				}
   624  
   625  			case nameTypeURI:
   626  				name := string(data)
   627  				uri, err := url.Parse(name)
   628  				if err != nil {
   629  					return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
   630  				}
   631  
   632  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
   633  					func(parsedName, constraint interface{}) (bool, error) {
   634  						return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
   635  					}, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
   636  					return err
   637  				}
   638  
   639  			case nameTypeIP:
   640  				ip := net.IP(data)
   641  				if l := len(ip); l != net.IPv4len && l != net.IPv6len {
   642  					return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
   643  				}
   644  
   645  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
   646  					func(parsedName, constraint interface{}) (bool, error) {
   647  						return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
   648  					}, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
   649  					return err
   650  				}
   651  
   652  			default:
   653  				// Unknown SAN types are ignored.
   654  			}
   655  
   656  			return nil
   657  		})
   658  
   659  		if err != nil {
   660  			return err
   661  		}
   662  	}
   663  
   664  	// KeyUsage status flags are ignored. From Engineering Security, Peter
   665  	// Gutmann: A European government CA marked its signing certificates as
   666  	// being valid for encryption only, but no-one noticed. Another
   667  	// European CA marked its signature keys as not being valid for
   668  	// signatures. A different CA marked its own trusted root certificate
   669  	// as being invalid for certificate signing. Another national CA
   670  	// distributed a certificate to be used to encrypt data for the
   671  	// country’s tax authority that was marked as only being usable for
   672  	// digital signatures but not for encryption. Yet another CA reversed
   673  	// the order of the bit flags in the keyUsage due to confusion over
   674  	// encoding endianness, essentially setting a random keyUsage in
   675  	// certificates that it issued. Another CA created a self-invalidating
   676  	// certificate by adding a certificate policy statement stipulating
   677  	// that the certificate had to be used strictly as specified in the
   678  	// keyUsage, and a keyUsage containing a flag indicating that the RSA
   679  	// encryption key could only be used for Diffie-Hellman key agreement.
   680  
   681  	if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
   682  		return CertificateInvalidError{c, NotAuthorizedToSign, ""}
   683  	}
   684  
   685  	if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
   686  		numIntermediates := len(currentChain) - 1
   687  		if numIntermediates > c.MaxPathLen {
   688  			return CertificateInvalidError{c, TooManyIntermediates, ""}
   689  		}
   690  	}
   691  
   692  	return nil
   693  }
   694  
   695  // formatOID formats an ASN.1 OBJECT IDENTIFER in the common, dotted style.
   696  func formatOID(oid asn1.ObjectIdentifier) string {
   697  	ret := ""
   698  	for i, v := range oid {
   699  		if i > 0 {
   700  			ret += "."
   701  		}
   702  		ret += strconv.Itoa(v)
   703  	}
   704  	return ret
   705  }
   706  
   707  // Verify attempts to verify c by building one or more chains from c to a
   708  // certificate in opts.Roots, using certificates in opts.Intermediates if
   709  // needed. If successful, it returns one or more chains where the first
   710  // element of the chain is c and the last element is from opts.Roots.
   711  //
   712  // If opts.Roots is nil and system roots are unavailable the returned error
   713  // will be of type SystemRootsError.
   714  //
   715  // Name constraints in the intermediates will be applied to all names claimed
   716  // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
   717  // example.com if an intermediate doesn't permit it, even if example.com is not
   718  // the name being validated. Note that DirectoryName constraints are not
   719  // supported.
   720  //
   721  // Extended Key Usage values are enforced down a chain, so an intermediate or
   722  // root that enumerates EKUs prevents a leaf from asserting an EKU not in that
   723  // list.
   724  //
   725  // WARNING: this function doesn't do any revocation checking.
   726  func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
   727  	// Platform-specific verification needs the ASN.1 contents so
   728  	// this makes the behavior consistent across platforms.
   729  	if len(c.Raw) == 0 {
   730  		return nil, errNotParsed
   731  	}
   732  	if opts.Intermediates != nil {
   733  		for _, intermediate := range opts.Intermediates.certs {
   734  			if len(intermediate.Raw) == 0 {
   735  				return nil, errNotParsed
   736  			}
   737  		}
   738  	}
   739  
   740  	// Use Windows's own verification and chain building.
   741  	if opts.Roots == nil && runtime.GOOS == "windows" {
   742  		return c.systemVerify(&opts)
   743  	}
   744  
   745  	if opts.Roots == nil {
   746  		opts.Roots = systemRootsPool()
   747  		if opts.Roots == nil {
   748  			return nil, SystemRootsError{systemRootsErr}
   749  		}
   750  	}
   751  
   752  	err = c.isValid(leafCertificate, nil, &opts)
   753  	if err != nil {
   754  		return
   755  	}
   756  
   757  	if len(opts.DNSName) > 0 {
   758  		err = c.VerifyHostname(opts.DNSName)
   759  		if err != nil {
   760  			return
   761  		}
   762  	}
   763  
   764  	var candidateChains [][]*Certificate
   765  	if opts.Roots.contains(c) {
   766  		candidateChains = append(candidateChains, []*Certificate{c})
   767  	} else {
   768  		if candidateChains, err = c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts); err != nil {
   769  			return nil, err
   770  		}
   771  	}
   772  
   773  	keyUsages := opts.KeyUsages
   774  	if len(keyUsages) == 0 {
   775  		keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
   776  	}
   777  
   778  	// If any key usage is acceptable then we're done.
   779  	for _, usage := range keyUsages {
   780  		if usage == ExtKeyUsageAny {
   781  			return candidateChains, nil
   782  		}
   783  	}
   784  
   785  	for _, candidate := range candidateChains {
   786  		if checkChainForKeyUsage(candidate, keyUsages) {
   787  			chains = append(chains, candidate)
   788  		}
   789  	}
   790  
   791  	if len(chains) == 0 {
   792  		return nil, CertificateInvalidError{c, IncompatibleUsage, ""}
   793  	}
   794  
   795  	return chains, nil
   796  }
   797  
   798  func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
   799  	n := make([]*Certificate, len(chain)+1)
   800  	copy(n, chain)
   801  	n[len(chain)] = cert
   802  	return n
   803  }
   804  
   805  func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
   806  	possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
   807  nextRoot:
   808  	for _, rootNum := range possibleRoots {
   809  		root := opts.Roots.certs[rootNum]
   810  
   811  		for _, cert := range currentChain {
   812  			if cert.Equal(root) {
   813  				continue nextRoot
   814  			}
   815  		}
   816  
   817  		err = root.isValid(rootCertificate, currentChain, opts)
   818  		if err != nil {
   819  			continue
   820  		}
   821  		chains = append(chains, appendToFreshChain(currentChain, root))
   822  	}
   823  
   824  	possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
   825  nextIntermediate:
   826  	for _, intermediateNum := range possibleIntermediates {
   827  		intermediate := opts.Intermediates.certs[intermediateNum]
   828  		for _, cert := range currentChain {
   829  			if cert.Equal(intermediate) {
   830  				continue nextIntermediate
   831  			}
   832  		}
   833  		err = intermediate.isValid(intermediateCertificate, currentChain, opts)
   834  		if err != nil {
   835  			continue
   836  		}
   837  		var childChains [][]*Certificate
   838  		childChains, ok := cache[intermediateNum]
   839  		if !ok {
   840  			childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
   841  			cache[intermediateNum] = childChains
   842  		}
   843  		chains = append(chains, childChains...)
   844  	}
   845  
   846  	if len(chains) > 0 {
   847  		err = nil
   848  	}
   849  
   850  	if len(chains) == 0 && err == nil {
   851  		hintErr := rootErr
   852  		hintCert := failedRoot
   853  		if hintErr == nil {
   854  			hintErr = intermediateErr
   855  			hintCert = failedIntermediate
   856  		}
   857  		err = UnknownAuthorityError{c, hintErr, hintCert}
   858  	}
   859  
   860  	return
   861  }
   862  
   863  func matchHostnames(pattern, host string) bool {
   864  	host = strings.TrimSuffix(host, ".")
   865  	pattern = strings.TrimSuffix(pattern, ".")
   866  
   867  	if len(pattern) == 0 || len(host) == 0 {
   868  		return false
   869  	}
   870  
   871  	patternParts := strings.Split(pattern, ".")
   872  	hostParts := strings.Split(host, ".")
   873  
   874  	if len(patternParts) != len(hostParts) {
   875  		return false
   876  	}
   877  
   878  	for i, patternPart := range patternParts {
   879  		if i == 0 && patternPart == "*" {
   880  			continue
   881  		}
   882  		if patternPart != hostParts[i] {
   883  			return false
   884  		}
   885  	}
   886  
   887  	return true
   888  }
   889  
   890  // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
   891  // an explicitly ASCII function to avoid any sharp corners resulting from
   892  // performing Unicode operations on DNS labels.
   893  func toLowerCaseASCII(in string) string {
   894  	// If the string is already lower-case then there's nothing to do.
   895  	isAlreadyLowerCase := true
   896  	for _, c := range in {
   897  		if c == utf8.RuneError {
   898  			// If we get a UTF-8 error then there might be
   899  			// upper-case ASCII bytes in the invalid sequence.
   900  			isAlreadyLowerCase = false
   901  			break
   902  		}
   903  		if 'A' <= c && c <= 'Z' {
   904  			isAlreadyLowerCase = false
   905  			break
   906  		}
   907  	}
   908  
   909  	if isAlreadyLowerCase {
   910  		return in
   911  	}
   912  
   913  	out := []byte(in)
   914  	for i, c := range out {
   915  		if 'A' <= c && c <= 'Z' {
   916  			out[i] += 'a' - 'A'
   917  		}
   918  	}
   919  	return string(out)
   920  }
   921  
   922  // VerifyHostname returns nil if c is a valid certificate for the named host.
   923  // Otherwise it returns an error describing the mismatch.
   924  func (c *Certificate) VerifyHostname(h string) error {
   925  	// IP addresses may be written in [ ].
   926  	candidateIP := h
   927  	if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
   928  		candidateIP = h[1 : len(h)-1]
   929  	}
   930  	if ip := net.ParseIP(candidateIP); ip != nil {
   931  		// We only match IP addresses against IP SANs.
   932  		// https://tools.ietf.org/html/rfc6125#appendix-B.2
   933  		for _, candidate := range c.IPAddresses {
   934  			if ip.Equal(candidate) {
   935  				return nil
   936  			}
   937  		}
   938  		return HostnameError{c, candidateIP}
   939  	}
   940  
   941  	lowered := toLowerCaseASCII(h)
   942  
   943  	if c.hasSANExtension() {
   944  		for _, match := range c.DNSNames {
   945  			if matchHostnames(toLowerCaseASCII(match), lowered) {
   946  				return nil
   947  			}
   948  		}
   949  		// If Subject Alt Name is given, we ignore the common name.
   950  	} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
   951  		return nil
   952  	}
   953  
   954  	return HostnameError{c, h}
   955  }
   956  
   957  func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
   958  	usages := make([]ExtKeyUsage, len(keyUsages))
   959  	copy(usages, keyUsages)
   960  
   961  	if len(chain) == 0 {
   962  		return false
   963  	}
   964  
   965  	usagesRemaining := len(usages)
   966  
   967  	// We walk down the list and cross out any usages that aren't supported
   968  	// by each certificate. If we cross out all the usages, then the chain
   969  	// is unacceptable.
   970  
   971  NextCert:
   972  	for i := len(chain) - 1; i >= 0; i-- {
   973  		cert := chain[i]
   974  		if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
   975  			// The certificate doesn't have any extended key usage specified.
   976  			continue
   977  		}
   978  
   979  		for _, usage := range cert.ExtKeyUsage {
   980  			if usage == ExtKeyUsageAny {
   981  				// The certificate is explicitly good for any usage.
   982  				continue NextCert
   983  			}
   984  		}
   985  
   986  		const invalidUsage ExtKeyUsage = -1
   987  
   988  	NextRequestedUsage:
   989  		for i, requestedUsage := range usages {
   990  			if requestedUsage == invalidUsage {
   991  				continue
   992  			}
   993  
   994  			for _, usage := range cert.ExtKeyUsage {
   995  				if requestedUsage == usage {
   996  					continue NextRequestedUsage
   997  				} else if requestedUsage == ExtKeyUsageServerAuth &&
   998  					(usage == ExtKeyUsageNetscapeServerGatedCrypto ||
   999  						usage == ExtKeyUsageMicrosoftServerGatedCrypto) {
  1000  					// In order to support COMODO
  1001  					// certificate chains, we have to
  1002  					// accept Netscape or Microsoft SGC
  1003  					// usages as equal to ServerAuth.
  1004  					continue NextRequestedUsage
  1005  				}
  1006  			}
  1007  
  1008  			usages[i] = invalidUsage
  1009  			usagesRemaining--
  1010  			if usagesRemaining == 0 {
  1011  				return false
  1012  			}
  1013  		}
  1014  	}
  1015  
  1016  	return true
  1017  }